Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell ; 32(12): 3866-3883, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037145

RESUMO

In addition to linear electron transport, photosystem I cyclic electron transport (PSI-CET) contributes to photosynthesis and photoprotection. In Arabidopsis (Arabidopsis thaliana), PSI-CET consists of two partially redundant pathways, one of which is the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1)-dependent pathway. Although the physiological significance of PSI-CET is widely recognized, the regulatory mechanism behind these pathways remains largely unknown. Here, we report on the regulation of the PGR5/PGRL1-dependent pathway by the m-type thioredoxins (Trx m). Genetic and phenotypic characterizations of multiple mutants indicated the physiological interaction between Trx m and the PGR5/PGRL1-dependent pathway in vivo. Using purified Trx proteins and ruptured chloroplasts, in vitro, we showed that the reduced form of Trx m specifically decreased the PGR5/PGRL1-dependent plastoquinone reduction. In planta, Trx m4 directly interacted with PGRL1 via disulfide complex formation. Analysis of the transgenic plants expressing PGRL1 Cys variants demonstrated that Cys-123 of PGRL1 is required for Trx m4-PGRL1 complex formation. Furthermore, the Trx m4-PGRL1 complex was transiently dissociated during the induction of photosynthesis. We propose that Trx m directly regulates the PGR5/PGRL1-dependent pathway by complex formation with PGRL1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tiorredoxinas de Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Plastoquinona/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/metabolismo , Dissulfetos/metabolismo , Transporte de Elétrons , Proteínas de Membrana/genética , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/metabolismo , Plantas Geneticamente Modificadas
2.
Plant J ; 104(3): 718-734, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772439

RESUMO

Various regulatory mechanisms have evolved in plants to optimize photosynthetic activity under fluctuating light. Thioredoxins (TRX) are members of the regulatory network balancing activities of light and carbon fixation reactions in chloroplasts. We have studied the impact of two chloroplast TRX systems, the ferredoxin-dependent TRX reductase (FTR) and the NADPH-dependent TRX reductase C (NTRC) on regulation of photosynthesis by mutants lacking or overexpressing a component of either system. Plants were subjected to image-based phenotyping and chlorophyll fluorescence measurements that allow long-term monitoring of the development and photosynthetic activity of the rosettes, respectively. Our experiments demonstrate that NTRC and FTR systems respond differently to variation of light intensity. NTRC was an indispensable regulator of photosynthesis in young leaves, at light-intensity transitions and under low light intensities limiting photosynthesis, whereas steady-state exposure of plants to growth or higher light intensities diminished the need of NTRC in regulation of photosynthesis. In fluctuating light, overexpression of NTRC increased the quantum yield of Photosystem II (YII) at low light and stimulated the relaxation of non-photochemical quenching (NPQ) after high light exposure, indicating that overexpression of NTRC improves leaf capacity to convert light energy to chemical energy under these conditions. Overexpression of chimeric protein (NTR-TRXf) containing both the thioredoxin reductase and TRXf activity on an ntrc mutant background, did not completely recover either growth or steady-state photosynthetic activity, whereas OE-NTR-TRXf plants exposed to fluctuating light regained the wild-type level of Y(II) and NPQ.


Assuntos
Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/genética , Luz , Plantas Geneticamente Modificadas , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
3.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397215

RESUMO

Water deficit caused by osmotic stress and drought limits crop yield and tree growth worldwide. Screening and identifying candidate genes from stress-resistant species are a genetic engineering strategy to increase drought resistance. In this study, an increased concentration of mannitol resulted in elevated expression of thioredoxin f (KcTrxf) in the nonsecretor mangrove species Kandelia candel. By means of amino acid sequence and phylogenetic analysis, the mangrove Trx was classified as an f-type thioredoxin. Subcellular localization showed that KcTrxf localizes to chloroplasts. Enzymatic activity characterization revealed that KcTrxf recombinant protein possesses the disulfide reductase function. KcTrxf overexpression contributes to osmotic and drought tolerance in tobacco in terms of fresh weight, root length, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) production. KcTrxf was shown to reduce the stomatal aperture by enhancing K+ efflux in guard cells, which increased the water-retaining capacity in leaves under drought conditions. Notably, the abscisic acid (ABA) sensitivity was increased in KcTrxf-transgenic tobacco, which benefits plants exposed to drought by reducing water loss by promoting stomatal closure. KcTrxf-transgenic plants limited drought-induced H2O2 in leaves, which could reduce lipid peroxidation and retain the membrane integrity. Additionally, glutathione (GSH) contributing to reactive oxygen species (ROS) scavenging and transgenic plants are more efficient at regenerating GSH from oxidized glutathione (GSSG) under conditions of drought stress. Notably, KcTrxf-transgenic plants had increased glucose and fructose contents under drought stress conditions, presumably resulting from KcTrxf-promoted starch degradation under water stress. We conclude that KcTrxf contributes to drought tolerance by increasing the water status, by enhancing osmotic adjustment, and by maintaining ROS homeostasis in transgene plants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Tiorredoxinas de Cloroplastos/genética , Tiorredoxinas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotiana/metabolismo , Rhizophoraceae/química , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Secas , Frutose/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Manitol/toxicidade , NADH NADPH Oxirredutases/metabolismo , Pressão Osmótica , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência , Nicotiana/efeitos dos fármacos , Regulação para Cima , Água/metabolismo
4.
Plant Cell Physiol ; 60(7): 1504-1513, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038682

RESUMO

Cyanobacteria possess a sophisticated photosynthesis-based metabolism with admirable plasticity. This plasticity is possible via the deep regulation network, the thiol-redox regulations operated by thioredoxin (hereafter, Trx). In this context, we characterized the Trx-m1-deficient mutant strain of Anabaena sp., PCC 7120 (shortly named A.7120), cultivated under nitrogen limitation. Trx-m1 appears to coordinate the nitrogen response and its absence induces large changes in the proteome. Our data clearly indicate that Trx-m1 is crucial for the diazotrophic growth of A.7120. The lack of Trx-m1 resulted in a large differentiation of heterocysts (>20% of total cells), which were barely functional probably due to a weak expression of nitrogenase. In addition, heterocysts of the mutant strain did not display the usual cellular structure of nitrogen-fixative cells. This unveiled why the mutant strain was not able to grow under nitrogen starvation.


Assuntos
Anabaena/genética , Tiorredoxinas de Cloroplastos/fisiologia , Genes Bacterianos/fisiologia , Nitrogênio/deficiência , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/metabolismo , Genes Bacterianos/genética , Microscopia Eletrônica de Transmissão , Fotossíntese , Proteoma
5.
Biochem J ; 476(7): 1159-1172, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988137

RESUMO

Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.


Assuntos
Tiorredoxinas de Cloroplastos/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Luz , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Fotossíntese/genética , Plantas/genética , Plantas Geneticamente Modificadas , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
J Exp Bot ; 70(3): 1005-1016, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476130

RESUMO

The activity of the protein kinase STN7, involved in phosphorylation of the light-harvesting complex II (LHCII) proteins, has been reported as being co-operatively regulated by the redox state of the plastoquinone pool and the ferredoxin-thioredoxin (Trx) system. The present study aims to investigate the role of plastid Trxs in STN7 regulation and their impact on photosynthesis. For this purpose, tobacco plants overexpressing Trx f or m from the plastid genome were characterized, demonstrating that only Trx m overexpression was associated with a complete loss of LHCII phosphorylation that did not correlate with decreased STN7 levels. The absence of phosphorylation in Trx m-overexpressing plants impeded migration of LHCII from PSII to PSI, with the concomitant loss of PSI-LHCII complex formation. Consequently, the thylakoid ultrastructure was altered, showing reduced grana stacking. Moreover, the electron transport rate was negatively affected, showing an impact on energy-demanding processes such as the Rubisco maximum carboxylation capacity and ribulose 1,5-bisphosphate regeneration rate values, which caused a strong depletion in net photosynthetic rates. Finally, tobacco plants overexpressing a Trx m mutant lacking the reactive redox site showed equivalent physiological performance to the wild type, indicating that the overexpressed Trx m deactivates STN7 in a redox-dependent way.


Assuntos
Tiorredoxinas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo
7.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28808108

RESUMO

Thioredoxins (TRXs) are protein oxidoreductases that control the structure and function of cellular proteins by cleavage of a disulphide bond between the side chains of two cysteine residues. Oxidized thioredoxins are reactivated by thioredoxin reductases (TR) and a TR-dependent reduction of TRXs is called a thioredoxin system. Thiol-based redox regulation is an especially important mechanism to control chloroplast proteins involved in biogenesis, in regulation of light harvesting and distribution of light energy between photosystems, in photosynthetic carbon fixation and other biosynthetic pathways, and in stress responses of plants. Of the two plant plastid thioredoxin systems, the ferredoxin-dependent system relays reducing equivalents from photosystem I via ferredoxin and ferredoxin-thioredoxin reductase (FTR) to chloroplast proteins, while NADPH-dependent thioredoxin reductase (NTRC) forms a complete thioredoxin system including both reductase and thioredoxin domains in a single polypeptide. Chloroplast thioredoxins transmit environmental light signals to biochemical reactions, which allows fine tuning of photosynthetic processes in response to changing environmental conditions. In this paper we focus on the recent reports on specificity and networking of chloroplast thioredoxin systems and evaluate the prospect of improving photosynthetic performance by modifying the activity of thiol regulators in plants.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/genética , Produtos Agrícolas/fisiologia , Proteínas de Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Fotossíntese
8.
Biochem J ; 474(8): 1347-1360, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28246333

RESUMO

Thiol-based redox regulation is considered to support light-responsive control of various chloroplast functions. The redox cascade via ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) has been recognized as a key to transmitting reducing power; however, Arabidopsis thaliana genome sequencing has revealed that as many as five Trx subtypes encoded by a total of 10 nuclear genes are targeted to chloroplasts. Because each Trx isoform seems to have a distinct target selectivity, the electron distribution from FTR to multiple Trxs is thought to be the critical branch point for determining the consequence of chloroplast redox regulation. In the present study, we aimed to comprehensively characterize the kinetics of electron transfer from FTR to 10 Trx isoforms. We prepared the recombinant FTR protein from Arabidopsis in the heterodimeric form containing the Fe-S cluster. By reconstituting the FTR/Trx system in vitro, we showed that FTR prepared here was enzymatically active and suitable for uncovering biochemical features of chloroplast redox regulation. A series of redox state determinations using the thiol-modifying reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonate, indicated that all chloroplast Trx isoforms are commonly reduced by FTR; however, significantly different efficiencies were evident. These differences were apparently correlated with the distinct midpoint redox potentials among Trxs. Even when the experiments were performed under conditions of hypothetical in vivo stoichiometry of FTR and Trxs, a similar trend in distinguishable electron transfers was observed. These data highlight an aspect of highly organized circuits in the chloroplast redox regulation network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredutases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Tiorredoxinas de Cloroplastos/química , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/enzimologia , Transporte de Elétrons/efeitos dos fármacos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estilbenos/farmacologia , Reagentes de Sulfidrila/farmacologia , Ácidos Sulfônicos/farmacologia
9.
Mol Plant ; 10(1): 168-182, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27940305

RESUMO

Sunlight represents the energy source for photosynthesis and plant growth. When growing in the field, plant photosynthesis has to manage strong fluctuations in light intensities. Regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of photosynthetic reactions in the chloroplast. However, direct evidence for a role of this system in regulating dynamic acclimation of photosynthesis in fluctuating conditions is largely lacking. In this report we show that the ferredoxin-dependent Trxs m1 and m2 as well as the NADPH-dependent NTRC are both indispensable for photosynthetic acclimation in fluctuating light intensities. Arabidopsis mutants with combined deficiency in Trxs m1 and m2 show wild-type growth and photosynthesis under constant light condition, while photosynthetic parameters are strongly modified in rapidly alternating high and low light. Two independent trxm1m2 mutants show lower photosynthetic efficiency in high light, but surprisingly significantly higher photosynthetic efficiency in low light. Our data suggest that a main target of Trx m1 and m2 is the NADP-malate dehydrogenase involved in export of excess reductive power from the chloroplast. The decreased photosynthetic efficiency in the high-light peaks may thus be explained by a reduced capacity of the trxm1m2 mutants in the rapid light activation of this enzyme. In the ntrc mutant, dynamic responses of non-photochemical quenching of excitation energy and plastoquinone reduction state both were strongly attenuated in fluctuating light intensities, leading to a massive decrease in PSII quantum efficiency and a specific decrease in plant growth under these conditions. This is likely due to the decreased ability of the ntrc mutant to control the stromal NADP(H) redox poise. Taken together, our results indicate that NTRC is indispensable in ensuring the full range of dynamic responses of photosynthesis to optimize photosynthesis and maintain growth in fluctuating light, while Trxs m1 and m2 are indispensable for full activation of photosynthesis in the high-light periods but negatively affect photosynthetic efficiency in the low-light periods of fluctuating light.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/fisiologia , Fotossíntese/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/genética , Tiorredoxinas de Cloroplastos/metabolismo , Luz , Malato Desidrogenase (NADP+)/metabolismo , Mutação , Oxirredução , Fotossíntese/efeitos da radiação , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
10.
Protein Expr Purif ; 121: 46-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26773743

RESUMO

Thioredoxins (Trxs) regulate the activity of target proteins in the chloroplast redox regulatory system. In vivo, a disulfide bond within Trxs is reduced by photochemically generated electrons via ferredoxin (Fd) and ferredoxin-thioredoxin reductase (FTR: EC 1.8.7.2). FTR is an αß-heterodimer, and the ß-subunit has a 4Fe-4S cluster that is indispensable for the electron transfer from Fd to Trxs. Reconstitution of the light-dependent Fd/Trx system, including FTR, is required for the biochemical characterization of the Trx-dependent reduction pathway in the chloroplasts. In this study, we generated functional FTR by simultaneously expressing FTR-α and -ß subunits under the control of tandem T7 promoters in Escherichia coli, and purifying the resulting FTR complex protein. The purified FTR complex exhibited spectroscopic absorption at 410 nm, indicating that it contained the Fe-S cluster. Modification of the expression system and simplification of the purification steps resulted in improved FTR complex yields compared to those obtained in previous studies. Furthermore, the light-dependent Trx-reduction system was reconstituted by using Fd, the purified FTR, and intact thylakoids.


Assuntos
Tiorredoxinas de Cloroplastos/genética , Ferredoxinas/genética , Proteínas Ferro-Enxofre/biossíntese , Oxirredutases/biossíntese , Tiorredoxinas de Cloroplastos/química , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Transporte de Elétrons , Ferredoxinas/química , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/genética , Luz , Oxirredução , Oxirredutases/genética , Fotossíntese , Spinacia oleracea/enzimologia
11.
FEBS Lett ; 589(11): 1207-13, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25862497

RESUMO

Voltage-dependent anion channels (VDACs) are conserved mitochondrial outer membrane proteins. A yeast two-hybrid screen identified interaction between Arabidopsis VDAC3 and the chloroplast protein thioredoxin m2 (AtTrx m2). This was confirmed via pull-down assay. A bimolecular fluorescence complementation assay located the interaction in mitochondria. AtVDAC3 and AtTrx m2 transcripts were expressed in multiple tissues and up-regulated by abiotic stress. Under NaCl stress, AtVDAC3 overexpression inhibited growth and increased H2O2 accumulation, while AtTrx m2 overexpression conferred resistance to NaCl and reduced H2O2. Results indicate that both AtVDAC3 and AtTrx m2 are involved in ROS signaling and play opposite roles in NaCl stress response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Tiorredoxinas de Cloroplastos/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Tiorredoxinas de Cloroplastos/química , Tiorredoxinas de Cloroplastos/genética , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/genética
12.
Protein Expr Purif ; 101: 152-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25017253

RESUMO

Plant redox-related proteins were overexpressed using a genetic codon substitution downstream of the translation initiation codon. This method significantly improved recombinant protein expression levels of Arabidopsis chloroplastic thioredoxins and cytosolic nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (E.C. 1.8.1.9) in Escherichia coli. Using these proteins, the in vitro chloroplastic thioredoxins-reduction system was reconstituted in an NADPH-dependent manner. This system could convert the five classes of chloroplastic Arabidopsis thioredoxins and two chloroplastic Spinach thioredoxins to their reduced forms, independent of dithiothreitol and the photosynthetic electron transport system.


Assuntos
Arabidopsis/enzimologia , Tiorredoxinas de Cloroplastos/genética , Spinacia oleracea/enzimologia , Tiorredoxina Dissulfeto Redutase/genética , Sequência de Aminoácidos , Arabidopsis/química , Sequência de Bases , Tiorredoxinas de Cloroplastos/biossíntese , Tiorredoxinas de Cloroplastos/química , Transporte de Elétrons/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Oxirredução , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Tiorredoxina Dissulfeto Redutase/biossíntese , Tiorredoxina Dissulfeto Redutase/química
13.
J Exp Bot ; 65(9): 2405-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659486

RESUMO

Redox modulation of protein activity by thioredoxins (TRXs) plays a key role in cellular regulation. Thioredoxin z (TRX z) and its interaction partner fructokinase-like protein 1 (FLN1) represent subunits of the plastid-encoded RNA polymerase (PEP), suggesting a role of both proteins in redox regulation of chloroplast gene expression. Loss of TRX z or FLN1 expression generates a PEP-deficient phenotype and renders the plants incapable to grow autotrophically. This study shows that PEP function in trx z and fln1 plants can be restored by complementation with redox-inactive TRX z C106S and FLN1 C105/106A protein variants, respectively. The complemented plants showed wild-type levels of chloroplast gene expression and were restored in photosynthetic capacity, indicating that redox regulation of PEP through TRX z/FLN1 per se is not essential for autotrophic growth. Promoter-reporter gene studies indicate that TRX z and FLN1 are expressed during early phases of leaf development while expression ceases at maturation. Taken together, our data support a model in which TRX z and FLN1 are essential structural components of the PEP complex and their redox activity might only play a role in the fine tuning of PEP function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Processos Autotróficos , Tiorredoxinas de Cloroplastos/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plastídeos/enzimologia , Plastídeos/metabolismo
14.
Plant Physiol ; 163(4): 1710-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24151299

RESUMO

Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/ultraestrutura , Sequência Conservada , Dissulfetos/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Oxirredução , Fenótipo , Folhas de Planta/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Tiorredoxinas/genética , Tilacoides/metabolismo
15.
Plant Cell Environ ; 36(1): 16-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22646759

RESUMO

Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP-glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose-dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light-activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch-to-sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography-mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.


Assuntos
Arabidopsis/enzimologia , Tiorredoxinas de Cloroplastos/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Folhas de Planta/metabolismo , Amido/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/enzimologia , Ritmo Circadiano , Ativação Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Inativação de Genes , Luz , Oxirredução , Fotossíntese , Sacarose/metabolismo
16.
J Exp Bot ; 63(13): 4887-900, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22791824

RESUMO

Thioredoxins (TRXs) f and m are key components in the light regulation of photosynthetic metabolism via thiol-dithiol modulation in chloroplasts of leaves; however, little is known about the factors modulating the expression of these proteins. To investigate the effect of sugars as photosynthetic products on the expression of PsTRX f and m1 genes, sucrose and glucose were externally supplied to pea plants during the day. There was an increase in the mRNA levels of PsTRX f and m1 genes in response mainly to glucose. When leaf discs were incubated for up to 4h in the dark, glucose also led to an increase in both mRNA and protein levels of TRXs f and m, while sucrose had no substantial effect. Expression of PsDOF7, a carbon metabolism-related transcription factor gene, was also induced by glucose. Protein-DNA interaction showed that PsDOF7 binds specifically to the DOF core located in PsTRX f and m1 gene promoters. Transient expression in agroinfiltrated pea leaves demonstrated that PsDOF7 activated transcription of both promoters. The incubation of leaf discs in dithiotreitol (DTT) to increase the redox status led to a marked increase in the mRNA and protein levels of both TRXs within 4h. The increase in TRX protein levels occurred after 1h DTT feeding, implying a rapid effect of the thiol status on TRX f and m1 protein turnover rates, while transcriptional regulation took 3h to proceed. These results show that the protein levels of both TRXs are under short-term control of the sugar and thiol status in plants.


Assuntos
Carboidratos/farmacologia , Tiorredoxinas de Cloroplastos/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Sequência de Aminoácidos , Metabolismo dos Carboidratos , Carboidratos/análise , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/metabolismo , Frutose/análise , Frutose/metabolismo , Frutose/farmacologia , Expressão Gênica , Glucose/análise , Glucose/metabolismo , Glucose/farmacologia , Dados de Sequência Molecular , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA de Plantas/genética , Transdução de Sinais , Sacarose/análise , Sacarose/metabolismo , Sacarose/farmacologia
17.
Plant Sci ; 188-189: 82-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22525247

RESUMO

Plastid thioredoxins (TRXs) f and m have long been considered to regulate almost exclusively photosynthesis-related processes. Nonetheless, some years ago, we found that type-f and m TRXs were also present in non-photosynthetic organs such as roots and flowers of adult pea plants. In the present work, using pea seedlings 2-5 days old, we have determined the mRNA expression profile of the plastid PsTRX f, m1, and m2, together with the ferredoxin NADP reductase (FNR). Our results show that these TRX isoforms are expressed in cotyledons, underlying similar expression levels in roots for PsTRX m2. We have also noted plastid TRX expression in cotyledons of etiolated seedlings of Arabidopsis thaliana lines carrying constructs corresponding to PsTRX f and m1 promoters fused to the reporter gene GUS, pointing to a role in reserve mobilization. Furthermore, the response of plastid TRXs to NaCl and their capacity in restoring the growth of a TRX-deficient yeast under saline conditions suggest a role in the tolerance to salinity. We propose that these redox enzymes take part of the reserve mobilization in seedling cotyledons and we suggest additional physiological functions of PsTRX m2 in roots and PsTRX m1 in the salinity-stress response during germination.


Assuntos
Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/metabolismo , Pisum sativum/fisiologia , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/química , Tiorredoxinas de Cloroplastos/genética , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/fisiologia , Flores/genética , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação , Dados de Sequência Molecular , Oxirredução , Pisum sativum/genética , Pisum sativum/metabolismo , Fotossíntese , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plastídeos/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas , RNA de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Salinidade , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Alinhamento de Sequência , Transgenes
18.
Plant Physiol ; 159(1): 118-30, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22452855

RESUMO

The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes.


Assuntos
Adenosina Trifosfatases/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Liases/metabolismo , Pisum sativum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tetrapirróis/biossíntese , Agrobacterium/genética , Agrobacterium/metabolismo , Ácido Aminolevulínico/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/genética , Ativação Enzimática , Inativação Gênica , Genes de Plantas , Homeostase , Dados de Sequência Molecular , Oxirredução , Pisum sativum/enzimologia , Pisum sativum/genética , Fenótipo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mapeamento de Interação de Proteínas , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
19.
Plant Biotechnol J ; 9(6): 639-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21426478

RESUMO

Thioredoxins (Trxs) are small ubiquitous disulphide proteins widely known to enhance expression and solubility of recombinant proteins in microbial expression systems. Given the common evolutionary heritage of chloroplasts and bacteria, we attempted to analyse whether plastid Trxs could also act as modulators of recombinant protein expression in transgenic chloroplasts. For that purpose, two tobacco Trxs (m and f) with different phylogenetic origins were assessed. Using plastid transformation, we assayed two strategies: the fusion and the co-expression of Trxs with human serum albumin (HSA), which was previously observed to form large protein bodies in tobacco chloroplasts. Our results indicate that both Trxs behave similarly as regards HSA accumulation, although they act differently when fused or co-expressed with HSA. Trxs-HSA fusions markedly increased the final yield of HSA (up to 26% of total protein) when compared with control lines that only expressed HSA; this increase was mainly caused by higher HSA stability of the fused proteins. However, the fusion strategy failed to prevent the formation of protein bodies within chloroplasts. On the other hand, the co-expression constructs gave rise to an absence of large protein bodies although no more soluble HSA was accumulated. In these plants, electron micrographs showed HSA and Trxs co-localization in small protein bodies with fibrillar texture, suggesting a possible influence of Trxs on HSA solubilization. Moreover, the in vitro chaperone activity of Trx m and f was demonstrated, which supports the hypothesis of a direct relationship between Trx presence and HSA aggregates solubilization in plants co-expressing both proteins.


Assuntos
Tiorredoxinas de Cloroplastos/metabolismo , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Proteínas Recombinantes de Fusão/biossíntese , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/metabolismo , Chaperonas Moleculares/metabolismo , Plasmídeos/genética , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Albumina Sérica/genética , Albumina Sérica/metabolismo , Solubilidade , Transformação Genética
20.
J Exp Bot ; 62(2): 545-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20876336

RESUMO

BAM1 is a plastid-targeted ß-amylase of Arabidopsis thaliana specifically activated by reducing conditions. Among eight different chloroplast thioredoxin isoforms, thioredoxin f1 was the most efficient redox mediator, followed by thioredoxins m1, m2, y1, y2, and m4. Plastid-localized NADPH-thioredoxin reductase (NTRC) was also able partially to restore the activity of oxidized BAM1. Promoter activity of BAM1 was studied by reporter gene expression (GUS and YFP) in Arabidopsis transgenic plants. In young (non-flowering) plants, BAM1 was expressed both in leaves and roots, but expression in leaves was mainly restricted to guard cells. Compared with wild-type plants, bam1 knockout mutants were characterized by having more starch in illuminated guard cells and reduced stomata opening, suggesting that thioredoxin-regulated BAM1 plays a role in diurnal starch degradation which sustains stomata opening. Besides guard cells, BAM1 appears in mesophyll cells of young plants as a result of a strongly induced gene expression under osmotic stress, which is paralleled by an increase in total ß-amylase activity together with its redox-sensitive fraction. Osmotic stress impairs the rate of diurnal starch accumulation in leaves of wild-type plants, but has no effect on starch accumulation in bam1 mutants. It is proposed that thioredoxin-regulated BAM1 activates a starch degradation pathway in illuminated mesophyll cells upon osmotic stress, similar to the diurnal pathway of starch degradation in guard cells that is also dependent on thioredoxin-regulated BAM1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Tiorredoxinas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Osmose , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA