Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Plant Biol ; 21(1): 591, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903180

RESUMO

BACKGROUND: Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis. RESULTS: The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites. CONCLUSION: The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.


Assuntos
Metaboloma , Óleos de Plantas/química , Thymelaeaceae/metabolismo , Madeira/metabolismo , Alcaloides/metabolismo , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Temperatura Baixa , Etanol , Incêndios , Flavonas/metabolismo , Flavonoides/metabolismo , Hidroxibenzoatos/metabolismo , Metabolismo dos Lipídeos , Nucleotídeos/metabolismo , Sais/farmacologia , Terpenos/metabolismo , Thymelaeaceae/química , Thymelaeaceae/efeitos dos fármacos , Madeira/química , Madeira/efeitos dos fármacos
2.
Sci Rep ; 10(1): 3018, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080225

RESUMO

The WRKY proteins are a superfamily of transcription factor that regulate diverse developmental and physiological processes in plants. Completion of the whole-genome sequencing of Aquilaria sinensis allowed us to perform a genome-wide investigation for WRKY proteins. Here, we predicted 70 WRKY genes from the A. sinensis genome and undertaken a comprehensive bioinformatic analysis. Due to their diverse structural features, the 70 AsWRKY genes are classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II, except two belong to none of them. Distinct expression profiles of AsWRKYs with RNA sequencing data revealed their diverse expression patterns among different tissues and in the process of whole-tree-inducing agarwood formation. Based on the expression characteristics, we predict some AsWRKYs are pseudogenes, and some may be involved in the biosynthesis of agarwood sesquiterpenes as activators or repressors. Among the tested genes treated with MeJA and H2O2, most of them are induced by H2O2, but downregulated by MeJA, implying the complexity of their involvement in signal transduction regulation. Our results not only provide a basic platform for functional identification of WRKYs in A. sinensis but important clues for further analysis their regulation role in agarwood formation.


Assuntos
Genoma de Planta , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Fatores de Transcrição/metabolismo , Acetatos/farmacologia , Cromossomos de Plantas/genética , Sequência Conservada/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/farmacologia , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Thymelaeaceae/efeitos dos fármacos , Madeira/genética
3.
Proteomics ; 18(20): e1800023, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035352

RESUMO

Agarwood is a precious traditional Chinese medicine with a variety of pharmacological effects. Although efforts have been made in elucidating the mechanism of agarwood formation, little progress is obtained till now. Therefore, the molecular mechanism of agarwood formation needs to be further explored using different biological approaches. In this study, the quantitative proteomic analysis using iTRAQ technology combined with transcriptomic and metabolomic analyses on chemically induced Aquilaria sinensis is performed to elucidate the agarwood formation mechanism by formic acid stimulus. Data are available via ProteomeXchange with identifier PXD007586; 1884 proteins are detected, 504 differential proteins that show at least twofold differences in their expression levels are selected based on GO annotations, KEGG, STRING analysis, and quantitative RT-PCR analysis. The results indicate that sesquiterpene synthase, germin-like protein, pathogenesis-related protein, 6-phosphogluconate dehydrogenase, lipoyl synthase, and superoxide dismutase play important roles in the agarwood formation, suggesting that the proteins related to the plant defensive response, the removal of peroxide, the disease-resistance, the biosythesis of glycan, fatty acids, and sesquiterpene are crucial for agarwood formation.


Assuntos
Formiatos/farmacologia , Metaboloma , Proteínas de Plantas/análise , Proteoma , Thymelaeaceae/metabolismo , Transcriptoma , Madeira/metabolismo , Regulação da Expressão Gênica de Plantas , Thymelaeaceae/efeitos dos fármacos , Thymelaeaceae/genética , Thymelaeaceae/crescimento & desenvolvimento , Madeira/química
4.
Brain Res ; 1683: 17-26, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360465

RESUMO

Stellera chamaejasme L. (Thymelaeaceae) is a toxic perennial herb and widespread in Mongolia and the northern parts of China. Previous studies have revealed that Neochamaejasmin A (NCA), one of the main active ingredients in the plant roots, has many bioactivities such as inhibiting the P-gp-mediated efflux. But whether NCA affects ion channels is unknown. Here the whole cell patch clamp technique was used to investigate whether NCA affects ion channels, especially how it inhibits KV1.4. Mutagenesis and structure-based molecular simulation were used for analysis of inhibition mechanism and identification of binding site. Among all the channels assayed, KV1.4 stood out as the one on which NCA showed strongest inhibition activity with IC50 of 7.55 µM. Compared with NCA's isomerides, neochamaejasmin B (NCB) and chamaechromone (CMC), NCA also exhibited superior inhibition ability on KV1.4. Three mutations, V549A, A553V and V560A, occurred inside the pore, were found to significantly alleviate the NCA blocking effects, suggesting that they are the important binding sites of NCA. Structure-based modelling showed that the phenolic hydroxyl group of NCA can form hydrogen bonds with main chains of Val549 and Ala553 in IS6 and IVS6 segment respectively, which support our in vitro results. In conclusion, data suggest that NCA might inhibit KV1.4 channels via direct binding to the pore domain.


Assuntos
Biflavonoides/farmacologia , Flavonas/metabolismo , Canal de Potássio Kv1.4/efeitos dos fármacos , Thymelaeaceae/efeitos dos fármacos , Animais , Fenômenos Bioquímicos/efeitos dos fármacos , Fenômenos Biofísicos/efeitos dos fármacos , Células CHO , Cricetulus , Humanos , Estrutura Molecular
5.
Plant Cell Physiol ; 58(11): 1924-1933, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016977

RESUMO

Sesquiterpenes are one of the most important defensive secondary metabolite components of agarwood. Agarwood, which is a product of the Aquilaria sinensis response to external damage, is a fragrant and resinous wood that is widely used in traditional medicines, incense and perfume. We previously reported that jasmonic acid (JA) plays an important role in promoting agarwood sesquiterpene biosynthesis and induces expression of the sesquiterpene synthase ASS1, which is a key enzyme that is responsible for the biosynthesis of agarwood sesquiterpenes in A. sinensis. However, little is known about this molecular regulation mechanism. Here, we characterized a basic helix-loop-helix transcription factor, AsMYC2, from A. sinensis as an activator of ASS1 expression. AsMYC2 is an immediate-early jasmonate-responsive gene and is co-induced with ASS1. Using a combination of yeast one-hybrid assays and chromatin immunoprecipitation analyses, we showed that AsMYC2 bound the promoter of ASS1 containing a G-box motif. AsMYC2 activated expression of ASS1 in tobacco epidermis cells and up-regulated expression of sesquiterpene synthase genes (TPS21 and TPS11) in Arabidopsis, which was also promoted by methyl jasmonate. Our results suggest that AsMYC2 participates in the regulation of agarwood sesquiterpene biosynthesis in A. sinensis by controlling the expression of ASS1 through the JA signaling pathway.


Assuntos
Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Thymelaeaceae/metabolismo , Fatores de Transcrição/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Thymelaeaceae/efeitos dos fármacos , Thymelaeaceae/genética , Fatores de Transcrição/genética
6.
BMC Plant Biol ; 16(1): 119, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230436

RESUMO

BACKGROUND: Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. RESULTS: Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. CONCLUSIONS: Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced dynamic changes in transcript abundance for novel classes of responsive genes involved in signal transduction, including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors. This study will aid in selecting the target genes to genetically regulate A. sinensis salt-stress signal transduction and elucidating the biosynthesis of 2-(2-phenylethyl)chromones under salinity stress.


Assuntos
Cromonas/metabolismo , Proteínas de Plantas/genética , Salinidade , Transdução de Sinais/genética , Estresse Fisiológico/genética , Thymelaeaceae/genética , Células do Mesofilo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Thymelaeaceae/efeitos dos fármacos , Thymelaeaceae/metabolismo
7.
Sci Rep ; 6: 21843, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902148

RESUMO

Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis.


Assuntos
Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Thymelaeaceae/metabolismo , Acetatos/farmacologia , Técnicas de Cultura de Células , Ciclopentanos/antagonistas & inibidores , Ciclopentanos/farmacologia , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Temperatura Alta , Masoprocol/farmacologia , Oxilipinas/antagonistas & inibidores , Oxilipinas/farmacologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Sesquiterpenos/antagonistas & inibidores , Transdução de Sinais , Thymelaeaceae/efeitos dos fármacos , Thymelaeaceae/genética
8.
J Genet ; 94(2): 239-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26174671

RESUMO

The major constituents of agarwood oils are sesquiterpenes that are obtained from isoprenoid precursors through the plastidial methylerythritol phosphate (MEP) pathway and the cytosolic mevalonate pathway. In this study, a novel full-length cDNA of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), which was the second key enzyme in the plastid MEP pathway of sesquiterpenes biosynthesis was isolated from the stem of Aquilaria sinensis (Lour.) Gilg by the methods of reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique for the first time, and named as AsDXR. The full-length cDNA of AsDXR was 1768 bp, containing a 1437 bp open reading frame (ORF) encoding a polypeptide of 478 amino acids with a molecular weight of 51.859 kD and the theoretical isoelectric point of 6.29. Comparative and bioinformatic analysis of the deduced AsDXR protein showed extensive homology with DXRs from other plant species, especially Theobroma cacao and Gossypium barbadense, and contained a conserved transit peptide for plastids, and extended pro-rich region and a highly conserved NADPH-binding motif owned by all plant DXRs. Southern blot analysis indicated that AsDXR belonged to a small gene family. Tissue expression pattern analysis revealed that AsDXR expressed strongly in root and stem, but weakly in leaf. Additionally, AsDXR expression was found to be activated by exogenous elicitor of MeJA (methyl jasmonate). The contents of three sesquiterpenes (α-guaiene, α-humulene and Δ-guaiene) were significantly induced by MeJA. This study enables us to further elucidate the role of AsDXR in the biosynthesis of agarwood sesquiterpenes in A. sinensis at the molecular level.


Assuntos
Aldose-Cetose Isomerases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Thymelaeaceae/enzimologia , Thymelaeaceae/genética , Acetatos/farmacologia , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Ciclopentanos/farmacologia , DNA Complementar/genética , Cromatografia Gasosa-Espectrometria de Massas , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Oxilipinas/farmacologia , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Thymelaeaceae/efeitos dos fármacos
9.
Molecules ; 16(6): 4884-96, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21677602

RESUMO

The composition and antimicrobial activity of the essential oils which were obtained from agarwood originated from Aquilaria sinensis (Lour.) Gilg stimulated by the chemical method (S1) were characterized, taking wild agarwood (S2) and healthy trees (S3) respectively as the positive and negative controls. The chemical composition of S1 was investigated by gas chromatography-mass spectrometry (GC-MS). The essential oil of S1 showed a similar composition to that of S2, being rich in sesquiterpenes and aromatic constituents. However, the essential oil of S3 was abundant in fatty acids and alkanes. Essential oils of S1 and S2 had better inhibition activities towards Bacillus subtilis and Staphyloccus aureus, compared with essential oil of S3. Escherichia coli was not sensitive to any of them.


Assuntos
Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Thymelaeaceae/química , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Thymelaeaceae/efeitos dos fármacos
10.
J Biochem Mol Biol ; 39(6): 722-9, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17129408

RESUMO

Recently, we have reported that 3-hydrogenkwadaphnin (3-HK), a diterpene ester isolated from Dendrostellera lessertii (Thymealeaceae), is very effective against leukemia cell lines without any detectable effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK induces G1 cell-cycle arrest, differentiation and apoptosis in APL NB4 cell line. Indeed, the drug between 24 to 96 h induced 7-65% growth inhibition of NB4 cells. Cell viability was also decreased by 2-55% between 24 to 96 h treatments with the drug, respectively. These effects of the drug were also dose-dependent. According to flow cytomtry results, 3-HK (15 nM) induced a significant G1-arrest up to 24 h which was consequently followed with appearance of sub-G(1) peak at 72 to 96 h. Hoechst 33258 staining and DNA fragmentation assays confirmed the occurrence of apoptosis among the treated cells. On the other hand, NBT reducing assay, Wright-Giemsa staining, phagocytic activity and expression of cell surface markers (CD11b and CD14) confirmed that the inhibition of proliferation is associated with differentiation especially toward macrophage-like morphology. Interestingly, 3-HK at 5 and 10 nM enhanced the effects of all-trans retinoic acid (ATRA) in NB4 cells. Based on these results, 3-HK might become an ideal candidate for treatment of APL patients pending full exploration of its biological functions.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diterpenos/farmacologia , Granulócitos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Interações Medicamentosas , Fase G1/efeitos dos fármacos , Guanosina/farmacologia , Humanos , Leucemia Promielocítica Aguda , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Thymelaeaceae/química , Thymelaeaceae/efeitos dos fármacos , Tretinoína , Células Tumorais Cultivadas
11.
J Zhejiang Univ Sci B ; 6(8): 849-52, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16052722

RESUMO

Aquilaria agallocha can produce fragrant agarwood used for incense, traditional medicine and other products. An efficient plant regeneration system was established via organogenesis from shoots developed from seedlings of Aquilaria agallocha. Shoots generated many buds on MS medium supplemented with 1.3 micromol/L BA (6-benzylaminopurine) in the first 7 weeks, and the buds elongated on MS medium with 1.3 micromol/L BA+0.5 micromol/L NAA (naphthaleneacetic acid) in another 7 weeks, 2.3 shoots 2 cm in length per explant were obtained within 14 weeks. Plantlets were rooted on 1/2 MS medium after being immersed in 5 micromol/L NAA for 48 h, 96.7% of the roots grew up two weeks later. All plantlets that survived acclimatization grew well in the pots.


Assuntos
Agricultura/métodos , Técnicas de Cultura de Células/métodos , Agricultura Florestal/métodos , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Thymelaeaceae/efeitos dos fármacos , Thymelaeaceae/crescimento & desenvolvimento , Fitoterapia , Análise de Sobrevida , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA