Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.960
Filtrar
1.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930915

RESUMO

Organic arsenic compounds such as p-aminophenylarsine oxide (p-APAO) are easier for structural optimization to improve drug-like properties such as pharmacokinetic properties, therapeutic efficacy, and target selectivity. In order to strengthen the selectivity of 4-(1,3,2-dithiarsinan-2-yl) aniline 7 to tumor cell, a thiourea moiety was used to strengthen the anticancer activity. To avoid forming a mixture of α/ß anomers, the strategy of 2-acetyl's neighboring group participation was used to lock the configuration of 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide. 1-(4-(1,3,2-dithiarsinan-2-yl) aniline)-2-N-(2,3,4,6-tetra-O-acetyl-ß-d-glucopyranos-1-yl)-thiourea 2 can increase the selectivity of human colon cancer cells HCT-116 (0.82 ± 0.06 µM vs. 1.82 ± 0.07 µM) to human embryonic kidney 293T cells (1.38 ± 0.01 µM vs. 1.22 ± 0.06 µM) from 0.67 to 1.68, suggesting a feasible approach to improve the therapeutic index of arsenic-containing compounds as chemotherapeutic agents.


Assuntos
Antineoplásicos , Desenho de Fármacos , Tioureia , Humanos , Tioureia/química , Tioureia/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Glucose/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Estrutura Molecular , Arsenicais/química , Arsenicais/farmacologia , Arsenicais/síntese química , Relação Estrutura-Atividade
2.
Bull Exp Biol Med ; 176(5): 562-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724811

RESUMO

We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.


Assuntos
Heme Oxigenase-1 , Ferro , Fator 2 Relacionado a NF-E2 , Tioureia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Tioureia/análogos & derivados , Tioureia/farmacologia , Células HeLa , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Ferro/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Óxidos de Nitrogênio/metabolismo , Óxidos de Nitrogênio/farmacologia , Antioxidantes/farmacologia
3.
Bioorg Chem ; 147: 107403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691909

RESUMO

A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Inibidores de Proteínas Quinases , Pirazóis , Tioureia , Ureia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Tioureia/farmacologia , Tioureia/química , Tioureia/síntese química , Estrutura Molecular , Ureia/farmacologia , Ureia/química , Ureia/análogos & derivados , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Descoberta de Drogas , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química
4.
Sci Rep ; 14(1): 12195, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806561

RESUMO

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Assuntos
Antioxidantes , Brassica napus , Sementes , Tioureia , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Tioureia/farmacologia , Tioureia/análogos & derivados , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Temperatura Alta , Estresse Oxidativo/efeitos dos fármacos , Genótipo , Resposta ao Choque Térmico/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo
5.
J Med Chem ; 67(11): 8791-8816, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775356

RESUMO

The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 µM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.


Assuntos
Antivirais , Interações Hidrofóbicas e Hidrofílicas , Tioureia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Cães , Animais , Tioureia/farmacologia , Tioureia/análogos & derivados , Tioureia/química , Relação Estrutura-Atividade , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Proteólise/efeitos dos fármacos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/antagonistas & inibidores , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Farmacorresistência Viral/efeitos dos fármacos
6.
J Inorg Biochem ; 257: 112584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735072

RESUMO

Herein we report four new arene ruthenium(II) complexes [RuII(η6-p-cymene)(L1)к1(S)Cl2] (C1), [RuII(η6-benzene)(L1)к1(S)Cl2] (C2) where L1 is N-((2,6-dimethylphenyl)carbamothioyl)benzamide (L1), and [RuII(η6-p-cymene)(L2)к1(S)Cl2] (C3), [RuII(η6-benzene)(L2)к1(S)Cl2] (C4) where L2 is N-((2,6-diisopropylphenyl)carbamothioyl)benzamide (L2) which were synthesized and evaluated for biological activity. The monodentate coordination of thione sulphur (S) to ruthenium ion along with two terminal chloride was confirmed by X-Ray diffraction analysis thus revealing a typical "piano-stool" pseudo tetrahedral geometry. DPPH radical scavenging activity showed that ligands were less efficient however on complex formation it showed significant efficacy with C4 showing the highest activity. The ligands and ruthenium complexes exhibited minimal to no cytotoxic effects on HEK cells within the concentration range of 10-300 µM. Evaluating the cytotoxicity against prostate cancer cells (DU145) L1, L2 and C1 displayed more pronounced cytotoxic activity with C1 showing high cytotoxicity against the cancer cells, in comparison to cisplatin indicating its potential for further investigation and analysis. Considering this, compound C1 was used to further study its interaction with BSA using fluorescence spectroscopy and it was found to be 2.64 × 106 M-1. Findings from CD spectroscopy indicate the binding in the helix region which was further confirmed with the molecular docking studies.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Tioureia , Rutênio/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Humanos , Tioureia/química , Tioureia/farmacologia , Tioureia/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Linhagem Celular Tumoral , Cristalografia por Raios X , Soroalbumina Bovina/química
7.
Inorg Chem ; 63(16): 7520-7539, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38590210

RESUMO

A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 µM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Tioureia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Tioureia/química , Tioureia/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Estrutura Molecular , Furanos/química , Furanos/farmacologia , Furanos/síntese química , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Chlorocebus aethiops , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Relação Estrutura-Atividade
8.
Exp Neurol ; 377: 114795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657855

RESUMO

Clinical studies have shown that traumatic brain injury (TBI) increases the onset of Parkinson's disease (PD) in later life by >50%. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are the major drivers of both TBI and PD pathologies. We presently evaluated if curtailing oxidative stress and ER stress concomitantly using a combination of apocynin and tert-butylhydroquinone and salubrinal during the acute stage after TBI in mice reduces the severity of late-onset PD-like pathology. The effect of multiple low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on post-TBI neurodegeneration was also evaluated. The combo therapy elevated the level of phosphorylation at serine 129 (pS129) of α-Syn in the pericontusional cortex of male mice at 72 h post-TBI. Motor and cognitive deficits induced by TBI lasted at least 3 months and the combo therapy curtailed these deficits in both sexes. At 3 months post-TBI, male mice given combo therapy exhibited significantly lesser α-Syn aggregates in the SN and higher TH+ cells in the SNpc, compared to vehicle control. However, the aggregate number was not significantly different between groups of female mice. Moreover, TBI-induced loss of TH+ cells was negligible in female mice irrespective of treatment. The MPTP treatment aggravated PD-like pathology in male mice but had a negligible effect on the loss of TH+ cells in female mice. Thus, the present study indicates that mitigation of TBI-induced oxidative stress and ER stress at the acute stage could potentially reduce the risk of post-TBI PD-like pathology at least in male mice, plausibly by elevating pS129-α-Syn level.


Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Feminino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Fosforilação/efeitos dos fármacos , Antioxidantes/farmacologia , Caracteres Sexuais , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Acetofenonas/administração & dosagem , Tioureia/análogos & derivados , Tioureia/farmacologia , Tioureia/uso terapêutico , Tioureia/administração & dosagem , Serina/metabolismo , Hidroquinonas/farmacologia , Hidroquinonas/administração & dosagem , Hidroquinonas/uso terapêutico , Quimioterapia Combinada , Estresse Oxidativo/efeitos dos fármacos
9.
Biomed Pharmacother ; 174: 116544, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599058

RESUMO

The current study was designed to investigate the potential of a synthetic therapeutic agent for better management of pain and inflammation, exhibiting minimal to non-existent ulcerogenic effects. The effect of 1-(2-chlorobenzoyl)-3-(2,3-dichlorophenyl) thiourea was assessed through model systems of nociception and anti-inflammatory activities in mice. In addition, the ulcerogenic potential was evaluated in rats using the NSAID-induced pyloric ligation model, followed by histopathological and biochemical analysis. The test was conducted on eight groups of albino rats, comprising of group I (normal saline), groups II and III (aspirin® at doses of 100 mg/kg and 150 mg/kg, respectively), groups IV and V (indomethacin at doses of 100 mg/kg and 150 mg/kg, respectively), and groups VI, VII, and VIII (lead-compound at 15 mg/kg, 30 mg/kg and 45 mg/kg doses, respectively). Furthermore, molecular docking analyses were performed to predict potential molecular target site interactions. The results showed that the lead-compound, administered at doses of 15, 30, and 45 mg/kg, yielded significant reductions in chemically and thermally induced nociceptive pain, aligning with the levels observed for aspirin® and tramadol. The compound also effectively suppressed inflammatory response in the carrageenan-induced paw edema model. As for the ulcerogenic effects, the compound groups displayed no considerable alterations compared to the aspirin® and indomethacin groups, which displayed substantial increases in ulcer scores, total acidity, free acidity, and gastric juice volume, and a decrease in gastric juice pH. In conclusion, these findings suggest that our test compound exhibits potent antinociceptive, anti-inflammatory properties and is devoid of ulcerogenic effects.


Assuntos
Inflamação , Simulação de Acoplamento Molecular , Nociceptividade , Úlcera Gástrica , Tioureia , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Úlcera Gástrica/tratamento farmacológico , Tioureia/análogos & derivados , Tioureia/farmacologia , Masculino , Nociceptividade/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/patologia , Ratos , Ratos Wistar , Analgésicos/farmacologia , Analgésicos/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Simulação por Computador , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Indometacina/farmacologia , Dor/tratamento farmacológico , Dor/induzido quimicamente , Dor/patologia , Anti-Inflamatórios/farmacologia
10.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611717

RESUMO

In the present work, the synthesis of new ethacrynic acid (EA) derivatives containing nitrogen heterocyclic, urea, or thiourea moieties via efficient and practical synthetic procedures was reported. The synthesised compounds were screened for their anti-proliferative activity against two different cancer cell lines, namely, HL60 (promyelocytic leukaemia) and HCT116 (human colon carcinoma). The results of the in vitro tests reveal that compounds 1-3, 10, 16(a-c), and 17 exhibit potent anti-proliferative activity against the HL60 cell line, with values of the percentage of cell viability ranging from 20 to 35% at 1 µM of the drug and IC50 values between 2.37 µM and 0.86 µM. Compounds 2 and 10 showed a very interesting anti-proliferative activity of 28 and 48% at 1 µM, respectively, against HCT116. Two PyTAP-based fluorescent EA analogues were also synthesised and tested, showing good anti-proliferative activity. A test on the drug-likeness properties in silico of all the synthetised compounds was performed in order to understand the mechanism of action of the most active compounds. A molecular docking study was conducted on two human proteins, namely, glutathione S-transferase P1-1 (pdb:2GSS) and caspase-3 (pdb:4AU8) as target enzymes. The docking results show that compounds 2 and 3 exhibit significant binding modes with these enzymes. This finding provides a potential strategy towards developing anticancer agents, and most of the synthesised and newly designed compounds show good drug-like properties.


Assuntos
Antineoplásicos , Ureia , Humanos , Tioureia/farmacologia , Ácido Etacrínico , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Células HL-60 , Nitrogênio
11.
Mol Metab ; 83: 101921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527647

RESUMO

Identification of new mechanisms mediating insulin sensitivity is important to allow validation of corresponding therapeutic targets. In this study, we first used a cellular model of skeletal muscle cell iron overload and found that endoplasmic reticulum (ER) stress and insulin resistance occurred after iron treatment. Insulin sensitivity was assessed using cells engineered to express an Akt biosensor, based on nuclear FoxO localization, as well as western blotting for insulin signaling proteins. Use of salubrinal to elevate eIF2α phosphorylation and promote the unfolded protein response (UPR) attenuated iron-induced insulin resistance. Salubrinal induced autophagy flux and its beneficial effects on insulin sensitivity were not observed in autophagy-deficient cells generated by overexpressing a dominant-negative ATG5 mutant or via knockout of ATG7. This indicated the beneficial effect of salubrinal-induced UPR activation was autophagy-dependent. We translated these observations to an animal model of systemic iron overload-induced skeletal muscle insulin resistance where administration of salubrinal as pretreatment promoted eIF2α phosphorylation, enhanced autophagic flux in skeletal muscle and improved insulin responsiveness. Together, our results show that salubrinal elicited an eIF2α-autophagy axis leading to improved skeletal muscle insulin sensitivity both in vitro and in mice.


Assuntos
Autofagia , Cinamatos , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Resistência à Insulina , Tioureia , Tioureia/análogos & derivados , Resposta a Proteínas não Dobradas , Animais , Tioureia/farmacologia , Cinamatos/farmacologia , Autofagia/efeitos dos fármacos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fosforilação , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Salicilatos/farmacologia , Camundongos Endogâmicos C57BL , Ferro/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sobrecarga de Ferro/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Drug Dev Res ; 85(1): e22143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349267

RESUMO

The effectiveness of a new series of thiopyrimidine and thiourea containing sulfonamides moieties was tested on HCT-116, MCF-7, HepG2, and A549. HepG2 cell line was the one that all the new derivatives affected the most. The greatest potent compounds against the four HepG2, HCT116, MCF-7, and A549 cell lines were 8f and 8g with IC50 = 4.13, 6.64, 5.74, 6.85 µM and 4.09, 4.36, 4.22, 7.25 µM correspondingly. Compound 8g exhibited higher activity than sorafenib against HCT116 and MCF-7 but exhibited lower activity against HepG2 and A549. Moreover, compounds 8f and 8g exhibited higher activities than erlotinib on HepG2, HCT116, and MCF-7 but demonstrated lower activity on A549. The most potent cytotoxic derivatives 6f, 6g, 8c, 8d, 8e, 8f, and 8g were examined on normal VERO cell lines. Our derivatives have low toxicity on VERO cells with IC50 values ranging from 32.05 to 53.15 µM. Additionally, all compounds were assessed for dual VEGFR-2 and EGFRT790M inhibition effects. Compounds 8f and 8g were the most potent derivatives inhibited VEGFR-2 at IC50 value of 0.88 and 0.90 µM, correspondingly. As well, derivatives 8f and 8g could inhibit EGFRT790M demonstrating strongest effects with IC50 = 0.32 and 0.33 µM sequentially. Additionally, the greatest active derivatives ADMET profile was evaluated in relationship with sorafenib and erlotinib as reference agents. The data attained from docking were greatly related to that achieved from the biological testing.


Assuntos
Neoplasias Pulmonares , Tioureia , Chlorocebus aethiops , Animais , Tioureia/farmacologia , Receptores ErbB , Cloridrato de Erlotinib , Sorafenibe , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células Vero , Mutação , Inibidores de Proteínas Quinases/farmacologia , Sulfanilamida
13.
J Physiol Biochem ; 80(2): 337-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336929

RESUMO

Inositol-requiring enzyme-1 (IRE1) is the master regulator of the unfolded protein response pathway, associated with the endoplasmic reticulum (ER) in sensing and regulating cell stress. The activity of IRE1 is highly explored and well-characterized in cancer and other cells. However, the IRE1 molecular mechanism in chondrocytes is poorly understood. The present study explored the effect of IRE1 on chondrocytes regarding its chondrogenic gene expression and its correlation with different cellular pathways and cell behavior. Chondrocytes transfected with the cDNA of IRE1 reduced the expression of type II collagen, disrupting chondrocyte differentiation as confirmed by western blotting and immunofluorescence. Upon siRNA treatment, the influence of IRE1 on chondrocyte differentiation is restored by reviving the normal expression of type II collagen. Different molecular pathways were explored to investigate the role of IRE1 in causing chondrocyte dedifferentiation. However, we found no significant correlation, as IRE1 induces dedifferentiation through independent pathways. In response to various endoplasmic reticulum (ER) agonists (2-deoxy-D-glucose), and ER stress antagonists (tauroursodeoxycholic acid and salubrinal), IRE1 overexpression did not affect GRP78/94, as implicated in the pathogenesis of ER stress. Moreover, when IRE1 overexpression was correlated with the inflammation pathway, nuclear factor-kappa B (NFκB), IRE1 substantially increased the expression of p50 while decreasing the expression of nuclear factor kappa light polypeptide alpha (IκBα). These results suggest that IRE1 induces dedifferentiation in chondrocytes by modulating inflammatory pathways that cause dedifferentiation by disrupting type II collagen expression.


Assuntos
Desdiferenciação Celular , Condrócitos , Colágeno Tipo II , Estresse do Retículo Endoplasmático , Endorribonucleases , Complexos Multienzimáticos , NF-kappa B , Proteínas Serina-Treonina Quinases , Tioureia/análogos & derivados , Condrócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , NF-kappa B/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Cinamatos/farmacologia , Tioureia/farmacologia , Células Cultivadas , Transdução de Sinais , Chaperona BiP do Retículo Endoplasmático
14.
Arch Pharm (Weinheim) ; 357(5): e2300557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321839

RESUMO

A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 µM (AChE), 0.043 ± 0.004 µM (BChE), 0.353 ± 0.01 µM (MAO-A), and 0.716 ± 0.02 µM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/metabolismo , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Tioureia/farmacologia , Tioureia/química , Tioureia/síntese química , Relação Dose-Resposta a Droga , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química
15.
Future Med Chem ; 16(6): 497-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38372209

RESUMO

Background: Unsymmetrical thioureas 1-20 were synthesized and then characterized by various spectroscopy techniques such as UV, IR, fast atom bombardment (FAB)-MS, high-resolution FAB-MS, 1H-NMR and 13C-NMR. Methods: Synthetic compounds 1-20 were tested for their ability for antioxidant, lipoxygenase and xanthine oxidase activities. Results: Compounds 1, 2, 9, 12 and 15 exhibited strong antioxidant potential, whereas compounds 1-3, 9, 12, 15 and 19 showed good to moderate lipoxygenase activity. Ten compounds demonstrated moderate xanthine oxidase inhibition. Conclusion: Compound 15 displayed the highest potency among the series, exhibiting good antioxidant, lipoxygenase and xanthine oxidase activities. Theoretical calculations using density functional theory and molecular docking studies supported the experimental findings, indicating the potential of the synthesized compounds as potent antioxidants, lipoxygenases and xanthine oxidase agents.


Assuntos
Antioxidantes , Lipoxigenase , Antioxidantes/química , Simulação de Acoplamento Molecular , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Tioureia/farmacologia , Tioureia/química , Relação Estrutura-Atividade
16.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368975

RESUMO

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Assuntos
Amantadina , Tioureia , Humanos , Tioureia/farmacologia , Tioureia/química , Células HEK293 , Simulação de Acoplamento Molecular , Amantadina/farmacologia , DNA/química , Elastase Pancreática
17.
Am J Physiol Cell Physiol ; 326(3): C905-C916, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223930

RESUMO

We studied urea, thiourea, and methylurea transport and interaction in human red blood cells (RBCs) under conditions of self-exchange (SE), net efflux (NE), and net influx (NI) at pH 7.2. We combined four methods, a four-centrifuge technique, the Millipore-Swinnex filtering technique, the continuous flow tube method, and a continuous pump method to measure the transport of the 14C-labeled compounds. Under SE conditions, both urea and thiourea show perfect Michaelis-Menten kinetics with half-saturation constants, K½,SE (mM), of ≈300 (urea) and ≈20 (thiourea). The solutes show no concentration-dependent saturation under NE conditions. Under NI conditions, transport displays saturation or self-inhibition kinetics with a K½,NI (mM) of ≈210 (urea) and ≈20 (thiourea). Urea, thiourea, and methylurea are competitive inhibitors of the transport of analog solutes. This study supports the hypothesis that the three compounds share the same urea transport system (UT-B). UT-B functions asymmetrically as it saturates from the outside only under SE and NI conditions, whereas it functions as a high-capacity channel-like transporter under NE conditions. When the red blood cell enters the urea-rich kidney tissue, self-inhibition reduces the urea uptake in the cell. When the cell leaves the kidney, the channel-like function of UT-B implies that intracellular urea rapidly equilibrates with external urea. The net result is that the cell during the passage in the kidney capillaries carries urea to the kidney to be excreted while the urea transfer from the kidney via the bloodstream is minimized.NEW & NOTEWORTHY The kinetics of urea transport in red blood cells was determined by means of a combination of four methods that ensures a high time resolution. In the present study, we disclose that the urea transporter UT-B functions highly asymmetric being channel-like with no saturation under conditions of net efflux and saturable under conditions of net influx and self-exchange in the concentration range 1-1,000 mM (pH 7.2 and 25-38 °C).


Assuntos
Compostos de Metilureia , Transportadores de Ureia , Ureia , Humanos , Tioureia/farmacologia , Eritrócitos
18.
Plant Physiol Biochem ; 207: 108320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183901

RESUMO

Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.


Assuntos
Antioxidantes , Nitrogênio , Antioxidantes/metabolismo , Glycine max , Desidratação , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Tioureia/farmacologia , Peróxido de Hidrogênio/metabolismo , Clorofila/metabolismo , Plantas/metabolismo , Prolina/metabolismo
19.
J Biomol Struct Dyn ; 42(2): 1047-1063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029768

RESUMO

Angiogenesis is mediated by the vascular endothelial growth factor (VEGF) that plays a key role in the modulation of progression, invasion and metastasis, related to solid tumors and hematological malignancies. Several small-molecule VEGFR-2 inhibitors are marketed, but their usage is restricted to specific cancers due to severe toxicities. Therefore, cost-effective novel small molecule VEGFR-2 inhibitors may be an alternative to overcome these adverse effects. Here, a set of thiourea-based VEGFR-2 inhibitors were considered for a combined fragment-based QSAR technique, structure-based molecular docking followed by molecular dynamics simulation studies to acquire insights into the key structural attributes and the binding pattern of enzyme-ligand interactions. Noticeably, amine-substituted quinazoline phenyl ring and a higher number of nitrogen atoms, and the hydrazide function in the molecular structure are crucial for VEGFR-2 inhibition whereas methoxy groups are detrimental to VEGFR-2 inhibition. The MD simulation study of sorafenib and thiourea derivatives explored the significance of urea and thiourea moiety binding at VEGFR-2 active site that can be utilized further in the future to design molecules for greater binding stability and better VEGFR-2 selectivity. Therefore, such findings can be beneficial for the development of newer VEGFR-2 inhibitors for further refinement to acquire better therapeutic efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular , Estrutura Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Tioureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Proliferação de Células
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 305-315, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436497

RESUMO

Inhibition of Helicobacter pylori urease is an effective method in the treatment of several gastrointestinal diseases in humans. This bacterium plays an important role in the pathogenesis of gastritis and peptic ulceration. Considering the presence of cysteine and N-arylacetamide derivatives in potent urease inhibitors, here, we designed hybrid derivatives of these pharmacophores. Therefore, cysteine-N-arylacetamide derivatives 5a-l were synthesized through simple nucleophilic reactions with good yield. In vitro urease inhibitory activity assay of these compounds demonstrated that all newly synthesized compounds exhibited high inhibitory activity (IC50 values = 0.35-5.83 µM) when compared with standard drugs (thiourea: IC50 = 21.1 ± 0.11 µM and hydroxyurea: IC50 = 100.0 ± 0.01 µM). Representatively, compound 5e with IC50 = 0.35 µM was 60 times more potent than strong urease inhibitor thiourea. Enzyme kinetic study of this compound revealed that compound 5e is a competitive urease inhibitor. Moreover, a docking study of compound 5e was performed to explore crucial interactions at the urease active site. This study revealed that compound 5e is capable to inhibit urease by interactions with two crucial residues at the active site: Ni and CME592. Furthermore, a molecular dynamics study confirmed the stability of the 5e-urease complex and Ni chelating properties of this compound. It should be considered that, in the following study, the focus was placed on jack bean urease instead of H. pylori urease, and this was acknowledged as a limitation.


Assuntos
Helicobacter pylori , Urease , Humanos , Urease/química , Urease/metabolismo , Cisteína/farmacologia , Simulação de Acoplamento Molecular , Helicobacter pylori/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tioureia/química , Tioureia/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA