Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2321565121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739796

RESUMO

With a continuous increase in world population and food production, chemical pesticide use is growing accordingly, yet unsustainably. As chemical pesticides are harmful to the environment and developmental resistance in pests is increasing, a sustainable and effective pesticide alternative is needed. Inspired by nature, we mimic one defense strategy of plants, glandular trichomes, to shift away from using chemical pesticides by moving toward a physical immobilization strategy via adhesive particles. Through controlled oxidation of a biobased starting material, triglyceride oils, an adhesive material is created while monitoring the reactive intermediates. After being milled into particles, nanoindentation shows these particles to be adhesive even at low contact forces. A suspension of particles is then sprayed and found to be effective at immobilizing a target pest, thrips, Frankliniella occidentalis. Small arthropod pests, like thrips, can cause crop damage through virus transfer, which is prevented by their immobilization. We show that through a scalable fabrication process, biosourced materials can be used to create an effective, sustainable physical pesticide.


Assuntos
Adesivos , Adesivos/química , Animais , Tisanópteros/fisiologia , Praguicidas/química , Praguicidas/farmacologia , Tricomas/metabolismo
2.
Environ Entomol ; 53(3): 326-337, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717091

RESUMO

It is essential to correctly identify and keep track of the abundance of thrips species on infested host crops to understand their population dynamics and implement control measures promptly. The current study was conducted to evaluate the performance of sticky traps in monitoring thrips species in exporters' eggplant and chili farms and to assess the impact of weather factors on thrips population dynamics. Thrips species were monitored using blue, yellow, and white sticky traps on chili and eggplant farms in Tuba, respectively, in 2020 and 2021. Each field was divided into 8 blocks, and in each replicate, all colors representing 3 treatments were randomly tied to stakes at the center of the respective crop. Data loggers were installed to record hourly weather variables. Three thrips species [Thrips parvispinus Karny (Thysanoptera: Thripidae), Franklinella schultzei Trybom (Thysanoptera: Thripidae), and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] were identified from both farms and the different species showed varied attractiveness to trap color for both seasons, with white proving more attractive to T. parvispinus. The population dynamics of the species varied significantly with the season and weather but not with the crop. Optimum temperatures (28-31 °C) and relative humidity (60%-78%) showed a positive linear relationship between the trapped insects with temperature and RH, while extreme temperatures (35 °C) negatively affected their abundance. All sticky trap colors attracted several nontarget organisms; however, yellow colors had higher populations, including the predator, Orius insidiosus. White sticky traps are recommended for inclusion in the country-wide monitoring for thrips, especially T. parvispinus.


Assuntos
Cor , Controle de Insetos , Dinâmica Populacional , Solanum melongena , Tisanópteros , Tempo (Meteorologia) , Animais , Tisanópteros/fisiologia , Gana , Capsicum , Estações do Ano , Produtos Agrícolas
3.
Exp Appl Acarol ; 93(1): 99-114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722436

RESUMO

The immature development and reproduction of the predatory mites Amblyseius largoensis (Muma), Proprioseiopsis lenis (Corpuz and Rimando), and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) were investigated using both thrips eggs and first instars of the western flower thrips, Frankliniella occidentalis Pergande, as prey in a controlled laboratory environment at 25 °C and 60% relative humidity. When provided with thrips eggs as food, A. largoensis exhibited a notably shorter immature development period for both males (7.05 days) and females (6.51 days) as compared with A. swirskii (8.05 and 7.19 days, respectively) and P. lenis (8.10 days and 7.05 days, respectively). Amblyseius largoensis also displayed a higher oviposition rate (2.19 eggs/female/day) than A. swirskii and P. lenis (1.79 and 1.78 eggs/female/day, respectively). Moreover, it exhibited the highest fecundity (25.34 eggs/female), followed by P. lenis (24.23 eggs/female) and A. swirskii (22.86 eggs/female). These variations led to A. largoensis having the highest intrinsic rate of increase (rm) at 0.209, followed by A. swirskii at 0.188, and P. lenis at 0.165. However, when the predatory mites were provided with first instars of F. occidentalis, A. swirskii demonstrated a faster immature development period for both males (7.67 days) and females (7.59 days) as compared with P. lenis (9.00 days and 7.86 days, respectively) and A. largoensis (8.47 days and 8.61 days, respectively). While the oviposition rates of P. lenis (1.92 eggs/female/day) and A. swirskii (1.90 eggs/female/day) were similar when feeding on this prey, A. largoensis produced fewer eggs (1.83 eggs/female/day). Further, A. swirskii exhibited the highest fecundity (31.93 eggs/female), followed by A. largoensis (25.71 eggs/female) and P. lenis (23 eggs/female). Consequently, the intrinsic rate of increase (rm) on thrips first instars was highest in A. swirskii (0.190), followed by A. largoensis (0.186), and P. lenis (0.176). In summary, our findings indicate that in terms of life history parameters A. largoensis performs optimally when feeding on thrips eggs, whereas A. swirskii performs best when preying on the mobile first instars of the thrips. These insights into the dietary preferences and reproductive capabilities of the studied predatory mite species have important implications for their potential use as biological control agents against F. occidentalis in agricultural settings.


Assuntos
Larva , Ácaros , Oviposição , Comportamento Predatório , Tisanópteros , Animais , Feminino , Masculino , Ácaros/fisiologia , Ácaros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Tisanópteros/fisiologia , Tisanópteros/crescimento & desenvolvimento , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Fertilidade
4.
Phytochemistry ; 220: 114014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354875

RESUMO

Past research has characterized the induction of plant defenses in response to chewing insect damage. However, little is known about plant responses to piercing-sucking insects that feed on plant cell-contents like thrips (Caliothrips phaseoli). In this study, we used NMR spectroscopy to measure metabolite changes in response to six days of thrips damage from two field-grown soybean cultivars (cv.), known for their different susceptibility to Caliothrips phaseoli. We observed that thrips damage reduces sucrose concentration in both cultivars, while pinitol, the most abundant leaf soluble carbohydrate, is induced in cv. Charata but not in cv. Williams. Thrips did not show preference for leaves where sucrose or pinitol were externally added, at tested concentration. In addition, we also noted that cv. Charata was less naturally colonized and contained higher levels of trigonelline, tyrosine as well as several compounds that we have not yet identified. We have established that preference-feeding clues are not dependent on the plants major soluble carbohydrates but may depend on other types of compounds or leaf physical characteristics.


Assuntos
Inositol/análogos & derivados , Tisanópteros , Animais , Tisanópteros/fisiologia , Glycine max , Insetos/fisiologia , Produtos Agrícolas , Sacarose
5.
Sci Rep ; 14(1): 2255, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355700

RESUMO

Development of advanced pest control methods that do not rely on insecticides is an important issue for sustainable agriculture. Particularly with regards to micro pests that are not only highly resistant to various insecticides but also because we are running out of options for which insecticide to use against them, resulting in enormous economic damage worldwide. Here we report that the effectiveness of the conventional insect net can be greatly advanced by changing their color to red that helps significantly reduce pesticide use. We demonstrate the red effect using Onion thrips, Thrips tabaci a main vector of Iris Yellow Spot Virus (IYSV) and Tomato Spotted Wilt Virus (TSWV) that cause serious damage to various vegetables. New red nets succeeded in suppressing the invasion rates and damages (white spots on the leaves) in a Welsh onion greenhouse with minimum use of pesticides. We discuss how red nets are compatible with labor-saving, sustainable agriculture and the future potential of "optical pest control" based on insect color vision and its behavioral response.


Assuntos
Inseticidas , Tisanópteros , Animais , Doenças das Plantas/prevenção & controle , Insetos Vetores , Insetos/fisiologia , Tisanópteros/fisiologia , Agricultura , Cebolas/fisiologia
6.
Pest Manag Sci ; 80(6): 2619-2625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294174

RESUMO

BACKGROUND: Biological control with predatory mites is applied against pests in greenhouse crops. Chemical control with the use of selective, reduced-risk pesticides, is an important component of Integrated Pest Management (IPM) programs, that often needs to be combined with biological control. Here, we evaluated the effect of plant pollen when used as supplementary food on the survival, reproduction and predation of the predatory mite Amblydromalus limonicus (Acari: Phytoseiidae) after exposing young larvae and adults to flonicamid, an insecticide of moderate toxicity to phytoseiids. Pollen is an important alternative food for generalist phytoseiids ensuring survival and supporting populations build-up during periods of prey scarcity. Two regimes of cattail (Typha angustifolia L.) pollen differing in application frequency were used. In the first, the total amount of pollen was supplied once, within 30 min after insecticide application, whereas in the second regime, the same amount of pollen was supplied gradually, i.e., every 48 h. RESULTS: Regardless of the frequency of application, pollen provisioning results in a reduction in prey (thrips) consumption relative to the control (no pollen provisioning). Nevertheless, when adult mites were directly exposed to flonicamid residues, pollen provisioning attenuated the reduction in prey consumption as compared to the control. In addition, the gradual (every 48 h) provisioning of pollen to adult predators exposed to flonicamid residues impacted positively the intrinsic rate of population increase (rm) of A. limonicus as compared to when feeding on prey. CONCLUSION: Our results reveal an unexpected role of pollen provisioning in alleviating pesticides side-effects on phytoseiids. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Larva , Ácaros , Niacinamida/análogos & derivados , Controle Biológico de Vetores , Pólen , Comportamento Predatório , Typhaceae , Animais , Ácaros/efeitos dos fármacos , Ácaros/fisiologia , Comportamento Predatório/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Inseticidas/toxicidade , Tisanópteros/fisiologia , Tisanópteros/efeitos dos fármacos
7.
J Econ Entomol ; 117(1): 311-322, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181509

RESUMO

Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is an agricultural pest threatening various horticultural crops worldwide. Inducing plant resistance is an ecologically beneficial and potentially effective method for controlling F. occidentalis. As an essential nutrient element, exogenous calcium enhances plant-induced resistance. This study investigated the effects of CaCl2 on the secondary metabolites of kidney bean plants and detoxifying and digestive enzymes in F. occidentalis. We found that treatment of plants and treatment time and also the interactions of the 2 factors significantly affected secondary metabolites contents (tannin, flavonoids, total phenol, alkaloid, and lignin) of kidney bean leaves, which indicated that that the effect of treatment of plants on secondary metabolites varied with treatment time. Moreover, when thrips fed on CaCl2-treated plants, the activities of detoxifying enzymes, enzymes glutathione S-transferase and cytochrome P450 substantially increased compared to those in which thrips fed on control plants. However, the activity of carboxylesterase significantly decreased. The detoxifying enzyme genes CL992.contig6, CYP4PN1, and CYP4PJ2 were significantly upregulated at 24 and 48 h. The activities of digestive enzymes (α-amylase, chymotrypsin, and lipase) increased substantially in F. occidentalis. The digestive enzyme gene, FoAMY-1, was significantly upregulated at 24 and 48 h after treatment. The pupation rate and pupal weight of F. occidentalis were significantly reduced. The results indicated that exogenous CaCl2-induced metabolic changes in kidney bean plants and altered the enzymatic activity and development of F. occidentalis that fed upon them.


Assuntos
Phaseolus , Tisanópteros , Animais , Tisanópteros/fisiologia , Cálcio/farmacologia , Cloreto de Cálcio/farmacologia , Produtos Agrícolas
8.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833941

RESUMO

The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than on TSWV non-infected plants. These findings provide in-depth information about the physiological mechanisms responsible for the virus's benefits to its vector by virus infection of plant regulating alkaloid accumulation in the plant.


Assuntos
Alcaloides , Datura stramonium , Vírus de Plantas , Vírus de RNA , Solanum lycopersicum , Tisanópteros , Tospovirus , Animais , Tisanópteros/fisiologia , Tospovirus/fisiologia , Plantas , Doenças das Plantas/prevenção & controle
9.
BMC Genomics ; 24(1): 343, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37344773

RESUMO

BACKGROUND: The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS: A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS: The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.


Assuntos
Tisanópteros , Animais , Tisanópteros/fisiologia , Insetos , Produtos Agrícolas , Evolução Molecular , Epigênese Genética
10.
PLoS Pathog ; 19(5): e1011380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155712

RESUMO

Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission.


Assuntos
Capsicum , Vírus de Plantas , Solanum lycopersicum , Tisanópteros , Animais , Tisanópteros/fisiologia , Simulação de Acoplamento Molecular
11.
Pest Manag Sci ; 79(9): 3239-3249, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37085951

RESUMO

BACKGROUND: Different thrips species can co-occur on the same flowers with different dominance degrees. To accurately evaluate the population performance on different thrips species on Magnolia grandiflora flowers, we investigated the diversity of thrips species and their population dynamics both in the field and laboratory. In addition, the activities of detoxifying and protective enzymes in thrips were also measured. RESULTS: Field investigations revealed that four thrips species (Thrips hawaiiensis, Thrips flavidulus, Frankliniella occidentalis, and Thrips coloratus) coexisted on M. grandiflora flowers. They were ranked, from highest population density to lowest, as follows: T. hawaiiensis > T. flavidulus > F. occidentalis > T. coloratus. In laboratory investigations, the species were ranked, from fastest developmental rates to slowest, as follows: F. occidentalis > T. hawaiiensis > T. flavidulus > T. coloratus; and from largest population size to smallest, as follows: T. hawaiiensis > F. occidentalis > T. flavidulus > T. coloratus. Biochemistry assays showed that the four species differed in their activities of detoxifying enzymes (carboxylesterase, glutathione-S-transferase, and cytochrome P450) and protective enzymes (superoxide dismutase, peroxidase) in both laboratory and field strains. CONCLUSION: Differences in population performance among these four thrips on M. grandiflora may be related to their activity levels of physiological enzymes. The variations in thrips population performance between the field and the laboratory could be due to differences in environmental conditions. T. hawaiiensis showed a strong host preference for M. grandiflora, and thus it has the potential to be a dangerous pest in horticultural plants. © 2023 Society of Chemical Industry.


Assuntos
Magnolia , Tisanópteros , Animais , Tisanópteros/fisiologia , Ranunculales , Plantas , Flores
12.
Zootaxa ; 5134(4): 561-568, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-36101047

RESUMO

Nazonothrips toshifumii gen. et sp. n. is described from unidentified fungus in Taiwan. This fungus-feeding species probably belongs to the tribe Plectrothripini of the subfamily Phlaeothripinae. The males of the new species exhibit a strange allometric growth that appears to involve two patterns of variation, but it is not possible to be certain due to the small number of available specimens.


Assuntos
Tisanópteros/classificação , Animais , Fungos/metabolismo , Masculino , Caracteres Sexuais , Taiwan , Tisanópteros/crescimento & desenvolvimento , Tisanópteros/fisiologia
13.
Philos Trans R Soc Lond B Biol Sci ; 377(1862): 20210282, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36058245

RESUMO

Insects are an astonishingly successful and diverse group, occupying the gamut of habitats and lifestyle niches. They represent the vast majority of described species and total terrestrial animal biomass on the planet. Their success is in part owed to their sophisticated visual systems, including colour vision, which drive a variety of complex behaviours. However, the majority of research on insect vision has focused on only a few model organisms including flies, honeybees and butterflies. Especially understudied are phytophagous insects, such as diminutive thrips (Thysanoptera), in spite of their damage to agriculture. Thrips display robust yet variable colour-specific responses despite their miniaturized eyes, but little is known about the physiological and ecological basis of their visual systems. Here, we review the known visual behavioural information about thrips and the few physiological studies regarding their eyes. Eye structure, spectral sensitivity, opsin genes and the presence of putative colour filters in certain ommatidia strongly imply dynamic visual capabilities. Finally, we discuss the major gaps in knowledge that remain for a better understanding of the visual system of thrips and why bridging these gaps is important for expanding new possibilities for applied pest management strategies for these tiny insects. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.


Assuntos
Borboletas , Visão de Cores , Dípteros , Tisanópteros , Animais , Insetos/fisiologia , Tisanópteros/fisiologia
14.
J Econ Entomol ; 115(5): 1620-1626, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053006

RESUMO

Host plant species will influence the population and physiological performance of insects. Frankliniella occidentalis is a well-known invasive pest commonly found on flowering plants. Herein, the population development of F. occidentalis was investigated on the flowers of different Rosa chinensis cultivars (Ruby, Love, Parade, Pink Peace, and Mohana), and the digestive enzyme activities in thrips were measured after feeding on these flowers. The developmental times of F. occidentalis from egg to adult were 10.07, 10.37, 11.64, 10.66, and 10.90 d on Ruby, Love, Parade, Pink Peace, and Mohana, respectively. Significant differences in fecundity were also observed, with the greatest fecundity levels of F. occidentalis on Ruby (82.96) and the lowest on Mohana (63.40). F. occidentalis showed the greatest R0 on Ruby (43.57), followed by Love (36.46), Parade (33.00), Pink Peace (27.97), and Mohana (23.21). The rm showed a similar trend, with values of 0.156, 0.145, 0.141, 0.134, and 0.130, respectively. There were significant differences in digestive enzyme activities in F. occidentalis on different flowers, and different digestive enzymes showed different performance among these plants. The highest amylase and lipase activities in F. occidentalis were on Ruby, on which F. occidentalis had the fastest development rate and the highest R0, whereas the highest trypsin activity was on Pink Peace. All three digestive enzymes in thrips showed the lowest activities on Mohana. The varied population development of F. occidentalis associated with R. chinensis cultivars may be related to their digestive enzyme performance, which plays important roles in nutrient metabolism and insect growth.


Assuntos
Rosa , Tisanópteros , Amilases , Animais , Fenômenos Fisiológicos do Sistema Digestório , Flores , Insetos , Lipase , Plantas , Tisanópteros/fisiologia , Tripsina
15.
Pest Manag Sci ; 78(11): 5014-5023, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054039

RESUMO

BACKGROUND: Plant viruses can facilitate their transmission by modulating the sex ratios of their insect vectors. Previously, we found that exposure to tomato spotted wilt orthotospovirus (TSWV) in the western flower thrips, Frankliniella occidentalis, led to a male-biased sex ratio in the offspring. TSWV, a generalist pathogen with a broad host range, is transmitted primarily by F. occidentalis in a circulative-propagative manner. Here, we integrated proteomic tools with RNAi to comprehensively investigate the genetic basis underlying the shift in vector sex ratio induced by the virus. RESULTS: Proteomic analysis exhibited 104 differentially expressed proteins between F. occidentalis adult males with and without TSWV. The expression of the fiber sheath CABYR-binding-like (FSCB) protein, namely FoFSCB-like, a sperm-specific protein associated with sperm capacitation and motility, was decreased by 46%. The predicted FoFSCB-like protein includes 10 classic Pro-X-X-Pro motifs and 42 phosphorylation sites, which are key features for sperm capacitation. FoFSCB-like expression was gradually increased during the development and peaked at the pupal stage. After exposure to TSWV, FoFSCB-like expression was substantially down-regulated. Nanoparticle-mediated RNAi substantially suppressed FoFSCB-like expression and led to a significant male bias in the offspring. CONCLUSION: These combined results suggest that down-regulation of FoFSCB-like in virus-exposed thrips leads to a male-biased sex ratio in the offspring. This study not only advances our understanding of virus-vector interactions, but also identifies a potential target for the genetic management of F. occidentalis, the primary vector of TSWV, by manipulating male fertility. © 2022 Society of Chemical Industry.


Assuntos
Vírus de RNA , Solanum lycopersicum , Tisanópteros , Tospovirus , Animais , Flores , Masculino , Doenças das Plantas , Proteômica , Sementes , Razão de Masculinidade , Tisanópteros/fisiologia , Tospovirus/genética
16.
PLoS One ; 17(8): e0272399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913957

RESUMO

The western flower thrips, Frankliniella occidentalis, is one of the most devastating insect pests with explosive reproductive potential. However, its reproductive physiological processes are not well understood. This study reports the ovarian development and associated transcriptomes of F. occidentalis. Each ovary consisted of four ovarioles, each of which contained a maximum of nine follicles in the vitellarium. The germarium consisted of several dividing cells forming a germ cell cluster, presumably consisting of oocytes and nurse cells. The nurse cells were restricted to the germarium while the subsequent follicles did not possess nurse cells or a nutritive cord, supporting the neo-panoistic ovariole usually found in thysanopteran insects. Oocyte development was completed 72 h after adult emergence (AAE). Transcriptome analysis was performed at mid (36 h AAE) and late (60 h AAE) ovarian developmental stages using RNA sequencing (RNASeq) technology. More than 120 million reads per replication were matched to ≈ 15,000 F. occidentalis genes. Almost 500 genes were differentially expressed at each of the mid and late ovarian developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes (DEGs) were associated with metabolic pathways along with protein and nucleic acid biosynthesis. In both ovarian developmental stages, vitellogenin, mucin, and chorion genes were highly (> 8-fold) expressed. Endocrine signals associated with ovarian development were further investigated from the DEGs. Insulin and juvenile hormone signals were upregulated only at 36 h AAE, whereas the ecdysteroid signal was highly maintained at 60 h AAE. This study reports the transcriptome associated with the ovarian development of F. occidentalis, which possesses a neo-panoistic ovariole.


Assuntos
Tisanópteros , Animais , Feminino , Flores , Perfilação da Expressão Gênica , Insetos/genética , Tisanópteros/fisiologia , Transcriptoma
17.
BMC Plant Biol ; 21(1): 562, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844558

RESUMO

BACKGROUND: Brood pollination mutualism is a special type of plant-pollinator interaction in which adult insects pollinate plants, and the plants provide breeding sites for the insects as a reward. To manifest such a mutualism between Stellera chamaejasme and flower thrips of Frankliniella intonsa, the study tested the mutualistic association of the thrips life cycle with the plant flowering phenology and determined the pollination effectiveness of adult thrips and their relative contribution to the host's fitness by experimental pollinator manipulation. RESULTS: The adult thrips of F. intonsa, along with some long-tongue Lepidoptera, could serve as efficient pollinators of the host S. chamaejasme. The thrips preferentially foraged half-flowering inflorescences of the plants and oviposited in floral tubes. The floral longevity was 11.8 ± 0.55 (mean ± se) days, which might precisely accommodate the thrips life cycle from spawning to prepupation. The exclusion of adult thrips from foraging flowers led to a significant decrease in the fitness (i.e., seed set) of host plants, with a corresponding reduction in thrips fecundity (i.e., larva no.) in the flowers. CONCLUSIONS: The thrips of F. intonsa and the host S. chamaejasme mutualistically interact to contribute to each other's fitness such that the thrips pollinate host plants and, as a reward, the plants provide the insects with brooding sites and food, indicating the coevolution of the thrips life cycle and the reproductive traits (e.g., floral longevity and morphology) of S. chamaejasme.


Assuntos
Flores/fisiologia , Polinização/fisiologia , Thymelaeaceae/fisiologia , Tisanópteros/fisiologia , Animais , Larva , Simbiose
18.
Sci Rep ; 11(1): 14504, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267250

RESUMO

Many species of thrips (Thysanoptera) in the family Thripidae form mating aggregations, but the adaptive significance of these aggregations and the extent of male and female mate choice is poorly understood. We studied the mating behaviour of the bean flower thrips Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), which forms male aggregations and occurs across sub-Saharan Africa. We tested whether males choose mates by female age or mating status. No-choice mating bioassays with one male and one female were used to simulate the way males usually encounter only one female at a time in aggregations in the field. Virgin females violently resisted mating attempts by males, but we found no compelling evidence to establish whether this was indiscriminate or was screening suitable males. Younger males (1-2 days old) did not discriminate females by age (1-2 or 7-10 days old), but older males (7-10 days old) avoided mating with older females. Any male choice by female mating status (virgin or mated) was weak or absent. The mating behaviour of M. sjostedti shows broad similarities with that of other thrips species that form aggregations, but also shows some distinct and novel differences, which can help our understanding of the adaptive significance of aggregations.


Assuntos
Comportamento Sexual Animal/fisiologia , Tisanópteros/fisiologia , Fatores Etários , Animais , Feminino , Quênia , Masculino , Preferência de Acasalamento Animal
19.
BMC Plant Biol ; 21(1): 315, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215189

RESUMO

BACKGROUND: Plant-produced specialised metabolites are a powerful part of a plant's first line of defence against herbivorous insects, bacteria and fungi. Wild ancestors of present-day cultivated tomato produce a plethora of acylsugars in their type-I/IV trichomes and volatiles in their type-VI trichomes that have a potential role in plant resistance against insects. However, metabolic profiles are often complex mixtures making identification of the functionally interesting metabolites challenging. Here, we aimed to identify specialised metabolites from a wide range of wild tomato genotypes that could explain resistance to vector insects whitefly (Bemisia tabaci) and Western flower thrips (Frankliniella occidentalis). We evaluated plant resistance, determined trichome density and obtained metabolite profiles of the glandular trichomes by LC-MS (acylsugars) and GC-MS (volatiles). Using a customised Random Forest learning algorithm, we determined the contribution of specific specialised metabolites to the resistance phenotypes observed. RESULTS: The selected wild tomato accessions showed different levels of resistance to both whiteflies and thrips. Accessions resistant to one insect can be susceptible to another. Glandular trichome density is not necessarily a good predictor for plant resistance although the density of type-I/IV trichomes, related to the production of acylsugars, appears to correlate with whitefly resistance. For type VI-trichomes, however, it seems resistance is determined by the specific content of the glands. There is a strong qualitative and quantitative variation in the metabolite profiles between different accessions, even when they are from the same species. Out of 76 acylsugars found, the random forest algorithm linked two acylsugars (S3:15 and S3:21) to whitefly resistance, but none to thrips resistance. Out of 86 volatiles detected, the sesquiterpene α-humulene was linked to whitefly susceptible accessions instead. The algorithm did not link any specific metabolite to resistance against thrips, but monoterpenes α-phellandrene, α-terpinene and ß-phellandrene/D-limonene were significantly associated with susceptible tomato accessions. CONCLUSIONS: Whiteflies and thrips are distinctly targeted by certain specialised metabolites found in wild tomatoes. The machine learning approach presented helped to identify features with efficacy toward the insect species studied. These acylsugar metabolites can be targets for breeding efforts towards the selection of insect-resistant cultivars.


Assuntos
Resistência à Doença/genética , Variação Genética , Hemípteros/fisiologia , Metaboloma/genética , Solanum/genética , Tisanópteros/fisiologia , Tricomas/genética , Tricomas/metabolismo , Algoritmos , Animais , Ecótipo , Genótipo , Fenótipo , Compostos Orgânicos Voláteis/análise
20.
Zootaxa ; 4949(3): zootaxa.4949.3.10, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903338

RESUMO

Heliothrips (Parthenothrips) octarcticulatus was originally described by Schmutz (1913) from Sri Lanka. Subsequently, Hood (1954) described from Taiwan a new genus and species Copidothrips formosus, and then Stannard and Mitri (1962) described a further new genus and species, Mesostenothrips kraussi, from Kiribati and Gibert Islands. Bhatti (1967, 1990), recognized that only a single genus and species was involved amongst these names, established the resultant synonymies, and recorded the species octarcticulatus from various localities between the Seychelles and five different Pacific Island groups. It has also been recorded from Northern Australia, and Thailand (ThripsWiki 2021) as well as Christmas Island in the Indian Ocean (Mound 2019). Despite these records, there is little reliable information about host plants and biology apart from Piper myristicum on Pohnpei island (Micronesia), and also damage caused to the leaves of Aglaonema and Spathoglottis at Darwin in Australia (Mound Tree 2020). In this note, we add a further interesting host record and describe the previously unknown male as well as the larvae of this species.


Assuntos
Tisanópteros , Animais , Larva , Masculino , Polinésia , Tisanópteros/classificação , Tisanópteros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA