Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Drug Deliv ; 29(1): 238-253, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35001784

RESUMO

Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROS) to kill cancer cells. However, the effectiveness of PDT is greatly reduced due to local hypoxia. Hypoxic activated chemotherapy combined with PDT is expected to be a novel strategy to enhance anti-cancer therapy. Herein, a novel liposome (LCT) incorporated with photosensitizer (PS) and bioreductive prodrugs was developed for PDT-activated chemotherapy. In the design, CyI, an iodinated cyanine dye, which could simultaneously generate enhanced ROS and heat than other commonly used cyanine dyes, was loaded into the lipid bilayer; while tirapazamine (TPZ), a hypoxia-activated prodrug was encapsulated in the hydrophilic nucleus. Upon appropriate near-infrared (NIR) irradiation, CyI could simultaneously produce ROS and heat for synergistic PDT and photothermal therapy (PTT), as well as provide fluorescence signals for precise real-time imaging. Meanwhile, the continuous consumption of oxygen would result in a hypoxia microenvironment, further activating TPZ free radicals for chemotherapy, which could induce DNA double-strand breakage and chromosome aberration. Moreover, the prepared LCT could stimulate acute immune response through PDT activation, leading to synergistic PDT/PTT/chemo/immunotherapy to kill cancer cells and reduce tumor metastasis. Both in vitro and in vivo results demonstrated improved anticancer efficacy of LCT compared with traditional PDT or chemotherapy. It is expected that these iodinated cyanine dyes-based liposomes will provide a powerful and versatile theranostic strategy for tumor target phototherapy and PDT-induced chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Hipóxia/patologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia/métodos , Tirapazamina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Tirapazamina/administração & dosagem , Tirapazamina/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Theranostics ; 11(20): 10001-10011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815800

RESUMO

Rationale: Glucose oxidase (GOx)-based biocatalytic nanoreactors can cut off the energy supply of tumors for starvation therapy and deoxygenation-activated chemotherapy. However, these nanoreactors, including mesoporous silica, calcium phosphate, metal-organic framework, or polymer nanocarriers, cannot completely block the reaction of GOx with glucose in the blood, inducing systemic toxicity from hydrogen peroxide (H2O2) and anoxia. The low enzyme loading capacity can reduce systemic toxicity but limits its therapeutic effect. Here, we describe a real 'ON/OFF' intelligent nanoreactor with a core-shell structure (GOx + tirazapamine (TPZ))/ZIF-8@ZIF-8 modified with the red cell membrane (GTZ@Z-RBM) for cargo delivery. Methods: GTZ@Z-RBM nanoparticles (NPs) were prepared by the co-precipitation and epitaxial growth process under mild conditions. The core-shell structure loaded with GOx and TPZ was characterized for hydrate particle size and surface charge. The GTZ@Z-RBM NPs morphology, drug, and GOx loading/releasing abilities, system toxicity, multimodal synergistic therapy, and tumor metastasis suppression were investigated. The in vitro and in vivo outcomes of GTZ@Z-RBM NPs were assessed in 4T1 breast cancer cells. Results: GTZ@Z-RBM NPs could spatially isolate the enzyme from glucose in a physiological environment, reducing systemic toxicity. The fabricated nanoreactor with high enzyme loading capacity and good biocompatibility could deliver GOx and TPZ to the tumors, thereby exhausting glucose, generating H2O2, and aggravating hypoxic microenvironment for starvation therapy, DNA damage, and deoxygenation-activated chemotherapy. Significantly, the synergistic therapy effectively suppressed the breast cancer metastasis in mice and prolonged life without systemic toxicity. The in vitro and in vivo results provided evidence that our biomimetic nanoreactor had a powerful synergistic cascade effect in treating breast cancer. Conclusion: GTZ@Z-RBM NPs can be used as an 'ON/OFF' intelligent nanoreactor to deliver GOx and TPZ for multimodal synergistic therapy and tumor metastasis suppression.


Assuntos
Glucose Oxidase/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Nanotecnologia/métodos , Animais , Biomimética , Linhagem Celular Tumoral , China , Terapia Combinada , Feminino , Glucose Oxidase/administração & dosagem , Concentração de Íons de Hidrogênio , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tirapazamina/administração & dosagem , Tirapazamina/farmacologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
J Mater Chem B ; 9(26): 5318-5328, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231629

RESUMO

For cancer treatment, the traditional monotherapy has the problems of low drug utilization rate, poor efficacy and easy recurrence of the cancer. Herein, nanoparticles (NPs) based on a novel semiconducting molecule (ITTC) are developed with excellent photostability, high photothermal conversion efficiency and good 1O2 generation ability. The chemotherapy of the hypoxia-activated prodrug tirapazamine (TPZ) was improved accordingly after oxygen consumption by the photodynamic therapy of ITTC NPs. Additionally, the metabolic process of ITTC NPs in vivo could be monitored in real time for fluorescence imaging guided phototherapy, which presented great passive targeting ability to the tumor site. Remarkably, both in vitro and in vivo experiments demonstrated that the combination of ITTC NPs and TPZ presented excellent synergistic tumor ablation through photothermal therapy, photodynamic therapy and hypoxia-activated chemotherapy with great potential for clinical applications in the future.


Assuntos
Antineoplásicos/farmacologia , Hipóxia/diagnóstico por imagem , Hipóxia/tratamento farmacológico , Nanopartículas/química , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Tirapazamina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Nanopartículas/administração & dosagem , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Semicondutores , Tirapazamina/administração & dosagem , Tirapazamina/química
4.
Nanotechnology ; 32(46)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34325415

RESUMO

The therapeutic effect of oxygen-concentration-dependent photodynamic therapy (PDT) can be diminished in the hypoxic environment of solid tumours, the effective solution to this problem is utilising hypoxic-activated bioreduction therapy (BRT). In this research, a biocompatible HA-C60/TPENH2nanogel which can specifically bind to CD44 receptor was developed for highly efficient PDT-BRT synergistic therapy. The nanogel was degradable in acidic microenvironments of tumours and facilitated the release of biological reduction prodrug tirapazamine (TPZ). Importantly, HA-C60/TPENH2nanogel produced reactive oxygen species and consumed oxygen content in the cell to activate TPZ, leading to higher cytotoxicity than the free TPZ did. The intracellular observation of nanogel indicated that the HA-C60/TPENH2nanogel was self-fluorescence for cell imaging. This study applied PDT-BRT to design smart HA-based nanogel with targeted delivery, pH response, and AIEgen feature for efficient cancer therapy.


Assuntos
Fulerenos/química , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Hipóxia/tratamento farmacológico , Nanogéis/química , Polietilenoglicóis/química , Polietilenoimina/química , Tirapazamina/administração & dosagem , Tirapazamina/química , Antineoplásicos/administração & dosagem , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Humanos , Hipóxia/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Pró-Fármacos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos
5.
J Mater Chem B ; 9(11): 2613-2622, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33683252

RESUMO

Photothermal therapy (PTT) based on semiconducting polymer nanoparticles (SPNs) is a promising strategy to treat solid tumors, but its ability to combine with chemotherapy for immune remodeling to efficiently suppress metastatic cancers has rarely been studied. Here, we demonstrate that PTT combined with chemotherapy can efficiently elicit immunity to suppress metastatic tumor growth. Specifically, we rationally designed a new SPN (PDPSe NPs) as a photothermal agent for PTT with a large mass extinction coefficient in the near-infrared region (e.g., 44.9 L g-1 cm-1 at 808 nm), high photothermal conversion efficiency (62.5%) and excellent biocompatibility. A hypoxia-activated anti-tumor drug, tirapazamine (TPZ), was selected for chemotherapy. Strikingly, the combination therapy not only induced tumor cell death in the primary tumor, but also effectively suppressed the growth of distant tumors (mimicking metastatic tumors) without PTT. Importantly, the combined therapies exhibit synergistic effects on immune remodeling. Immunofluorescence data suggest that the inhibition of metastatic tumor growth is attributed to the immune remodeling triggered by PTT and chemotherapy. This work demonstrates a new paradigm of utilizing PTT together with hypoxia-activated drugs to effectively retard metastatic tumor growth.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Terapia Fototérmica , Polímeros/farmacologia , Neoplasias Esplênicas/tratamento farmacológico , Tirapazamina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Feminino , Injeções Subcutâneas , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Camundongos , Polímeros/síntese química , Polímeros/química , Semicondutores , Neoplasias Esplênicas/imunologia , Neoplasias Esplênicas/secundário , Tirapazamina/administração & dosagem , Tirapazamina/química
6.
Theranostics ; 10(19): 8691-8704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754272

RESUMO

Rationale: Nanoscale vehicles responsive to abnormal variation in tumor environment are promising for use in targeted delivery of therapeutic drugs specifically to tumor sites. Herein, we report the design and fabrication of self-accelerating H2O2-responsive plasmonic gold nanovesicles (GVs) encapsulated with tirapazamine (TPZ) and glucose oxidase (GOx) for synergistic chemo/starving therapy of cancers. Methods: Gold nanoparticles were modified with H2O2-responsive amphiphilic block copolymer PEG45-b-PABE330 by ligand exchange. The TPZ and GOx loaded GVs (TG-GVs) were prepared through the self-assembly of PEG45-b-PABE330 -grafted nanoparticles together with TPZ and GOx by solvent displacement method. Results: In response to H2O2 in tumor, the TG-GVs dissociate to release the payloads that are, otherwise, retained inside the vesicles for days without noticeable leakage. The released GOx enzymes catalyze the oxidation of glucose by oxygen in the tumor tissue to enhance the degree of hypoxia that subsequently triggers the reduction of hypoxia-activated pro-drug TPZ into highly toxic free radicals. The H2O2 generated in the GOx-catalyzed reaction also accelerate the dissociation of vesicles and hence the release rate of the cargoes in tumors. The drug-loaded GVs exhibit superior tumor inhibition efficacy in 4T1 tumor-bearing mice owing to the synergistic effect of chemo/starvation therapy, in addition to their use as contrast agents for computed tomography imaging of tumors. Conclusion: This nanoplatform may find application in managing tumors deeply trapped in viscera or other important tissues that are not compatible with external stimulus (e.g. light).


Assuntos
Neoplasias da Mama/tratamento farmacológico , Glucose Oxidase/administração & dosagem , Ouro/química , Peróxido de Hidrogênio/metabolismo , Tirapazamina/administração & dosagem , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Humanos , Nanopartículas Metálicas , Camundongos , Tirapazamina/química , Tirapazamina/farmacologia , Tomografia Computadorizada por Raios X , Hipóxia Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Theranostics ; 10(17): 7671-7682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685012

RESUMO

Abnormal tumor microenvironment, such as hypoxia, interstitial hypertension and low pH, leads to unexpected resistance for current tumor treatment. The development of versatile drug delivery systems which present responsive characteristics to tumor microenvironment (TME) has been extensively carried out, but remains challenging. In this study, zeolitic imidazolate framework-8 (ZIF-8) coated ZnS nanoparticles have been designed and prepared for co-delivery of ICG/TPZ molecules, denoted as ZSZIT, for H2S-amplified synergistic therapy. Methods: The ZSZ nanoparticles were characterized using SEM, TEM and XRD. The in vitro viabilities of cancer cells cultured with ZSZIT under normoxia/hypoxia conditions were evaluated by cell counting kit-8 (CCK-8) assay. In addition, in vivo anti-tumor effect was also performed using male Balb/c nude mice as animal model. Results: ZSZIT shows cascade PDT and hypoxia-activated chemotherapeutic effect under an 808nm NIR irradiation. Meanwhile, ZSZIT degrades under tumor acidic environment, and H2S produced by ZnS cores could inhibit the expression of catalase, which subsequently favors the hypoxia and antitumor effect of TPZ drug. Both in vitro and in vivo studies demonstrate the H2S-sensitized synergistic antitumor effect based on cascade PDT/chemotherapy. Conclusion: This cascade H2S-sensitized synergistic nanoplatform has enabled more effective and lasting anticancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Composição de Medicamentos/métodos , Sinergismo Farmacológico , Humanos , Sulfeto de Hidrogênio/química , Verde de Indocianina/administração & dosagem , Masculino , Estruturas Metalorgânicas/química , Camundongos , Neoplasias/patologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Tirapazamina/administração & dosagem , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Zeolitas/química
8.
Biomater Sci ; 8(11): 3116-3129, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32352102

RESUMO

To enhance the specificity and efficiency of anti-tumor therapies, we have designed a multifunctional nanoparticle platform for photochemotherapy using fluorescence (FL) and photoacoustic (PA) imaging guidance. Nanoparticles (NPs) composed of a eutectic mixture of natural fatty acids that undergo a solid-liquid phase transition at 39 °C were used to encapsulate materials for the rapid and uniform release of the hypoxia-activated prodrug tirapazamine (TPZ) and the photosensitizer IR780, which targets the mitochondria of tumor cells and can be used to induce hypoxic cell death via photodynamic therapy and photothermal therapy. In vitro, the NPs containing TPZ and IR7890 exhibited appreciable cell uptake and triggered drug release when irradiated with a NIR laser. In vivo, photochemotherapy of the NPs achieved the best anti-tumor efficacy under PA and FL imaging guidance and monitoring. By combining IR780 mitochondria-targeting phototherapy with TPZ, we observed improved anti-tumor effectiveness and this has the potential to reduce the side effects of traditional chemotherapy. Herein, we demonstrate a new intracellular photochemotherapy nanosystem that co-encapsulates photosensitizers and hypoxia-activated drugs to enhance the overall anti-tumor effect precisely and efficiently.


Assuntos
Antineoplásicos/administração & dosagem , Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Pró-Fármacos/administração & dosagem , Tirapazamina/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Indóis/química , Indóis/efeitos da radiação , Lasers , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/efeitos da radiação , Neoplasias/metabolismo , Neoplasias/patologia , Imagem Óptica , Técnicas Fotoacústicas , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Pró-Fármacos/química , Pró-Fármacos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Tirapazamina/química , Tirapazamina/efeitos da radiação
9.
Biomater Sci ; 8(9): 2420-2433, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32236169

RESUMO

In the present work, a copper-tirapazamine (TPZ) nanocomplex [Cu(TPZ)2] was synthesized for selective hypoxia-targeted therapy. The nanocomplex revealed a crystalline form, and exhibited higher lipophilicity, compared to TPZ. Furthermore, its stability was confirmed in different media, with minimum dissociation in serum (∼20% up to 72 h). In contrast to other hypoxia-targeted agents, our intrinsically fluorescent nanocomplex offered an invaluable tool to monitor its cellular uptake and intracellular distribution under both normoxia and hypoxia. The conferred higher cellular uptake of the nanocomplex, especially under hypoxia, and its biocompatible reductive potential resulted in superior hypoxia selectivity in two prostate cancer (PC) cell lines. More promisingly, the nanocomplex showed higher potency in three-dimensional tumor spheroids, compared to TPZ, due to its slower metabolism, and probably deeper penetration in tumor spheroids. Interestingly, the nuclear localization of the intact nanocomplex, combined with its higher DNA binding affinity, as evidenced by the DNA binding assay, resulted in significant S-phase cell-cycle arrest, followed by apoptosis in the three-dimensional spheroid model. In conclusion, the presented findings suggested that the Cu(TPZ)2 nanocomplex can be a promising hypoxia-targeted therapeutic, which could potentiate the efficacy of the existing chemo- and radiotherapy in PC.


Assuntos
Antineoplásicos/administração & dosagem , Cobre/administração & dosagem , Hipóxia , Nanopartículas/administração & dosagem , Neoplasias da Próstata/terapia , Radiossensibilizantes/administração & dosagem , Tirapazamina/administração & dosagem , Transporte Biológico , DNA/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
10.
Int J Radiat Biol ; 95(12): 1708-1717, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545117

RESUMO

Purpose: To evaluate the usefulness of combined treatment with both continuous administration of a hypoxic cytotoxin, tirapazamine (TPZ) and mild temperature hyperthermia (MTH) in boron neutron capture therapy (BNCT) in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells.Materials and methods: B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumors received reactor thermal neutron beam irradiation following the administration of a 10B-carrier (L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)) after single intraperitoneal injection of an acute hypoxia-releasing agent (nicotinamide), MTH (40 °C for 60 min), and 24-h continuous subcutaneous infusion of TPZ or combined treatment with both TPZ and MTH. Immediately after irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (=P + Q) tumor cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated.Results: BPA-BNCT increased the sensitivity of the total tumor cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B-carrier, combination with continuously administered TPZ with or without MTH enhanced the sensitivity of the both total and Q cells, especially Q cells. Even without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with combined treatment with both TPZ and MTH as well as nicotinamide treatment, showed the potential to reduce the number more than BSH-BNCT.Conclusion: BSH-BNCT combined with TPZ with or without MTH improved local tumor control, while BPA-BNCT in combination with both TPZ and MTH as well as nicotinamide is thought to reduce the number of lung metastases. It was elucidated that control of the chronic hypoxia-rich Q cell population in the primary solid tumor has the potential to impact the control of local tumors as a whole and that control of the acute hypoxia-rich total tumor cell population in the primary solid tumor has the potential to impact the control of lung metastases.


Assuntos
Terapia por Captura de Nêutron de Boro , Hipertermia Induzida , Neoplasias Pulmonares/secundário , Melanoma/patologia , Tirapazamina/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Camundongos , Tirapazamina/administração & dosagem , Tirapazamina/uso terapêutico , Resultado do Tratamento
11.
Nat Commun ; 10(1): 1580, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952842

RESUMO

Hypoxia-based agents (HBAs), such as anaerobic bacteria and bioreductive prodrugs, require both a permeable and hypoxic intratumoural environment to be fully effective. To solve this problem, herein, we report that perfluorocarbon nanoparticles (PNPs) can be used to create a long-lasting, penetrable and hypoxic tumour microenvironment for ensuring both the delivery and activation of subsequently administered HBAs. In addition to the increased permeability and enhanced hypoxia caused by the PNPs, the PNPs can be retained to further achieve the long-term inhibition of intratumoural O2 reperfusion while enhancing HBA accumulation for over 24 h. Therefore, perfluorocarbon materials may have great potential for reigniting clinical research on hypoxia-based drugs.


Assuntos
Antineoplásicos/administração & dosagem , Fluorocarbonos/farmacologia , Pró-Fármacos/administração & dosagem , Tirapazamina/administração & dosagem , Microambiente Tumoral , Animais , Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Fluorocarbonos/química , Camundongos , Nanopartículas/química , Pró-Fármacos/farmacologia , Tirapazamina/farmacologia , Hipóxia Tumoral
12.
Biomaterials ; 185: 301-309, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30265899

RESUMO

Hypoxia tumor microenvironment is a major challenge for photodynamical therapy (PDT), and hypoxia-activated chemotherapy combined PDT could be promising for enhanced anticancer therapy. In this study, we report an innovative 2-nitroimidazole derivative conjugated polyethylene glycol (PEG) amphoteric polymer theranostic liposome encapsulated a photosensitizer Chlorin e6 (Ce6), hypoxia-activated prodrug Tirapazamine (TPZ) and gene probe for synergistic photodynamic-chemotherapy. Ce6-mediated PDT upon irradiation with a laser induces hypoxia, which leads to the disassembly of the liposome and activates the antitumor activity of TPZ for improved cancer cell-killing. The released co-delivered gene probe could effectively detect the oncogenic intracellular biomarker for diagnosis. Both in vitro and in vivo studies demonstrated the greatly improved anti-cancer activity compared to conventional PDT. This work contributes to the design of hypoxia-responsive multifunctional liposome for tumor diagnosis and hypoxia-activated chemotherapy combined PDT for synergetic therapy, which holds great promise for future cancer therapy.


Assuntos
Lipossomos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nitroimidazóis/química , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Tirapazamina/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Clorofilídeos , Preparações de Ação Retardada/química , Humanos , Luz , Células MCF-7 , Camundongos , Imagem Óptica , Fármacos Fotossensibilizantes/uso terapêutico , Polietilenoglicóis/química , Porfirinas/uso terapêutico , Nanomedicina Teranóstica , Tirapazamina/uso terapêutico , Hipóxia Tumoral/efeitos dos fármacos
13.
J Control Release ; 275: 192-200, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29474964

RESUMO

The hypoxic microenvironment induced by sonodynamic therapy (SDT) via sonochemical oxygen consumption usually triggered tumor resistance to SDT, impeding therapeutic efficacy. In this sense, it was highly desired to tackle the hypoxia-related negative issues. Here we provide the therapeutic agents delivery system, TPZ/HMTNPs-SNO, which was constructed by loading tirapazamine (TPZ) into hollow mesoporous titanium dioxide nanoparticles (HMTNPs) with modification of S-nitrosothiol (R-SNO). Upon encountering ultrasound waves, the HMTNPs as sonosensitizers would generate reactive oxygen species (ROS) for SDT. In a sequential manner, the followed SDT-induced hypoxia further activated the "hypoxic cytotoxin", TPZ, for hypoxia-specific killing effect. Meanwhile, the generated ROS could sensitize -SNO groups for on-demand nitric oxide (NO) release in an "anticancer therapeutic window", resulting in the NO sensitized SDT effect. This study confirmed that the TPZ/HMTNPs-SNO with multi-mechanisms exploited the merits of synergistic combination of the three therapeutic modes, consequently potentiating the anticancer efficacy of SDT. Moreover, the echogenic property of NO made the nanoplatform as an ultrasound contrast agent to enhance ultrasound imaging. In this sense, we developed a sequential strategy for ultrasound mediated all-in-one nanotheranostic platform of TPZ/HMTNPs-SNO, which highlighted new possibilities of advancing cancer theranostics in biomedical fields.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , S-Nitrosotióis/administração & dosagem , Tirapazamina/administração & dosagem , Titânio/administração & dosagem , Animais , Humanos , Hipóxia , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Nanomedicina Teranóstica , Carga Tumoral/efeitos dos fármacos , Ultrassonografia
14.
ACS Nano ; 11(2): 2227-2238, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28165223

RESUMO

Poor tumor penetration is a major challenge for the use of nanoparticles in anticancer therapy. Moreover, the inability to reach hypoxic tumor cells that are distant from blood vessels results in inadequate exposure to antitumor therapeutics and contributes to development of chemoresistance and increased metastasis. In the present study, we developed iRGD-modified nanoparticles for simultaneous tumor delivery of a photosensitizer indocyanine green (ICG) and hypoxia-activated prodrug tirapazamine (TPZ). The iRGD-modified nanoparticles loaded with ICG and TPZ showed significantly improved penetration in both 3D tumor spheroids in vitro and orthotopic breast tumors in vivo. ICG-mediated photodynamic therapy upon irradiation with a near-IR laser induced hypoxia, which activated antitumor activity of the codelivered TPZ for synergistic cell-killing effect. In vivo studies demonstrated that the nanoparticles could efficiently deliver the drug combination in 4T1 orthotopic tumors. Primary tumor growth and metastasis were effectively inhibited by the iRGD-modified combination nanoparticles with minimal side effects. The results also showed the anticancer benefits of codelivering ICG and TPZ in a single nanoparticle formulation in contrast to a mixture of nanoparticles containing individual drugs. The study demonstrates the benefits of combining tumor-penetrating nanoparticles with hypoxia-activated drug treatment and establishes a delivery platform for PDT and hypoxia-activated chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Hipóxia/tratamento farmacológico , Verde de Indocianina/farmacologia , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Injeções Intravenosas , Camundongos , Estrutura Molecular , Nanopartículas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Tirapazamina/administração & dosagem , Tirapazamina/química , Tirapazamina/farmacologia , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA