Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Sci Rep ; 14(1): 8976, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637584

RESUMO

Autologous administration of attenuated Theileria parva-infected cells induces immunity to T. parva in cattle. The mechanism of attenuation, however, is largely unknown. Here, we used RNA sequencing of pathogenic and attenuated T. parva-infected T-cells to elucidate the transcriptional changes underpinning attenuation. We observed differential expression of several host genes, including TRAIL, PD-1, TGF-ß and granzymes that are known to regulate inflammation and proliferation of infected cells. Importantly, many genes linked with the attenuation of the related T. annulata-infected cells were not dysregulated in this study. Furthermore, known T. parva antigens were not dysregulated in attenuated relative to pathogenic cells, indicating that attenuation is not due to enhanced immunogenicity. Overall this study suggests that attenuation is driven by a decrease in proliferation and restoration of the inflammatory profile of T. parva-infected cells. Additionally, it provides a foundation for future mechanistic studies of the attenuation phenotype in Theileria-infected cells.


Assuntos
Theileria parva , Theileria , Theileriose , Animais , Bovinos , Theileria parva/genética , Theileriose/genética , Theileria/genética , Linfócitos T , Antígenos
2.
Vet Parasitol Reg Stud Reports ; 47: 100963, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199701

RESUMO

Theileria parva are intracellular protozoal parasites responsible for three disease syndromes in cattle, namely East Coast fever (ECF), Corridor disease (CD) and Zimbabwean theileriosis. The increase in reports of CD outbreaks in recent years has raised questions about the probability of adaptation of buffalo-derived T. parva strains in cattle herds adjacent to game reserves. A cross-sectional study was conducted from March 2016 to December 2018 to investigate the extent of occurrence of T. parva infections in cattle in the CD-controlled area of KwaZulu-Natal Province. Blood samples were collected from 1137 cattle from 14 herds and analysed by quantitative real-time PCR (qPCR) and indirect fluorescent antibody test (IFAT) to determine the prevalence of T. parva. A total of 484 samples from 4 of the 14 herds were further tested on qPCR for the presence of T. taurotragi infections. The data were analysed using descriptive statistics and a chi-square test was used to assess association between variables. The overall prevalence of T. parva was 1.3% (95%CI:1-2%) and 19.9% (95%CI:17-22%) on qPCR and IFAT, respectively. The qPCR positive samples were detected in March and May while IFAT positive samples were detected in all seasons sampled, with higher numbers during summer months. The Pearson Chi-squared test showed that T. parva prevalence rates based on both qPCR and IFAT were positively associated with herds with previous history of CD outbreaks (χ2 = 8.594, p = 0.003; χ2 = 69.513, p < 0.001, respectively). The overall prevalence of T. taurotragi was 39.4% (95% CI: 35-44%) with the herd-level prevalence ranging between 35.0% and 43.4%. Possible cross-reaction of T. parva IFAT to T. taurotragi was detected on few samples, however, there was no significant association between T. taurotragi infections and IFAT positivity (χ2 = 0.829, p = 0.363). Results from this study demonstrated the extent of occurrence of subclinical carriers and the level of exposure to T. parva infections in cattle populations at a livestock/game interface area of KwaZulu-Natal Province. The molecular and seroprevalence rates were low when compared with other areas where cattle-adapted T. parva infections are endemic. The adaptation of buffalo-derived T. parva in cattle population resulting in cattle-cattle transmissions seem to be unlikely under the current epidemiological state.


Assuntos
Bison , Doenças dos Bovinos , Theileria parva , Theileriose , Animais , Bovinos , Búfalos , Theileriose/epidemiologia , Gado , África do Sul/epidemiologia , Estudos Transversais , Prevalência , Estudos Soroepidemiológicos , Doenças dos Bovinos/epidemiologia
3.
J Mol Evol ; 91(6): 897-911, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38017120

RESUMO

Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.


Assuntos
Parasitos , Theileria parva , Theileria , Animais , Theileria/genética , Parasitos/genética , Theileria parva/genética , Família Multigênica/genética , Cromossomos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37866107

RESUMO

East Coast Fever (ECF) is a disease affecting cattle in sub-Saharan Africa, caused by the tick-borne Apicomplexan pathogen Theileria parva. The disease is a major problem for cattle farmers in affected regions and there are few methods of control, including a complex infection and treatment vaccine, expensive chemotherapy, and the more widespread tick control through acaricides. New intervention strategies are, therefore, sorely needed. Benzoxaboroles are a versatile class of boron-heterocyclic compounds with demonstrable pharmacological activity against a diverse group of pathogens, including those related to T. parva. In this study, the in vitro efficacy of three benzoxaboroles against the intracellular schizont stage of T. parva was investigated using a flow cytometry approach. Of the benzoxaboroles tested, only one showed any potency, albeit only at high concentrations, even though there is high protein sequence similarity in the CPSF3 protein target compared to other protozoan pathogen species. This finding suggests that benzoxaboroles currently of interest for the treatment of African animal trypanosomiasis, toxoplasmosis, cryptosporidiosis and malaria may not be suitable for the treatment of ECF. We conclude that testing of further benzoxaborole compounds is needed to fully determine whether any lead compounds can be identified to target T. parva.


Assuntos
Doenças dos Bovinos , Theileria parva , Theileriose , Bovinos , Animais , Theileriose/tratamento farmacológico , Theileriose/parasitologia , Doenças dos Bovinos/parasitologia
5.
Vet Parasitol Reg Stud Reports ; 41: 100887, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37208076

RESUMO

The extensive livestock management system predominant in Nigeria necessitates active disease surveillance for the early detection and prompt control of transboundary animal diseases. Theileriae are obligate intracellular protozoa which infect both wild and domestic bovidae throughout much of the world causing East Coast Fever (Theileria parva), Tropical or Mediterranean theileriosis (Theileria annulata) or benign theileriosis (Theileria mutans; Theileria velifera). This study aimed to detect and characterize Theileria spp. infecting cattle in Nigeria using conventional PCR and sequencing approach. Five hundred and twenty-two DNA samples obtained from different cattle blood samples were subjected to PCR targeting the 18S rRNA gene of piroplasmida and specifically, the p104 kDa and Tp1 genes for the evidence of infection or vaccination respectively, with T. parva. A total of 269 out of 522 (51.5%) of the cattle tested PCR- positive for DNA of piroplasmida. Nucleotide sequence and phylogenetic analyses showed that the cattle were infected with T. annulata, T. mutans and T. velifera. Piroplasmida DNA was associated with sex (ꭓ2 = 7.2; p = 0.007), breed (ꭓ2 = 115; p = 0.000002) of animals and the state where the samples were collected (ꭓ2 = 78.8; p = 0.000002). None of the samples tested positive for T. parva DNA or showed evidence of vaccination (Tp1 gene). This is the first report on the molecular detection and characterization of T. annulata in the blood of cattle from Nigeria. Continuous surveillance of Nigerian cattle for East Coast Fever (ECF) is encouraged considering the recent report of the disease in cattle in the neighboring country, Cameroon, where unregulated transboundary cattle movement into Nigeria has been observed.


Assuntos
Piroplasmida , Theileria annulata , Theileria parva , Theileriose , Bovinos , Animais , Theileriose/epidemiologia , Theileriose/prevenção & controle , Theileria parva/genética , Theileria annulata/genética , Nigéria/epidemiologia , Filogenia
6.
Parasitol Res ; 122(6): 1381-1390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081209

RESUMO

The range of the protozoan parasite Theileria parva, which causes East Coast fever in cattle, has been expanding to countries where it has not previously been detected, as a result of cross-border domestic cattle movement. Countries where T. parva has not previously been observed until recently include Cameroon and South Sudan. This raises the issue of the conservation of the p104 antigen gene, on which the nested PCR assay that is widely used for T. parva surveillance in the blood of infected cattle is based. We sampled 40 isolates from six countries widely distributed across the geographical range of the parasite, including eastern, central and southern Africa, for p104 sequence polymorphism. These included parasites from both domestic cattle and the Cape buffalo (Syncerus caffer) wildlife reservoir. The most frequent allelic variants were present in cattle transmissible isolates from multiple widely separated geographical regions in Zambia, Uganda, Kenya, Tanzania, Rwanda and South Africa. These frequent p104 variants were also present in the three component stocks of the Muguga cocktail used for the infection and treatment live immunisation procedure to control T. parva in the field. Other isolates exhibited unique alleles. This includes some of the p104 sequences from Cameroon, which is outside the known range of the Rhipicephalus tick vector and whose origin is therefore unclear. The nested primer oligonucleotides used to generate the amplicons were universally conserved in cattle-derived parasites and a majority of buffalo-derived isolates across the geographical range of the parasite. However, some rare South African buffalo-derived isolates exhibited one or two mismatches with the primer sequences. It therefore remains possible that some p104 alleles may be so divergent that they do not amplify with the current diagnostic primers and are not detectable in surveys, hence the need for increasing knowledge of genetic heterogeneity of diagnostic targets. There was no evidence for positive selection among those p104 mutations that resulted in residue changes. Importantly, the data indicate that the p104-based PCR detection assay should be effective across the majority of the range of T. parva, and if the one or two mismatches are shown in future to result in the primers annealing less efficiently, then the assay can be further improved by introduction of degenerate bases to enable amplification of the less frequent South African buffalo-derived variant p104 genes.


Assuntos
Parasitos , Rhipicephalus , Theileria parva , Theileriose , Animais , Bovinos , Theileria parva/genética , Parasitos/genética , Búfalos/parasitologia , Theileriose/epidemiologia , Theileriose/parasitologia , Rhipicephalus/parasitologia , Reação em Cadeia da Polimerase/veterinária , Variação Genética
7.
Immunogenetics ; 75(2): 115-132, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36512055

RESUMO

African buffalo (Syncerus caffer) have been distinct from the Auroch lineage leading to domestic cattle for 5 million years, and are reservoirs of multiple pathogens, that affect introduced domestic cattle. To date, there has been no analysis of the class I MHC locus in African buffalo. We present the first data on African buffalo class I MHC, which demonstrates that gene and predicted protein coding sequences are approximately 86-87% similar to that of African domestic cattle in the peptide binding region. The study also shows concordance in the distribution of codons with elevated posterior probabilities of positive selection in the buffalo class I MHC and known antigen binding sites in cattle. Overall, the diversity in buffalo class I sequences appears greater than that in cattle, perhaps related to a more complex pathogen challenge environment in Africa. However, application of NetMHCpan suggested broad clustering of peptide binding specificities between buffalo and cattle. Furthermore, in the case of at least 20 alleles, critical peptide-binding residues appear to be conserved with those of cattle, including at secondary anchor residues. Alleles with six different length transmembrane regions were detected. This preliminary analysis suggests that like cattle, but unlike most other mammals, African buffalo appears to exhibit configuration (haplotype) variation in which the loci are expressed in distinct combinations.


Assuntos
Theileria parva , Theileriose , Animais , Bovinos/genética , Theileria parva/genética , Haplótipos , Búfalos/genética , Variação Genética , Peptídeos/genética
8.
Biochimie ; 206: 24-35, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36198333

RESUMO

The tick-transmitted apicomplexan Theileria parva causes East Coast fever, a bovine disease of great economic and veterinary importance in Africa. Papain-like cysteine proteases play important roles in protozoan parasite host cell entry and egress, nutrition and host immune evasion. This study reports the identification and characterisation of a T. parva strain Muguga cathepsin L-like (C1A subfamily) cysteine protease (ThpCP). Molecular modelling confirmed the papain-like fold of ThpCP, hydrophobic character of the S2 substrate binding pocket and non-covalent interaction between the pro- and catalytic domains preceding low pH autoactivation. ThpCP was recombinantly expressed in a protease deficient E. coli (Rosetta (DE3)pLysS strain) expression host as a 46 kDa proenzyme. Following Ni-chelate affinity chromatography and acidification, the 27 kDa mature ThpCP was purified by cation-exchange chromatography. Purified ThpCP hydrolysed typical cathepsin L substrates N-α-benzyloxycarbonyl (Z)-Phe-Arg-7-amino-4-methyl-coumarin (AMC) (kcat/Km = 4.49 × 105 s-1M-1) and Z-Leu-Arg-AMC (kcat/Km = 4.20 × 105 s-1M-1), but showed no activity against the cathepsin B-selective substrate Z-Arg-Arg-AMC. Recombinant ThpCP was active over a broad pH range from pH 4.5 to 7.5, thereby showing potential activity in the acidic parasite food vacuole and close to neutral pH of the host lymphocyte cytoplasm. Recombinant ThpCP was inhibited by the cysteine protease inhibitors E64, iodoacetate, leupeptin, chymostatin, Z-Phe-Ala-diazomethylketone (DMK) and Z-Phe-Phe-DMK and hydrolysed bovine proteins: haemoglobin, immunoglobulin G, serum albumin and fibrinogen as well as goat IgG at pH 6 and 7. Functional expression and characterisation of Theileria cysteine proteases should enable high throughput screening of cysteine protease inhibitor libraries against these proteases.


Assuntos
Cisteína Proteases , Theileria parva , Animais , Bovinos , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Catepsina L/metabolismo , Theileria parva/genética , Theileria parva/metabolismo , Sequência de Aminoácidos , Papaína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Éxons
9.
Int J Parasitol ; 52(13-14): 799-813, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244429

RESUMO

The apicomplexan cattle parasite Theileria parva is a major barrier to improving the livelihoods of smallholder farmers in Africa, killing over one million cattle on the continent each year. Although exotic breeds not native to Africa are highly susceptible to the disease, previous studies have illustrated that such breeds often show innate tolerance to infection by the parasite. The mechanisms underlying this tolerance remain largely unclear. To better understand the host response to T. parva infection we characterised the transcriptional response over 15 days in tolerant and susceptible cattle (n = 29) naturally exposed to the parasite. We identify key genes and pathways activated in response to infection as well as, importantly, several genes differentially expressed between the animals that ultimately survived or succumbed to infection. These include genes linked to key cell proliferation and infection pathways. Furthermore, we identify response expression quantitative trait loci containing genetic variants whose impact on the expression level of nearby genes changes in response to the infection. These therefore provide an indication of the genetic basis of differential host responses. Together these results provide a comprehensive analysis of the host transcriptional response to this under-studied pathogen, providing clues as to the mechanisms underlying natural tolerance to the disease.


Assuntos
Doenças dos Bovinos , Theileria parva , Theileriose , Bovinos , Animais , Theileria parva/genética , Theileriose/parasitologia , Doenças dos Bovinos/genética , Doenças dos Bovinos/parasitologia , Perfilação da Expressão Gênica , África
10.
Trends Parasitol ; 38(11): 930-932, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041933

RESUMO

Since its discovery, bovine theileriosis has caused major socioeconomic losses in sub-Saharan Africa. Acaricide resistance of the intermediate host, paucity of therapeutics, and lack of sufficiently cross-protective vaccines increase the risk of parasite spread due to global warming. Here, we highlight three important areas that require investigation to develop next-generation vaccines.


Assuntos
Acaricidas , Vacinas Protozoárias , Theileria parva , Theileriose , Animais , Bovinos , Humanos , Theileriose/parasitologia , Theileriose/prevenção & controle
11.
PLoS Genet ; 18(4): e1010099, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446841

RESUMO

East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva.


Assuntos
Doenças dos Bovinos , Theileria parva , Theileria , Theileriose , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Bovinos , Doenças dos Bovinos/genética , Humanos , Theileria/genética , Theileria parva/genética , Theileriose/genética , Theileriose/parasitologia
12.
J Immunol ; 208(3): 549-561, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031580

RESUMO

CTLs are known to contribute to immunity toward Theileria parva, the causative agent of East Coast fever. The Tp967-75 CTL epitope from the Muguga strain of T. parva is polymorphic in other parasite strains. Identifying the amino acids important for MHC class I binding, as well as TCR recognition of epitopes, can allow the strategic selection of Ags to induce cellular immunity toward T. parva In this study, we characterized the amino acids important for MHC class I binding and TCR recognition in the Tp967-75 epitope using alanine scanning and a series of variant peptide sequences to probe these interactions. In a peptide-MHC class I binding assay, we found that the amino acids at positions 1, 2, and 3 were critical for binding to its restricting MHC class I molecule BoLA-1*023:01. With IFN-γ ELISPOT and peptide-MHC class I Tet staining assays on two parasite-specific bovine CTL lines, we showed that amino acids at positions 5-8 in the epitope were required for TCR recognition. Only two of eight naturally occurring polymorphic Tp9 epitopes were recognized by both CTLs. Finally, using a TCR avidity assay, we found that a higher TCR avidity was associated with a stronger functional response toward one of two variants recognized by the CTL. These data add to the growing knowledge on the cross-reactivity of epitope-specific CTLs and specificities that may be required in the selection of Ags in the design of a wide-spectrum vaccine for East Coast fever.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Theileria parva/imunologia , Theileriose/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Linhagem Celular , Epitopos de Linfócito T/imunologia , Imunidade Celular/imunologia , Theileriose/parasitologia
13.
Transbound Emerg Dis ; 69(3): 1186-1196, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33750039

RESUMO

Bovine theileriosis (caused by Theileria parva) is the most important tick-borne transboundary animal disease endemic to Zimbabwe, yet its distribution dynamics data in the country remain scant and outdated. A retrospective study was conducted to determine high-risk areas of bovine theileriosis and associated risk factors in Zimbabwe. Records on bovine theileriosis spanning 23 years (January 1995 to December 2018) were obtained from the Epidemiological Unit of the Division of Field Veterinary Services of Zimbabwe (DVSZ). Data were analysed using Studio R® version 11.0 for regression analysis and SatScan® version 9.4.6 for spatio-temporal clustering. Communal farmers (72%), adult cattle (29%), the year 2018 (60%) and the hot wet season (42%) had the highest proportion (p < .050) of bovine theileriosis cases recorded. Seven out of the country's ten provinces and 36 of its 59 districts were affected. Bovine theileriosis was observed to lose seasonality when cases rose exponentially in 2018. Five and four high-risk clusters of bovine theileriosis were detected using one-year and one-month time aggregate, respectively, all within the last eight years of the study (2011-2018). Two potential risk factors (province and farming system) were significantly (p < .050) associated with bovine theileriosis occurrence. Bovine theileriosis was found to be rampant and if left unchecked will spread and adversely affect the whole country. Improved theileriosis surveillance and control is warranted. Recommendations for control and prevention strategies revolve around better farmer awareness about the disease, correct and consistent use of acaricides, cattle movement control and disease surveillance among others.


Assuntos
Doenças dos Bovinos , Theileria parva , Theileria , Theileriose , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Análise por Conglomerados , Análise Fatorial , Estudos Retrospectivos , Fatores de Risco , Theileriose/epidemiologia , Theileriose/prevenção & controle , Zimbábue/epidemiologia
14.
Front Immunol ; 13: 1015840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713406

RESUMO

Nanoparticle vaccines usually prime stronger immune responses than soluble antigens. Within this class of subunit vaccines, the recent development of computationally designed self-assembling two-component protein nanoparticle scaffolds provides a powerful and versatile platform for displaying multiple copies of one or more antigens. Here we report the generation of three different nanoparticle immunogens displaying 60 copies of p67C, an 80 amino acid polypeptide from a candidate vaccine antigen of Theileria parva, and their immunogenicity in cattle. p67C is a truncation of p67, the major surface protein of the sporozoite stage of T. parva, an apicomplexan parasite that causes an often-fatal bovine disease called East Coast fever (ECF) in sub-Saharan Africa. Compared to I32-19 and I32-28, we found that I53-50 nanoparticle scaffolds displaying p67C had the best biophysical characteristics. p67C-I53-50 also outperformed the other two nanoparticles in stimulating p67C-specific IgG1 and IgG2 antibodies and CD4+ T-cell responses, as well as sporozoite neutralizing capacity. In experimental cattle vaccine trials, p67C-I53-50 induced significant immunity to ECF, suggesting that the I53-50 scaffold is a promising candidate for developing novel nanoparticle vaccines. To our knowledge this is the first application of computationally designed nanoparticles to the development of livestock vaccines.


Assuntos
Doenças dos Bovinos , Vacinas Protozoárias , Theileria parva , Theileriose , Bovinos , Animais , Antígenos
15.
Parasit Vectors ; 14(1): 616, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952641

RESUMO

BACKGROUND: Vector-borne diseases pose an increasing threat to global food security. Vaccines, diagnostic tests, and therapeutics are urgently needed for tick-borne diseases that affect livestock. However, the inability to obtain significant quantities of pathogen stages derived from ticks has hindered research. In vitro methods to isolate pathogens from infected tick vectors are paramount to advance transcriptomic, proteomic, and biochemical characterizations of tick-borne pathogens. METHODS: Nymphs of Rhipicephalus appendiculatus were infected with Theileria parva by feeding on a calf during an acute infection. Isolation of sporozoites was accomplished by feeding infected adult ticks on an in vitro tick feeding system. Sporozoite viability was tested using in vitro bovine lymphocytes. RESULTS: We isolated infectious T. parva sporozoites secreted into an in vitro tick feeding system. Infected adult R. appendiculatus ticks attached to and successfully fed on silicone membranes in the in vitro tick feeding system. Bovine blood in the receptacle was replaced with cell-free medium and the ticks were allowed to feed for 3 h to collect secreted T. parva sporozoites. Secreted sporozoites infected in vitro bovine lymphocytes, demonstrating that isolated sporozoites remained viable and infectious. CONCLUSIONS: This work is the first to report the isolation of mature infectious T. parva sporozoites using an in vitro tick feeding system, which represents a significant step towards the development of a more efficient control strategy for T. parva. Isolation of infectious tick-stage parasites will facilitate the examination of the vector-pathogen interface, thereby accelerating the development of next-generation vaccines and treatment interventions for tick-borne pathogens.


Assuntos
Rhipicephalus/parasitologia , Theileria parva/fisiologia , Animais , Interações Hospedeiro-Parasita , Esporozoítos
16.
Front Cell Infect Microbiol ; 11: 751671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804994

RESUMO

Theileria parva is the causative agent of East Coast fever and Corridor disease, which are fatal, economically important diseases of cattle in eastern, central and southern Africa. Improved methods of control of the diseases are urgently required. The parasite transforms host lymphocytes, resulting in a rapid, clonal expansion of infected cells. Resistance to the disease has long been reported in cattle from T. parva-endemic areas. We reveal here that first- and second-generation descendants of a single Bos indicus bull survived severe challenge with T. parva, (overall survival rate 57.3% compared to 8.7% for unrelated animals) in a series of five field studies. Tolerant cattle displayed a delayed and less severe parasitosis and febrile response than unrelated animals. The in vitro proliferation of cells from surviving cattle was much reduced compared to those from animals that succumbed to infection. Additionally, some pro-inflammatory cytokines such as IL1ß, IL6, TNFα or TGFß which are usually strongly expressed in susceptible animals and are known to regulate cell growth or motility, remain low in tolerant animals. This correlates with the reduced proliferation and less severe clinical reactions observed in tolerant cattle. The results show for the first time that the inherited tolerance to T. parva is associated with decreased proliferation of infected lymphocytes. The results are discussed in terms of whether the reduced proliferation is the result of a perturbation of the transformation mechanism induced in infected cells or is due to an innate immune response present in the tolerant cattle.


Assuntos
Theileria parva , Theileriose , Animais , Bovinos , Proliferação de Células , Linfócitos , Masculino
17.
Prev Vet Med ; 196: 105491, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562810

RESUMO

East Coast fever (ECF) in cattle is caused by the protozoan parasite Theileria parva, transmitted by Rhipicephalus appendiculatus ticks. In cattle ECF is often fatal, causing annual losses >$500 million across its range. The African buffalo (Syncerus caffer) is the natural host for T. parva but the transmission dynamics between wild hosts and livestock are poorly understood. This study aimed to determine the prevalence of T. parva in cattle, in a 30 km zone adjacent to the Serengeti National Park, Tanzania where livestock and buffalo co-exist, and to ascertain how livestock keepers controlled ECF and other vector-borne diseases of cattle. A randomised cross-sectional cattle survey and questionnaire of vector control practices were conducted. Blood samples were collected from 770 cattle from 48 herds and analysed by PCR to establish T. parva prevalence. Half body tick counts were recorded on every animal. Farmers were interviewed (n = 120; including the blood sampled herds) using a standardised questionnaire to obtain data on vector control practices. Local workshops were held to discuss findings and validate results. Overall prevalence of T. parva in cattle was 5.07% (CI: 3.70-7.00%), with significantly higher prevalence in older animals. Although all farmers reported seeing ticks on their cattle, tick counts were very low with 78% cattle having none. Questionnaire analysis indicated significant acaricide use with 79% and 41% of farmers reporting spraying or dipping with cypermethrin-based insecticides, respectively. Some farmers reported very frequent spraying, as often as every four days. However, doses per animal were often insufficient. These data indicate high levels of acaricide use, which may be responsible for the low observed tick burdens and low ECF prevalence. This vector control is farmer-led and aimed at both tick- and tsetse-borne diseases of livestock. The levels of acaricide use raise concerns regarding sustainability; resistance development is a risk, particularly in ticks. Integrating vaccination as part of this community-based disease control may alleviate acaricide dependence, but increased understanding of the Theileria strains circulating in wildlife-livestock interface areas is required to establish the potential benefits of vaccination.


Assuntos
Rhipicephalus , Theileria parva , Controle de Ácaros e Carrapatos , Acaricidas/administração & dosagem , Animais , Animais Selvagens , Bovinos , Estudos Transversais , Gado , Prevalência , Rhipicephalus/parasitologia , Tanzânia/epidemiologia , Theileria parva/isolamento & purificação , Infestações por Carrapato/veterinária
18.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507950

RESUMO

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Protozoárias/imunologia , Theileria parva/fisiologia , Theileriose/imunologia , Animais , Apresentação de Antígeno , Antígenos de Protozoários/imunologia , Bovinos , Células Cultivadas , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe II , Ativação Linfocitária , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T
19.
Front Immunol ; 12: 674484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305904

RESUMO

East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called "Infection and Treatment Method" (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.


Assuntos
Imunização/métodos , Vacinas Protozoárias/imunologia , Theileria parva/imunologia , Theileriose/prevenção & controle , Animais , Linfócitos T CD8-Positivos/imunologia , Bovinos/imunologia , Imunização/veterinária , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Carrapatos , Leveduras/imunologia
20.
Ticks Tick Borne Dis ; 12(5): 101756, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34134062

RESUMO

Herein we review the epidemiology of ticks and tick-borne diseases (TTBDs), their impact on livestock health and on the economy, control and associated challenges in Uganda. Ticks are leading vectors of economically important pathogens and are widespread in Uganda due to suitable climatic conditions. Besides the physical injury inflicted on the animal host, ticks transmit a number of pathogens that can cause morbidity and mortality of livestock if untreated, resulting in economic losses. Uganda suffers an aggregated annual loss (direct and indirect) of over USD 1.1 billion in the TTBDs complex. East Coast fever (ECF) caused by a protozoan haemoparasite, Theileria parva, is the most prevalent and economically important tick-borne disease (TBD) in Uganda and its vector, the brown ear tick (Rhipicephalus appendiculatus) widely distributed. Other prevalent TBDs in Uganda include anaplasmosis, babesiosis and heartwater. We highlight the role of agro-ecological zones (AEZs) and livestock management system in the distribution of TTBDs, citing warm and humid lowlands as being ideal habitats for ticks and endemic for TBDs. Control of TTBDs is a matter of great importance as far as animal health is concerned in Uganda. Indigenous cattle, which make up over 90% of the national herd are known to be more tolerant to TTBDs and most farms rely on endemic stability to TBDs for control. However, exotic cattle breeds are more capital intensive than indigenous breeds, but the increasing adoption of tick-susceptible exotic cattle breeds (especially dairy) in western and central Uganda demands intensive use of acaricides for tick control and prevention of TBDs. Such acaricide pressure has unfortunately led to selection of acaricide-resistant tick populations and the consequent acaricide resistance observed in the field. Vaccination against ECF, selective breeding for tick resistance and integrated tick control approaches that limit tick exposure, could be adopted to interrupt spread of acaricide resistance. We recommend increasing monitoring and surveillance for TTBDs and for emerging acaricide resistance, improved extension services and sensitization of farmers on tick control measures, appropriate acaricide use and the development and implementation of vaccines for the control of TTBDs as more sustainable and effective interventions. A tick control policy should be developed, taking into account variations of agro-ecological zones, farm circumstances and indigenous technical knowledge, and this should be incorporated into the overall animal health program.


Assuntos
Acaricidas/farmacologia , Doenças dos Bovinos/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Anaplasmose/epidemiologia , Animais , Anticorpos Antiprotozoários , Babesiose/epidemiologia , Bovinos , Fazendeiros , Vacinas Protozoárias , Rhipicephalus/parasitologia , Estudos Soroepidemiológicos , Theileria parva/isolamento & purificação , Theileriose/epidemiologia , Controle de Ácaros e Carrapatos , Infestações por Carrapato/veterinária , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA