Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
ACS Sens ; 9(7): 3594-3603, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38912608

RESUMO

Extracellular vesicles (EVs) are preeminent carriers of biomarkers and have become the subject of intense biomedical research for medical diagnostics using biosensors. To create effective EV-based immunoassays, it is imperative to develop surface chemistry approaches with optimal EV detection targeting transmembrane protein biomarkers that are not affected by cell-to-cell variability. Here, we developed a series of immunoassays for the detection of EVs derived from mouse monocyte cells using surface plasmon resonance (SPR) biosensors. We chemically immobilized antibodies onto mixed self-assembled monolayers of oligo ethylene glycol (OEG) alkanethiolates with carboxylic and hydroxylic terminal groups. The effects of antibody clonality (monoclonal vs polyclonal) and antibody surface coverage in targeting EVs via CD81 tetraspanins were investigated. We determined binding kinetic parameters, establishing trends from steric hindrance effects and epitope recognition properties of antibodies. Our results indicate that a 40% surface coverage of polyclonal antibodies covalently linked onto a mixed SAM with 10% of terminated -COOH groups yields a promising approach for EV detection with a linear range of 1.9 × 108-1.9 × 109 EVs/mL and a limit of detection of 5.9 × 106 EVs/mL. This optimal immunoassay exhibits a 1.92 nM equilibrium dissociation constant for bound EVs, suggesting a high binding affinity when CD81 is targeted. Our study provides important insights into surface chemistry development for EV detection targeted via transmembrane protein biomarkers using antibodies, which has promising applications for disease diagnostics.


Assuntos
Vesículas Extracelulares , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Vesículas Extracelulares/química , Animais , Imunoensaio/métodos , Camundongos , Tetraspanina 28/análise , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Proteínas de Membrana/química
2.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718108

RESUMO

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Assuntos
Endocitose , Exossomos , Tetraspanina 30 , Exossomos/metabolismo , Humanos , Tetraspanina 30/metabolismo , Biomarcadores/metabolismo , Sinteninas/metabolismo , Sinteninas/genética , Tetraspanina 28/metabolismo , Membrana Celular/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Tetraspanina 29/metabolismo
3.
Anal Chem ; 96(21): 8450-8457, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728011

RESUMO

Accurate and quantitative detection of pre-eclampsia markers is crucial in reducing pregnancy mortality rates. This study introduces a novel approach utilizing a fluorescent biosensor by the immunosorbent atom transfer radical polymerization (immuno-ATRP) assay to detect the pre-eclampsia protein marker CD81. The critical step used in this sensor is the novel signal amplification strategy of fluorescein polymerization mediated by ferritin-enhanced controlled radical polymerization, which combines with a traditional enzyme-linked immunosorbent assay (ELISA) to further reduce the detection limit of the CD81 protein concentration. The fluorescence intensity was linear versus logarithmic CD81 protein concentration from 0.1 to 10,000 pg mL-1, and the detection limit was 0.067 pg mL-1. Surprisingly, in 30% normal human serum (NHS), the sensor can also detect target protein over 0.1-10,000 pg mL-1, with 0.083 pg mL-1 for the detection limit. Moreover, the proposed biosensor is designed to be cost-effective, making it accessible, particularly in resource-limited settings where expensive detection techniques may not be available. The affordability of this method enables widespread screening and monitoring of preeclampsia, ultimately benefiting many pregnant women by improving their healthcare outcomes. In short, developing of a low-cost and susceptible direct detection method for preeclampsia protein markers, such as CD81, through the use of the immuno-ATRP assay, has significant implications for reducing pregnancy mortality. This method holds promise for early detection, precise treatment, and improved management of preeclampsia, thereby contributing to better maternal and fetal health.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Polimerização , Humanos , Feminino , Gravidez , Biomarcadores/análise , Biomarcadores/sangue , Técnicas Biossensoriais/métodos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/sangue , Tetraspanina 28/análise , Tetraspanina 28/metabolismo , Imunoadsorventes/química , Limite de Detecção , Fluorescência , Ensaio de Imunoadsorção Enzimática , Eclampsia/diagnóstico
4.
ACS Sens ; 9(4): 2043-2049, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38520356

RESUMO

Extracellular vesicles, especially exosomes, have attracted attention in the last few decades as novel cancer biomarkers. Exosomal membrane proteins provide easy-to-reach targets and can be utilized as information sources of their parent cells. In this study, a MagLev-based, highly sensitive, and versatile biosensor platform for detecting minor differences in the density of suspended objects is proposed for exosome detection. The developed platform utilizes antibody-functionalized microspheres to capture exosomal membrane proteins (ExoMPs) EpCAM, CD81, and CD151 as markers for cancerous exosomes, exosomes, and non-small cell lung cancer (NSCLC)-derived exosomes, respectively. Initially, the platform was utilized for protein detection and quantification by targeting solubilized ExoMPs, and a dynamic range of 1-100 nM, with LoD values of 1.324, 0.638, and 0.722 nM for EpCAM, CD81, and CD151, were observed, respectively. Then, the sensor platform was tested using exosome isolates derived from NSCLC cell line A549 and MRC5 healthy lung fibroblast cell line. It was shown that the sensor platform is able to detect and differentiate exosomal biomarkers derived from cancerous and non-cancerous cell lines. Overall, this innovative, simple, and rapid method shows great potential for the early diagnosis of lung cancer through exosomal biomarker detection.


Assuntos
Molécula de Adesão da Célula Epitelial , Exossomos , Neoplasias Pulmonares , Exossomos/química , Humanos , Neoplasias Pulmonares/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Tetraspanina 28/metabolismo , Tetraspanina 28/análise , Técnicas Biossensoriais/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Biomarcadores Tumorais/análise , Tetraspanina 24 , Células A549
5.
Angew Chem Int Ed Engl ; 63(20): e202400129, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38409630

RESUMO

Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.


Assuntos
Peptídeos , Tetraspanina 28 , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Tetraspanina 28/metabolismo , Tetraspanina 28/química , Metástase Neoplásica , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo
6.
Front Cell Infect Microbiol ; 14: 1338606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357447

RESUMO

The tetraspanin CD81 is one of the main entry receptors for Hepatitis C virus, which is a major causative agent to develop liver cirrhosis and hepatocellular carcinoma (HCC). Here, we identify CD81 as one of few surface proteins that are downregulated in HCV expressing hepatoma cells, discovering a functional role of CD81 beyond mediating HCV entry. CD81 was downregulated at the mRNA level in hepatoma cells that replicate HCV. Kinetics of HCV expression were increased in CD81-knockout cells and accompanied by enhanced cellular growth. Furthermore, loss of CD81 compensated for inhibition of pro-survival TBK1-signaling in HCV expressing cells. Analysis of functional phenotypes that could be associated with pro-survival signaling revealed that CD81 is a negative regulator of NF-κB. Interaction of the NF-κB subunits p50 and p65 was increased in cells lacking CD81. Similarly, we witnessed an overall increase in the total levels of phosphorylated and cellular p65 upon CD81-knockout in hepatoma cells. Finally, translocation of p65 in CD81-negative hepatoma cells was markedly induced upon stimulation with TNFα or PMA. Altogether, CD81 emerges as a regulator of pro-survival NF-κB signaling. Considering the important and established role of NF-κB for HCV replication and tumorigenesis, the downregulation of CD81 by HCV and the associated increase in NF-κB signaling might be relevant for viral persistence and chronic infection.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Humanos , Hepacivirus/genética , NF-kappa B , Neoplasias Hepáticas/patologia , Tetraspanina 28/metabolismo
7.
Biochem Biophys Res Commun ; 692: 149344, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070275

RESUMO

CD81 is a cell surface transmembrane protein of the tetraspanin family, which critically regulates signal transduction and immune response. Growing evidence has shown that CD81 plays important roles in tumorigenesis and influences immunotherapy response. Here, combining bio-informatics and functional analysis, we find that CD81 is a risk factor in lung squamous cell carcinoma (LUSC), whereas a protective factor in lung adenocarcinoma. In LUSC with high expression of CD81, the autophagy and JAK-STAT signaling pathway are activated. Meanwhile, the expression level of CD81 is negatively correlated with tumor mutational load (TMB), microsatellite instability (MSI), and neoantigen (NEO). Furthermore, patients with LUSC and high expression of CD81 do not respond to immunotherapy drugs, but can respond to chemotherapy drugs. Importantly, depletion of CD81 suppresses the proliferation of LUSC cell, and enhances the sensitivity to cisplatin. Our findings suggest that CD81 represents a potential target for cisplatin-based chemotherapy in patients with LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Cisplatino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Tetraspanina 28/metabolismo
8.
Front Biosci (Landmark Ed) ; 28(10): 239, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37919063

RESUMO

BACKGROUND: Hepatitis C virus (HCV) infection is a global health threat to the public, and vaccines against it are not yet available. The HCV envelope glycoprotein E2 is a key target for anti-HCV vaccines. The majority of previous studies have focused on the hypervariable region and the glycosylation sites of the_HCV structural protein. This study aims to investigate a conserved domain of HCV E2 glycoprotein and explore its potential to induce an immune response against HCV. METHODS: HCV E2 conserved domain (encompassing amino acids 505-702) was prepared in Escherichia coli (E. coli). Peripheral blood mononuclear cells (PBMCs) were isolated from patients with HCV or healthy controls. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot assay was conducted to examine the HCV E2-specific immune response as reflected by IFN-γ-secreting cells/106 PBMCs. RESULTS: HCV E2 conserved domain was highly conserved among 25 HCV subtypes, and its recombinant soluble production in E. coli was recognized by anti-HCV E2 monoclonal antibodies. This study characterized in vitro direct interaction between bacterially expressed HCV E2 conserved domain and human CD81 (hCD81). Furthermore, the recombinant HCV E2_conserved domain markedly induced the production of IFN-γ by PBMCs from patients with HCV. Its stimulated specific immune response was significantly different from non-specific peptide controls or PBMCs isolated from healthy controls. CONCLUSIONS: HCV E2 conserved domain directly binds hCD81 and activates the production of IFN-γ in the PBMCs of patients with HCV. Therefore, the conserved domain of HCV E2 glycoprotein may be a new candidate for developing an HCV vaccine.


Assuntos
Hepatite C , Vacinas , Humanos , Escherichia coli/genética , Hepacivirus/fisiologia , Hepatite C/metabolismo , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo
9.
PLoS Pathog ; 19(11): e1011759, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37967063

RESUMO

Hepatitis C virus (HCV) exploits the four entry factors CD81, scavenger receptor class B type I (SR-BI, also known as SCARB1), occludin, and claudin-1 as well as the co-factor epidermal growth factor receptor (EGFR) to infect human hepatocytes. Here, we report that the disintegrin and matrix metalloproteinase 10 (ADAM10) associates with CD81, SR-BI, and EGFR and acts as HCV host factor. Pharmacological inhibition, siRNA-mediated silencing and genetic ablation of ADAM10 reduced HCV infection. ADAM10 was dispensable for HCV replication but supported HCV entry and cell-to-cell spread. Substrates of the ADAM10 sheddase including epidermal growth factor (EGF) and E-cadherin, which activate EGFR family members, rescued HCV infection of ADAM10 knockout cells. ADAM10 did not influence infection with other enveloped RNA viruses such as alphaviruses and a common cold coronavirus. Collectively, our study reveals a critical role for the sheddase ADAM10 as a HCV host factor, contributing to EGFR family member transactivation and as a consequence to HCV uptake.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/fisiologia , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Internalização do Vírus , Proteínas de Transporte , Receptores ErbB/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
10.
Cell Biochem Funct ; 41(8): 1503-1513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014564

RESUMO

The role of tetraspanin CD81 in malignant transformation is best studied in colorectal cancer, and it appears that other transcripts beside the fully coding mRNA may also be dysregulated in malignant cells. Recent data from a comprehensive pan-cancer transcriptome analysis demonstrated differential activity of two alternative CD81 gene promoters in malignant versus nonmalignant gut mucosa. The promoter active in gut mucosa gives rise to transcripts CD81-203 and CD81-213, while the promoter active in colon and rectal cancer gives rise to transcripts CD81-205 and CD81-215. Our study aimed to explore the biomarker potential of the transcripts from the alternative CD81 gene promoters in colon cancer, as well as to investigate their structure and potential function using in silico tools. The analysis of the transcripts' expression in several colon cell lines cultivated in 2D and 3D and a set of colon cancer and healthy gut mucosa samples by qPCR and RNA sequencing suggested their low expression and stromal origin. Expression patterns in tumor and nontumor tissue along with in silico data suppose that the transcript CD81-215 may be a noncoding RNA of stromal origin with possible involvement in signaling related to malignant transformation.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Transdução de Sinais , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
11.
J Extracell Vesicles ; 12(8): e12352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525398

RESUMO

The tetraspanins CD9, CD81 and CD63 are major components of extracellular vesicles (EVs). Yet, their impact on EV composition remains under-investigated. In the MCF7 breast cancer cell line CD63 was as expected predominantly intracellular. In contrast CD9 and CD81 strongly colocalized at the plasma membrane, albeit with different ratios at different sites, which may explain a higher enrichment of CD81 in EVs. Absence of these tetraspanins had little impact on the EV protein composition as analysed by quantitative mass spectrometry. We also analysed the effect of concomitant knock-out of CD9 and CD81 because these two tetraspanins play similar roles in several cellular processes and associate directly with two Ig domain proteins, CD9P-1/EWI-F/PTGFRN and EWI-2/IGSF8. These were the sole proteins significantly decreased in the EVs of double CD9- and CD81-deficient cells. In the case of EWI-2, this is primarily a consequence of a decreased cell expression level. In conclusion, this study shows that CD9, CD81 and CD63, commonly used as EV protein markers, play a marginal role in determining the protein composition of EVs released by MCF7 cells and highlights a regulation of the expression level and/or trafficking of CD9P-1 and EWI-2 by CD9 and CD81.


Assuntos
Vesículas Extracelulares , Tetraspanina 28 , Tetraspanina 29 , Tetraspanina 30 , Movimento Celular , Vesículas Extracelulares/metabolismo , Proteômica , Tetraspanina 28/metabolismo , Humanos , Células MCF-7 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
12.
FASEB J ; 37(4): e22834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961378

RESUMO

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Camundongos , Humanos , Ratos , Feminino , Animais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Cloretos/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Placenta/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Sódio/metabolismo , Potássio/metabolismo , Tetraspanina 28/metabolismo
13.
Biomolecules ; 13(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979448

RESUMO

CD81, a transmembrane protein belonging to the tetraspanin family, has recently been suggested as a therapeutic target for cancers. Here, we screened peptides that bind to the tetraspanin CD81 protein, and evaluated their inhibitory activity in cancer cell migration. To screen for CD81-binding peptides (CD81-BP), a peptide array membrane was prepared from the amino acid sequence of the EWI-2 protein, a major partner of CD81, before binding to fluorescently labeled CD81. As a result, four candidate CD81-BPs were identified and characterized. In particular, the CFMKRLRK peptide (called P152 in this study) was found to be the best candidate that preferentially binds to the extracellular loop of CD81, with an estimated dissociation constant of 0.91 µM. Since CD81 was reported to promote cancer cell migration, an initial step in metastasis, the Boyden chamber assay, was next performed to assess the effect of CD81-BP candidates on the migration of MDA-MB-231 human breast cancer cells. Interestingly, our result indicated that P152 could suppress MDA-MB-231 cell migration at the level comparable to that of an anti-human CD81 antibody (5A6). Thus, we propose these CD81-BPs with the anti-migration property against cancer cells for the development of novel therapeutic strategies.


Assuntos
Antígenos CD , Neoplasias , Humanos , Antígenos CD/metabolismo , Tetraspanina 28/metabolismo , Detecção Precoce de Câncer , Tetraspaninas , Peptídeos/farmacologia , Movimento Celular
14.
Nat Commun ; 14(1): 433, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702826

RESUMO

Hepatitis C virus (HCV) uses a hybrid entry mechanism. Current structural data suggest that upon exposure to low pH and Cluster of Differentiation 81 (CD81), the amino terminus of envelope glycoprotein E2 becomes ordered and releases an internal loop with two invariant aromatic residues into the host membrane. Here, we present the structure of an amino-terminally truncated E2 with the membrane binding loop in a bent conformation and the aromatic side chains sequestered. Comparison with three previously reported E2 structures with the same Fab indicates that this internal loop is flexible, and that local context influences the exposure of hydrophobic residues. Biochemical assays show that the amino-terminally truncated E2 lacks the baseline membrane-binding capacity of the E2 ectodomain. Thus, the amino terminal region is a critical determinant for both CD81 and membrane interaction. These results provide new insights into the HCV entry mechanism.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/metabolismo , Ligação Proteica , Proteínas do Envelope Viral/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo
15.
Drug Deliv ; 30(1): 2162161, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579638

RESUMO

Extracellular vesicles (EVs) are lipid membrane-bound particles involved in cell-to-cell communication through a delivery of regulatory molecules essential for physiological processes. Since EVs efficiently vectorize specific cargo molecules, they have been proposed as suitable vehicles for therapeutic agents. Drug loading into EVs can be achieved by active, exogenous strategies or by genetic modifications of vesicle-producing cells. With the aim to produce EVs conveying therapeutic proteins, we genetically engineered and compared HEK293 to tumor cells. Tetraspanin-based RFP fusions were found to be more stable and preferentially sorted into EVs in HEK293. EVs isolated from genetically modified HEK293 cells media were captured by cancer cells, efficiently delivering their cargo. Cathepsin B cleavage site introduced between CD9/CD81 and RFP was recognized by tumor specific proteases allowing the release of the reporter protein. Our results indicate HEK293 cells as a preferential system for the production of EVs and pave the way to the development of nano-platforms for the efficient delivery of therapeutic proteins and prodrugs to tumor cells.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Células HEK293 , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Transporte Proteico , Neoplasias/metabolismo , Comunicação Celular , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo
16.
Mol Divers ; 27(3): 1309-1322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35821161

RESUMO

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Simulação de Acoplamento Molecular , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatite C/metabolismo , Hepatócitos/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacologia
17.
J Phys Chem B ; 126(42): 8391-8403, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36255318

RESUMO

Hepatitis C virus (HCV) is the second viral agent that causes the majority of chronic hepatic infections worldwide, following Hepatitis B virus (HBV) infection. HCV infection comprises several steps, from the attachment to the receptors to the delivery of the viral genetic material and replication inside the cells. Tetraspanin CD81 is a key entry factor for HCV as it accompanies the virus during attachment and internalization through clathrin-mediated endocytosis. HCV-CD81 binding takes place through the viral glycoprotein E2. We performed full-atom molecular dynamics simulations reproducing the pH conditions that occur during the viral attachment to the hepatocytes (pH 7.4) and internalization (pH 6.2-4.6). We observed that changing the pH from 7.4 to 6.2 triggers a large conformational change in the binding orientation between E2core (E2core corresponds to residues 412-645 of the viral glycoprotein E2) and CD81LEL (CD81LEL corresponds to residues 112-204 of CD81) that occurs even more rapidly at low pH 4.6. This pH-induced switching mechanism has never been observed before and could allow the virus particles to sense the right moment during the maturation of the endosome to start fusion.


Assuntos
Hepacivirus , Hepatite C , Humanos , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Hepacivirus/metabolismo , Proteínas do Envelope Viral/química , Clatrina/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(43): e2208993119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252000

RESUMO

Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively. These proteins are enriched in curved membrane structures, such as cellular retraction fibers and oocyte microvilli. The factors driving this enrichment are, however, unknown. Here, we revealed that tetraspanin4 and CD9 are curvature sensors with a preference for positive membrane curvature. To this end, we used a biomimetic system emulating membranes of cell retraction fibers and oocyte microvilli by membrane tubes pulled out of giant plasma membrane vesicles with controllable membrane tension and curvature. We developed a simple thermodynamic model for the partitioning of curvature sensors between flat and tubular membranes, which allowed us to estimate the individual intrinsic curvatures of the two proteins. Overall, our findings illuminate the process of migrasome formation and oocyte microvilli shaping and provide insight into the role of tetraspanin proteins in membrane remodeling processes.


Assuntos
Oócitos , Tetraspaninas , Membrana Celular/metabolismo , Microvilosidades/metabolismo , Oócitos/metabolismo , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo
19.
Biochem Biophys Res Commun ; 627: 146-151, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36037746

RESUMO

Extracellular vesicles (EVs) are particles released from most cell types delimited by a lipid bilayer. Small EVs (sEVs) are nanosized (<200 nm) and include exosomes. Brain-derived sEVs may provide a source for new biomarkers of brain status. CD9, CD63, and CD81 are major members of the tetraspanin family frequently used as sEV markers. However, according to a recent report, tetraspanins were not equally expressed in all sEVs, but rather show heterogeneity that reflects the expression levels in their secretory cells. We therefore investigated tetraspanin heterogeneity of sEVs in biofluids commonly used for clinical laboratory tests, and those in the brain. Expression levels and distributions of CD9, CD63 and CD81 on sEVs were determined in serum, plasma, and cerebrospinal fluid (CSF) samples collected from each healthy donor, and in post-mortem brain tissue samples. We found heterogeneous mixes of sEVs with various tetraspanin combinations among sEVs, and the predominant types and heterogeneous patterns of tetraspanins were specific to sample type. Hierarchical clustering revealed that brain sEVs were similar to those in the CSF, but different from those in peripheral blood. Our findings both provide basic information and contribute to the development of biomarkers for neurological and psychiatric disorders.


Assuntos
Exossomos , Vesículas Extracelulares , Biomarcadores/metabolismo , Encéfalo/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Tetraspanina 28/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo
20.
J Virol ; 96(12): e0052322, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35612312

RESUMO

Hepatitis C virus (HCV) is characterized by a high number of chronic cases owing to an impairment of innate and adaptive immune responses. CD81 on the cell surface facilitates HCV entry by interacting with the E2 envelope glycoprotein. In addition, CD81/E2 binding on immunity-related cells may also influence host response outcome to HCV infection. Here, we performed site-specific amino acid substitution in the front layer of E2 sequence to reduce CD81 binding and evaluate the potential of the resulting immunogen as an HCV vaccine candidate. The modified sE2 protein (F442NYT), unlike unmodified sE2, exhibited a significant reduction in CD81 binding, induced higher levels of proinflammatory cytokines, repressed anti-inflammatory response in primary monocyte-derived macrophages as antigen-presenting cells, and stimulated CD4+ T cell proliferation. Immunization of BALB/c mice with an E1/sE2F442NYT nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine resulted in improved IgG1-to-IgG2a isotype switching, an increase in neutralizing antibodies against HCV pseudotype virus, a B and T cell proliferative response to antigens, and improved protection against infection with a surrogate recombinant vaccinia virus-expressing HCV E1-E2-NS2aa134-966 challenge model compared to E1/unmodified sE2 mRNA-LNP vaccine. Further investigation of the modified E2 antigen may provide helpful information for HCV vaccine development. IMPORTANCE Hepatitis C virus (HCV) E2-CD81 binding dampens protective immune response. We have identified that an alteration of amino acids in the front layer of soluble E2 (sE2) disrupts CD81 interaction and alters the cytokine response. Immunization with modified sE2F442NYT (includes an added potential N-linked glycosylation site and reduces CD81 binding activity)-mRNA-LNP candidate vaccine generates improved proinflammatory response and protective efficacy against a surrogate HCV vaccinia challenge model in mice. The results clearly suggested that HCV E2 exhibits immunoregulatory activity that inhibits induction of robust protective immune responses. Selection of engineered E2 antigen in an mRNA-LNP platform amenable to nucleic acid sequence alterations may open a novel approach for multigenotype HCV vaccine development.


Assuntos
Citocinas , Hepatite C , Proteínas do Envelope Viral , Vacinas de mRNA , Animais , Anticorpos Neutralizantes , Citocinas/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C , Imunidade , Imunoglobulina G , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , RNA Mensageiro , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/imunologia , Vacinas de mRNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA