RESUMO
Keeping in view the inhibitory potential of monoterpenes thymol and carvacrol as well as coumarin nucleus against α-glucosidase, novel series of thymol/carvacrol-coumarin hybrids was designed, synthesized and evaluated for α-glucosidase inhibitory potential. Among the series of hybrid molecules, AS14 with IC50 value of 4.32 ± 0.11 µM was selective α-glucosidase inhibitor over α-amylase (IC50 = 37.36 ± 0.84 µM). AS14 was non-toxic toward mouse normal fibroblast cells (L929: IC50 > 100 µM). Molecular docking and dynamic simulation studies confirmed desired interactions of AS14 with α-glucosidase responsible for the inhibition of its catalysis capabilities. Acute oral toxicity study confirmed AS14 as safer molecule for in vivo pharmacological investigations with LD50 value of 300 mg/kg. AS14 also showed acute hypoglycaemic effects [reduction in blood glucose levels at 1 h of administration in maltose loading test (at 10 and 20 mg/kg by 62.65 % and 70.12 %) and sucrose loading test (at 10 and 20 mg/kg by 59.65 % and 60.23 %), respectively] as well as long term (28 days) fasting blood glucose reduction (At day 28: 10 mg/kg = 54.69 % and 20 mg/kg = 62.23 % reduction in fasting blood glucose levels) capabilities in streptozotocin induced diabetic rats. Overall study represents, AS14 as potential α-glucosidase inhibitor with adequate efficacy and safety profile and act as an effective hit lead for the further development of potent and safer α-glucosidase inhibitors for the management of postprandial hyperglycemia in diabetic patients.
Assuntos
Cumarínicos , Cimenos , Diabetes Mellitus Experimental , Hipoglicemiantes , Animais , Humanos , Camundongos , Ratos , alfa-Glucosidases , Glicemia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Timol/análogos & derivados , Triazóis/farmacologia , Cimenos/farmacologia , Cimenos/uso terapêuticoRESUMO
Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.
Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Nigella sativa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzoquinonas/farmacologia , Nigella sativa/química , Extratos Vegetais/uso terapêutico , Timol/análogos & derivadosRESUMO
Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto-enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.
Assuntos
Cimenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Lamiaceae/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Timol/análogos & derivados , Timol/metabolismo , Cimenos/química , Sistema Enzimático do Citocromo P-450/genética , Lamiaceae/enzimologia , Lamiaceae/genética , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redutases-Desidrogenases de Cadeia Curta/genética , Timol/químicaRESUMO
In this study, a new broth macrodilution volatilization method for the simple and rapid determination of the antibacterial effect of volatile agents simultaneously in the liquid and vapor phase was designed with the aim to assess their therapeutic potential for the development of new inhalation preparations. The antibacterial activity of plant volatiles (ß-thujaplicin, thymohydroquinone, thymoquinone) was evaluated against bacteria associated with respiratory infections (Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes) and their cytotoxicity was determined using a modified thiazolyl blue tetrazolium bromide assay against normal lung fibroblasts. Thymohydroquinone and thymoquinone possessed the highest antibacterial activity against H. influenzae, with minimum inhibitory concentrations of 4 and 8 µg/mL in the liquid and vapor phases, respectively. Although all compounds exhibited cytotoxic effects on lung cells, therapeutic indices (TIs) suggested their potential use in the treatment of respiratory infections, which was especially evident for thymohydroquinone (TI > 34.13). The results demonstrate the applicability of the broth macrodilution volatilization assay, which combines the principles of broth microdilution volatilization and standard broth macrodilution methods. This assay enables rapid, simple, cost- and labor-effective screening of volatile compounds and overcomes the limitations of assays currently used for screening of antimicrobial activity in the vapor phase.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Administração por Inalação , Antibacterianos/análise , Bactérias/efeitos dos fármacos , Benzoquinonas/administração & dosagem , Benzoquinonas/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Monoterpenos/administração & dosagem , Monoterpenos/farmacologia , Óleos Voláteis/química , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Timol/administração & dosagem , Timol/análogos & derivados , Timol/farmacologia , Tropolona/administração & dosagem , Tropolona/análogos & derivados , Tropolona/farmacologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , VolatilizaçãoRESUMO
Thymol (a phenol ring bearing active phytoconstituent) is a privileged scaffold, which is diversified in natural sources. This scaffold acts as an obligatory template for scheming and arriving at designing some newer drug-molecules with potential biological activities. In the pharmacological perspective, the promising active sites of the scaffold are the positions C-1, C-4, and C-6 of thymol that would be accountable for developing potent drug candidates. This review aims to explore the various synthetic routes and the structural-activity relationship of thymol scaffold with suitable active pharmacophore sites.
Assuntos
Timol/análogos & derivados , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Timol/síntese química , Timol/química , Timol/farmacologiaRESUMO
The emergence of multidrug-resistant bacteria has become a real threat and we are fast running out of treatment options. A combinatory strategy is explored here to eradicate multidrug-resistant Staphlococcus aureus and Pseudomonas aeruginosa including planktonic cells, established biofilms, and persisters as high as 7.5 log bacteria in less than 30 min. Blue-laser and thymol together rapidly sterilized acute infected or biofilm-associated wounds and successfully prevented systematic dissemination in mice. Mechanistically, blue-laser and thymol instigated oxidative bursts exclusively in bacteria owing to abundant proporphyrin-like compounds produced in bacteria over mammalian cells, which transformed harmless thymol into blue-laser sensitizers, thymoquinone and thymohydroquinone. Photo-excitations of thymoquinone and thymohydroquinone augmented reactive oxygen species production and initiated a torrent of cytotoxic events in bacteria while completely sparing the host tissue. The investigation unravels a previously unappreciated property of thymol as a pro-photosensitizer analogous to a prodrug that is activated only in bacteria.
Assuntos
Lasers , Fármacos Fotossensibilizantes/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Timol/farmacologia , Benzoquinonas/metabolismo , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Timol/análogos & derivados , Timol/metabolismoRESUMO
The cytotoxic and genotoxic effects of commercial endodontic sealers (AH Plus, Sealer 26 and Endomethasone N) incorporated with nanostructured silver vanadate decorated with silver nanoparticles (AgVO3 - at concentrations 2.5, 5, and 10%) on human gingival fibroblast (HGF), and the silver (Ag+ ) and vanadium (V4+ /V5+ ) ions release were evaluated. Cytotoxicity, cell death, and genotoxicity tests were carried out with extract samples of 24-hr and 7-days. The release of Ag+ and V4+ /V5+ was evaluated. Cytotoxicity in HGF was caused by AH Plus (AP) with 5 and 10% of AgVO3 (83.84 and 67.49% cell viability, respectively) with 24-hr extract (p < 0.05), as well as all concentrations of AP with 7-days extract (p < 0.05 -AP 0% = 73.17%; AP 2.5% = 75.07%; AP 5% = 70.62%; AP 10% = 68.46% cell viability). The commercial sealers Sealer 26 (S26) and Endomethasone N (EN) were cytotoxic (p < 0.05 - S26 0% = 34.81%; EN 0% = 20.99% cell viability with 7-days extract). AP 10% with 7-days extract induced 32% apoptotic cells in HGF (p < 0.05). Genotoxic effect was not observed. The AP groups released more Ag+ , while S26 and EN released more V4+ /V5+ in 24 hr. The Ag+ can be cytotoxic. In conclusion, the cytotoxicity caused to HGF can be attributed by the commercial sealers and enhanced by incorporation of AgVO3 , was not observed genotoxic effect, and apoptosis was induced only by AH Plus 10% 7-days extract. Ag+ can influence cell viability.
Assuntos
Antibacterianos/química , Bismuto/química , Hidróxido de Cálcio/química , Fibroblastos/citologia , Gengiva/citologia , Materiais Restauradores do Canal Radicular/química , Prata/química , Vanádio/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dexametasona/química , Combinação de Medicamentos , Liberação Controlada de Fármacos , Resinas Epóxi/química , Formaldeído/química , Humanos , Hidrocortisona/química , Íons/química , Prata/farmacologia , Relação Estrutura-Atividade , Timol/análogos & derivados , Timol/química , Titânio/químicaRESUMO
BACKGROUND: Helicobacter pylori infection is accountable for most of the peptic ulcer and intestinal cancers. Due to the uprising resistance towards H. pylori infection through the present and common proton pump inhibitors regimens, the investigation of novel candidates is the inevitable issue. Medicinal plants have always been a source of lead compounds for drug discovery. The research of the related effective enzymes linked with this gram-negative bacterium is critical for the discovery of novel drug targets. OBJECTIVE: The aim of the study is to identify the best candidate to evaluate the inhibitory effect of thymoquinone and thymol against H. pylori oncoproteins, Cag A and Vac A in comparison to the standard drug, metronidazole by using a computational approach. MATERIALS AND METHODS: The targeted oncoproteins, Cag A and Vac A were retrieved from RCSB PDB. Lipinski's rule and ADMET toxicity profiling were carried out on the phytoconstituents of the N. sativa. The two compounds of N. sativa were further analyzed by molecular docking and MD simulation studies. The reported phytoconstituents, thymoquinone and thymol present in N. sativa were docked with H. pylori Cag A and Vac A oncoproteins. Structures of ligands were prepared using ChemDraw Ultra 10 software and then changed into their 3D PDB structures using Molinspiration followed by energy minimization by using software Discovery Studio client 2.5. RESULTS: The docking results revealed the promising inhibitory potential of thymoquinone against Cag A and Vac A with docking energy of -5.81 kcal/mole and -3.61kcal/mole, respectively. On the contrary, the inhibitory potential of thymol against Cag A and Vac A in terms of docking energy was -5.37 kcal/mole and -3.94kcal/mole as compared to the standard drug, metronidazole having docking energy of -4.87 kcal/mole and -3.20 kcal/mole, respectively. Further, molecular dynamic simulations were conducted for 5ns for optimization, flexibility prediction, and determination of folded Cag A and Vac A oncoproteins stability. The Cag A and Vac A oncoproteins-TQ complexes were found to be quite stable with the root mean square deviation value of 0.2nm. CONCLUSION: The computational approaches suggested that thymoquinone and thymol may play an effective pharmacological role to treat H. pylori infection. Hence, it could be summarized that the ligands thymoquinone and thymol bound and interacted well with the proteins Cag A and Vac A as compared to the ligand MTZ. Our study showed that all lead compounds had good interaction with Cag A and Vac A proteins and suggested them to be a useful target to inhibit H. pylori infection.
Assuntos
Benzoquinonas/química , Helicobacter pylori/efeitos dos fármacos , Simulação de Acoplamento Molecular , Nigella sativa/química , Timol/análogos & derivados , Timol/síntese química , Proteínas de Bactérias , Descoberta de Drogas , Infecções por Helicobacter/tratamento farmacológico , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Four new thymol derivatives (1-4), one new isothymol derivative (5), together with one known analogue (6) were isolated from the overground parts of Eupatorium fortunei. The structures were elucidated by extensive spectroscopic data analysis, including UV, IR, HR-ESIMS, 1D-, and 2D-NMR data. All compounds were evaluated for their cytotoxic effects against four human cancer cell lines using MTT assay. Compounds 1, 2, and 6 showed cytotoxicities with IC50 values 6.24-11.96 µM against MCF-7, HeLa, A549, and Hep G-2 cell lines.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Eupatorium/química , Timol/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Timol/análogos & derivados , Timol/químicaRESUMO
Zika virus (ZIKV) is an emerging mosquito-borne virus of medical concern. ZIKV infection may represent a serious disease, causing neonatal microcephaly and neurological disorders. Nowadays, there is no approved antiviral against ZIKV. Several indigenous or endemic medicinal plants from Mascarene archipelago in Indian Ocean have been found able to inhibit ZIKV infection. The purpose of our study was to determine whether essential oil (EO) from Reunion Island medicinal plant Ayapana triplinervis, whose thymohydroquinone dimethyl ether (THQ) is the main component has the potential to prevent ZIKV infection in human cells. Virological assays were performed on human epithelial A549 cells infected with either GFP reporter ZIKV or epidemic viral strain. Zebrafish assay was employed to evaluate the acute toxicity of THQ in vivo. We showed that both EO and THQ inhibit ZIKV infection in human cells with IC50 values of 38 and 45 µg/mL, respectively. At the noncytotoxic concentrations, EO and THQ reduced virus progeny production by 3-log. Time-of-drug-addition assays revealed that THQ could act as viral entry inhibitor. At the antiviral effective concentration, THQ injection in zebrafish does not lead to any signs of stress and does not impact fish survival, demonstrating the absence of acute toxicity for THQ. From our data, we propose that THQ is a new potent antiviral phytocompound against ZIKV, supporting the potential use of medicinal plants from Reunion Island as a source of natural and safe antiviral substances against medically important mosquito-borne viruses.
Assuntos
Óleos Voláteis/farmacologia , Plantas Medicinais/química , Timol/análogos & derivados , Zika virus/efeitos dos fármacos , Células A549 , Animais , Humanos , Óleos Voláteis/efeitos adversos , Timol/efeitos adversos , Timol/farmacologia , Peixe-Zebra , Infecção por Zika virus/prevenção & controleRESUMO
The incorporation of nanoparticles into endodontic sealers aims at increasing antimicrobial activity of the original material. Aim. The aim of this study is to incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3, at 2.5%, 5%, and 10%) into three endodontic sealers and evaluate the antibacterial activity of freshly sealers, surface topography and chemical composition, and setting time. Material and Methods. The AgVO3 was incorporated into AH Plus, Sealer 26, and Endomethasone N at concentrations 0%, 2.5%, 5%, and 10% (in mass). The antibacterial activity of freshly sealers was assessed by direct contact with Enterococcus faecalis and CFU/mL count (n=10), surface topography, and chemical composition were measured by SEM/EDS, and the setting time was measured by Gillmore needle (n=10). The Kruskal-Wallis and Dunn statistical tests were applied (α=0.05). Results. All groups of sealers evaluated inhibited E. faecalis (p>0.05). The incorporation of AgVO3 altered the atomic proportions between components of the endodontic sealers, and the percentage of silver (Ag) and vanadium (V) increased proportionally to the concentrations of AgVO3. Topography analysis showed differences in components distribution on the surface of the specimens. The sealers incorporated with AgVO3 of AH Plus presented a lower setting time than the control group (p<0.05). For Sealer 26 and Endomethasone N, the incorporation of AgVO3 increased the setting time in relation to control group (p<0.05). Conclusions. The modification of endodontic sealers by AgVO3 increased the atomic percentage of Ag and V proportionally to the concentration of the nanomaterial and changed the atomic percentage of the sealer components and setting times. It cannot be affirmed that the AgVO3 promote differences in the antimicrobial activity of freshly sealers, and further investigations of the antimicrobial activity of the set sealers should be carried out.
Assuntos
Antibacterianos , Bismuto , Hidróxido de Cálcio , Enterococcus faecalis/crescimento & desenvolvimento , Nanoestruturas/química , Materiais Restauradores do Canal Radicular , Compostos de Prata , Vanadatos , Antibacterianos/farmacologia , Bismuto/química , Bismuto/farmacologia , Hidróxido de Cálcio/química , Hidróxido de Cálcio/farmacologia , Dexametasona/química , Dexametasona/farmacologia , Combinação de Medicamentos , Formaldeído/química , Formaldeído/farmacologia , Humanos , Hidrocortisona/química , Hidrocortisona/farmacologia , Materiais Restauradores do Canal Radicular/química , Materiais Restauradores do Canal Radicular/farmacologia , Compostos de Prata/química , Compostos de Prata/farmacologia , Timol/análogos & derivados , Timol/química , Timol/farmacologia , Vanadatos/química , Vanadatos/farmacologiaRESUMO
The essential oils of the fresh and dry flowers, leaves, branches, and roots of Lippia thymoides were obtained by hydrodistillation and analyzed using gas chromatography (GC) and GC-mass spectrometry (MS). The acetylcholinesterase inhibitory activity of the essential oil of fresh leaves was investigated on silica gel plates. The interactions of the key compounds with acetylcholinesterase were simulated by molecular docking and molecular dynamics studies. In total, 75 compounds were identified, and oxygenated monoterpenes were the dominant components of all the plant parts, ranging from 19.48% to 84.99%. In the roots, the main compounds were saturated and unsaturated fatty acids, having contents varying from 39.5% to 32.17%, respectively. In the evaluation of the anticholinesterase activity, the essential oils (detection limit (DL) = 0.1 ng/spot) were found to be about ten times less active than that of physostigmine (DL = 0.01ng/spot), whereas thymol and thymol acetate presented DL values each of 0.01 ng/spot, equivalent to that of the positive control. Based on the docking and molecular dynamics studies, thymol and thymol acetate interact with the catalytic residues Ser203 and His447 of the active site of acetylcholinesterase. The binding free energies (ΔGbind) for these ligands were -18.49 and -26.88 kcal/mol, demonstrating that the ligands are able to interact with the protein and inhibit their catalytic activity.
Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Lippia/citologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Acetilcolinesterase/química , Animais , Domínio Catalítico , Electrophorus/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monoterpenos/química , Monoterpenos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Timol/análogos & derivados , Timol/química , Timol/farmacologiaRESUMO
Twelve substituted aryl-azo-thymol derivatives (4a to 4 l) were synthesized and characterized by several spectral techniques such as, FTIR, UV-vis, proton NMR, Mass spectrometry and elemental analysis. Antimicrobial activities were evaluated by agar-well diffusion method against isolated MRSA, ESBL-producing pathogenic bacteria and antifungal resistant fungi, in vitro. In addition, drug likeness properties of derivatives were assessed through bioinformatic tools such as, PASS prediction, molecular docking and Lipinski rules of five, along with determination of toxic nature and LD50 values. Among 12 derivatives, 4a, 4b, 4c, 4 g, 4i, 4j and 4 k had significant antibacterial and antifungal activities with minimum inhibitory concentration values, 40 to 80 µg/ml. Moreover, the docking scores of derivatives were -8.27 to -11.44 kcal/mol, against 4 bacterial targets and -9.45 to -12.49 kcal/mol against 2 fungal targets. Thus, from in vitro and in silico studies, thymol derivatives had control of MRSA, ESBL-producing bacteria and antifungal resistant fungi.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Timol/síntese química , Timol/farmacologia , Biologia Computacional/métodos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Análise Espectral/métodos , Timol/análogos & derivadosRESUMO
Increasing incidents of colorectal cancer have shifted researchers' attention to the production and improvement of anti-cancer drugs by the scientific investigation of vast pool of synthetic, biological and natural products. Thymoquinone and thymohydroquinone are considered the ideal compounds for the cancer therapy as they are economically and environmental friendly and have less toxicity level to the survival and diseased model up to increased dosage level. For colorectal cancer, researches are shifting towards the oral drug delivery instead of injection, as administering drugs through oral route shows maximum absorption of drugs, improves patient life quality and is cost-effective. Naturally occurring polysaccharides as oral drug carriers, such as pectin, have the ability to break down completely in colon, making it suitable for targeted drug delivery against cancer cells. Pectin with polymeric base is an efficient nano drug carrier. The current study reviews the delivery of thymoquinone/thymohydroquinone through pectin nano carriers to treat colorectal cancer.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Benzoquinonas/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/química , Pectinas/química , Fitoterapia , Timol/análogos & derivados , Administração Oral , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas , Nigella sativa , Timol/administração & dosagem , Thymus (Planta)RESUMO
The total synthesis of a dimeric thymol derivative (thymarnicol) isolated from Arnica sachalinensis was accomplished in 6 steps. A key biomimetic Diels-Alder dimerization was found to occur at ambient temperature and the final oxidative cyclization occurs when the substrate is exposed to air and visible light. These results indicate that this natural product is likely the result of spontaneous (non-enzyme-mediated) reactivity.
Assuntos
Arnica/química , Timol/análogos & derivados , Produtos Biológicos/química , Biomimética , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Ciclização , Teoria da Densidade Funcional , Dimerização , Estudos de Viabilidade , Luz , Estrutura Molecular , Oxirredução , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
Two new thymol derivatives, 7,9-diisobutyryloxy-8-ethoxythymol (1) and 7-acetoxy-8-methoxy-9-isobutyryloxythymol (2), were isolated from fresh roots of Ageratina adenophora, together with four known compounds, 7,9-di-isobutyryloxy-8-methoxythymol (3), 9-oxoageraphorone (4), (-)-isochaminic acid (5) and (1α,6α)-10-hydroxycar-3-ene-2-one (6). Their structures were established on the basis of detailed spectroscopic analysis, and they were all isolated from the roots of A. adenophora for the first time. All the compounds were tested for their in vitro antibacterial activity toward three Gram-positive and two Gram-negative bacterial strains. Thymol derivatives 1-3 only selectively showed slight in vitro bacteriostatic activity toward three Gram-positive bacteria. The two known carene-type monoterpenes 5 and 6 were found to show moderate in vitro antibacterial activity against all five tested bacterial strains, with MIC values from 15.6 to 62.5 µg/mL. In addition, compounds 5 and 6 were further revealed to show in vitro cytotoxicity against human tumor A549, HeLa and HepG2 cell lines, with IC50 values ranging from 18.36 to 41.87 µM. However, their cytotoxic activities were inferior to those of reference compound adriamycin.
Assuntos
Ageratina/química , Extratos Vegetais/química , Raízes de Plantas/química , Timol/análogos & derivados , Timol/química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura MolecularRESUMO
In the present study, we aimed to develop a method for thymol sulfate and thymol glucuronide determination in plasma, liver and duodenal wall of broiler chickens after feeding with a Thymus vulgaris essential oil at the different concentrations (0.01, 0.05 and 0.1% w/w). UHPLC coupled with accurate-mass QTOF-MS was used for identification and quantification of thymol metabolites. Novel Waters Oasis Prime HLB solid-phase extraction cartridges were applied to sample clean-up with extraction recoveries ranged from 85 to 92%. The presence of thymol glucuronide was confirmed by MS software according to molecular formula, score, mass error and double bond equivalent. In terms of validation, calibration curves of thymol sulfate were constructed in matrix samples with linearity from 3.91 to 250.0 ng/mL and correlation coefficients were within the range of 0.9979-0.9995. Limits of detection were 0.97, 0.29 and 0.63 ng/mL and limits of quantification were 3.23, 0.97 and 2.09 ng/mL for plasma, liver and duodenal wall, respectively. Intra-day and inter-day precision expressed as relative standard deviation were <4.35%. To highlight, thymol metabolites were directly detected for the first time in liver and duodenal wall and this method was shown to be successfully applicable for investigation of thymol metabolism in chickens after thyme essential oil ingestion.
Assuntos
Galinhas , Cromatografia Líquida de Alta Pressão/métodos , Duodeno/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Timol/análise , Timol/farmacocinética , Animais , Calibragem , Cromatografia Líquida de Alta Pressão/normas , Estabilidade de Medicamentos , Glucuronídeos/análise , Fígado/química , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray/normas , Timol/análogos & derivados , Timol/sangue , Distribuição TecidualRESUMO
Insecticides based on botanical sources have taken on increased attention due to differing modes of action from current insecticides in use and the view that they may be environmentally friendly. Thymoquinone, a component in the essential oil of incense cedar heartwood, has been shown to have insecticidal action against adult mosquitoes. This study evaluated relative toxicities of thymoquinone, selected derivatives of thymoquinone, hydroquinone, and arbutin to determine if any had similar or better activity. The intrinsic toxicities of hydroquinone and thymohydroquinone were not significantly different from thymoquinone, while libocedrol and arbutin were significantly less toxic.
Assuntos
Culex/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Arbutina/farmacologia , Benzoquinonas/farmacologia , Feminino , Hidroquinonas/farmacologia , Timol/análogos & derivados , Timol/farmacologiaRESUMO
Chemical investigation of the leaves from Ageratina glabrata yielded four new thymol derivatives, namely: 10-benzoyloxy-8,9-dehydro-6-hydroxythymol isobutyrate (4), 10-benzoyloxy-8,9-dehydrothymol (5), 10-benzoyloxythymol (6) and 10-benzoyloxy-6,8-dihydroxy-9-isobutyryl-oxythymol (7). In addition, (8S)-10-benzoyloxy-8,9-epoxy-6-hydroxythymol isobutyrate (1), together with other two already known thymol derivatives identified as 10-benzoyloxy-8,9-epoxy-6-methoxythymol isobutyrate (2) and 10-benzoyloxy-8,9-epoxythymol isobutyrate (3) were also obtained. In this paper, we report the structures and complete assignments of the ¹H and (13)C-NMR data of compounds 1-7, and the absolute configuration for compound 1, unambiguously established by single crystal X-ray diffraction, and evaluation of the Flack parameter. The in vitro antiprotozoal assay showed that compound 1 and its derivative 1a were the most potent antiamoebic and antigiardial compounds. Both compounds showed selectivity and good antiamoebic activity comparable to emetine and metronidazole, respectively, two antiprotozoal drugs used as positive controls. In relation to anti-propulsive effect, compound 1 and 1a showed inhibitory activity, with activities comparable to quercetin and compound 9, two natural antipropulsive compounds used as positive controls. These data suggest that compound 1 may play an important role in antidiarrheal properties of Ageratina glabrata.
Assuntos
Ageratina/química , Antidiarreicos , Isobutiratos , Folhas de Planta/química , Timol , Antidiarreicos/química , Antidiarreicos/isolamento & purificação , Humanos , Isobutiratos/química , Isobutiratos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Timol/análogos & derivados , Timol/química , Timol/isolamento & purificaçãoRESUMO
From the leaves of Ageratina cylindrica, in addition to the described [(2S)-2-{4-formyl-5-hydroxy-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl]methyl benzoate (cylindrinol A, 8), seven new thymol derivatives were isolated and named cylindrinols B - H (1 - 7). The structures of these compounds were established as (2-{4-(hydroxymethyl)-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl benzoate (1), (2-{4-formyl-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl benzoate (2), (2-{4-[(acetyloxy)methyl]-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl benzoate (3), [2-(2-[(2-methylpropanoyl)oxy]-4-{[(2-methylpropanoyl)oxy]methyl}phenyl)oxiran-2-yl]methyl benzoate (4), [2-(5-hydroxy-2-[(2-methylpropanoyl)oxy]-4-{[(2-methylpropanoyl)oxy]methyl}phenyl)oxiran-2-yl]methyl benzoate (5), 2-{4-(hydroxymethyl)-2-[(2-methylpropanoyl)oxy]phenyl}prop-2-en-1-yl benzoate (6), and 2-hydroxy-2-[2-hydroxy-4-(hydroxymethyl)-phenyl]-3-[(2-methylpropanoyl)oxy]propyl benzoate (7), by spectroscopic means. Compounds 1 showed moderate antiprotozoal activity on both protozoa. Compounds 4 and 5 showed selectivity on Giardia lamblia trophozoites. All isolated compounds were less active than two antiprotozoal drugs, metronidazole and emetine, used as positive controls. Compound 5 exhibited a high inhibitory effect on hyperpropulsive movement of the small intestine in rats; its effect was best than loperamide, antidiarrheal drug used as a positive control.