Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Food Environ Virol ; 12(3): 269-273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666473

RESUMO

Monthly sampling was conducted at a drinking water treatment plant (DWTP) in Southern Louisiana, USA from March 2017 to February 2018 to determine the prevalence and reduction efficiency of pathogenic and indicator viruses. Water samples were collected from the DWTP at three different treatment stages (raw, secondary-treated, and chlorinated drinking water) and subjected to quantification of seven pathogenic viruses and three indicator viruses [pepper mild mottle virus (PMMoV), tobacco mosaic virus (TMV), and crAssphage] based on quantitative polymerase chain reaction. Among the seven pathogenic viruses tested, only Aichi virus 1 (AiV-1) (7/12, 58%) and noroviruses of genogroup II (NoVs-GII) (2/12, 17%) were detected in the raw water samples. CrAssphage had the highest positive ratio at 78% (28/36), and its concentrations were significantly higher than those of the other indicator viruses for all three water types (P < 0.05). The reduction ratios of AiV-1 (0.7 ± 0.5 log10; n = 7) during the whole treatment process were the lowest among the tested viruses, followed by crAssphage (1.1 ± 1.9 log10; n = 9), TMV (1.3 ± 0.9 log10; n = 8), PMMoV (1.7 ± 0.8 log10; n = 12), and NoVs-GII (3.1 ± 0.1 log10; n = 2). Considering the high abundance and relatively low reduction, crAssphage was judged to be an appropriate process indicator during drinking water treatment. To the best of our knowledge, this is the first study to assess the reduction of crAssphage and TMV during drinking water treatment.


Assuntos
Água Potável/virologia , Enterovirus/crescimento & desenvolvimento , Kobuvirus/crescimento & desenvolvimento , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Tobamovirus/crescimento & desenvolvimento , Enterovirus/genética , Enterovirus/isolamento & purificação , Kobuvirus/genética , Kobuvirus/isolamento & purificação , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/isolamento & purificação , Tobamovirus/genética , Tobamovirus/isolamento & purificação , Poluição da Água/análise , Purificação da Água
2.
Food Environ Virol ; 12(3): 260-263, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32613519

RESUMO

This study assessed wastewater quality through the quantification of four human enteric viruses and the applicability of pepper mild mottle virus (PMMoV) and tobacco mosaic virus (TMV) as indicators of viral reduction during wastewater treatment. Thirty-three samples were collected from three steps of a wastewater treatment plant in Southern Louisiana, USA for a year between March 2017 and February 2018. Noroviruses of genogroup I were the most prevalent human enteric viruses in influent samples. The concentrations of PMMoV in influent samples (5.9 ± 0.7 log10 copies/L) and biologically treated effluent samples (5.9 ± 0.5 log10 copies/L) were significantly higher than those of TMV (P < 0.05), and the reduction ratio of PMMoV (1.0 ± 0.8 log10) was found comparable to those of TMV and Aichi virus 1. Because of the high prevalence, high correlations with human enteric viruses, and lower reduction ratios, PMMoV was deemed an appropriate indicator of human enteric viral reduction during wastewater treatment process.


Assuntos
Enterovirus/isolamento & purificação , Vírus do Mosaico do Tabaco/isolamento & purificação , Tobamovirus/isolamento & purificação , Águas Residuárias/virologia , Purificação da Água/métodos , Enterovirus/classificação , Enterovirus/genética , Enterovirus/crescimento & desenvolvimento , Humanos , Louisiana , Esgotos/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Tobamovirus/genética , Tobamovirus/crescimento & desenvolvimento , Purificação da Água/instrumentação
3.
Arch Virol ; 165(5): 1177-1190, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32232674

RESUMO

Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in plant defense responses against viral infections. However, there is no systematic understanding of lncRNAs and circRNAs and their competing endogenous RNA (ceRNA) networks in watermelon under cucumber green mottle mosaic virus (CGMMV) stress. Here, we present the characterization and expression profiles of lncRNAs and circRNAs in watermelon leaves 48-h post-inoculation (48 hpi) with CGMMV, with mock inoculation as a control. Deep sequencing analysis revealed 2373 lncRNAs and 606 circRNAs in the two libraries. Among them, 67 lncRNAs (40 upregulated and 27 downregulated) and 548 circRNAs (277 upregulated and 271 downregulated) were differentially expressed (DE) in the 48 hpi library compared with the control library. Furthermore, 263 cis-acting matched lncRNA-mRNA pairs were detected for 49 of the DE-lncRNAs. KEGG pathway analysis of the cis target genes of the DE-lncRNAs revealed significant associations with phenylalanine metabolism, the citrate cycle (TCA cycle), and endocytosis. Additionally, 30 DE-lncRNAs were identified as putative target mimics of 33 microRNAs (miRNAs), and 153 DE-circRNAs were identified as putative target mimics of 88 miRNAs. Furthermore, ceRNA networks of lncRNA/circRNA-miRNA-mRNA in response to CGMMV infection are described, with 12 DE-lncRNAs and 65 DE-circRNAs combining with 22 miRNAs and competing for the miRNA binding sites on 29 mRNAs. The qRT-PCR validation of selected lncRNAs and circRNAs showed a general correlation with the high-throughput sequencing results. This study provides a valuable resource of lncRNAs and circRNAs involved in the response to CGMMV infection in watermelon.


Assuntos
Citrullus/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Tobamovirus/crescimento & desenvolvimento , Citrullus/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase em Tempo Real
4.
Sci Rep ; 10(1): 3616, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107444

RESUMO

This study was conducted to evaluate the applicability of crAssphage, pepper mild mottle virus (PMMoV), and tobacco mosaic virus (TMV) as indicators of the reduction of human enteric viruses during wastewater treatment. Thirty-nine samples were collected from three steps at a wastewater treatment plant (raw sewage, secondary-treated sewage, and final effluent) monthly for a 13-month period. In addition to the three indicator viruses, eight human enteric viruses [human adenoviruses, JC and BK polyomaviruses, Aichi virus 1 (AiV-1), enteroviruses, and noroviruses of genogroups I, II, and IV] were tested by quantitative PCR. Indicator viruses were consistently detected in the tested samples, except for a few final effluents for crAssphage and TMV. The mean concentrations of crAssphage were significantly higher than those of most tested viruses. The concentrations of crAssphage in raw sewage were positively correlated with the concentrations of all tested human enteric viruses (p <0.05), suggesting the applicability of crAssphage as a suitable indicator to estimate the concentrations of human enteric viruses in raw sewage. The reduction ratios of AiV-1 (1.8 ± 0.7 log10) were the lowest among the tested viruses, followed by TMV (2.0 ± 0.3 log10) and PMMoV (2.0 ± 0.4 log10). Our findings suggested that the use of not only AiV-1 and PMMoV but also TMV as indicators of reductions in viral levels can be applicable during wastewater treatment.


Assuntos
Enterovirus/crescimento & desenvolvimento , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Tobamovirus/crescimento & desenvolvimento , Águas Residuárias/virologia , Enterovirus/genética , Enterovirus/isolamento & purificação , Esgotos/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/isolamento & purificação , Tobamovirus/genética , Tobamovirus/isolamento & purificação , Poluição da Água/análise , Purificação da Água
5.
Food Environ Virol ; 11(3): 274-287, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31087275

RESUMO

Monitoring of environmental water is crucial to protecting humans and animals from possible health risks. Although numerous human-specific viral markers have been designed to track the presence of human fecal contamination in water, they lack adequate sensitivity and specificity in different geographical regions. We evaluated the performances of six human-specific viral markers [Aichi virus 1 (AiV-1), human adenoviruses (HAdVs), BK and JC polyomaviruses (BKPyVs and JCPyVs), pepper mild mottle virus (PMMoV), and crAssphage] using 122 fecal-source samples collected from humans and five animal hosts in the Kathmandu Valley, Nepal. PMMoV and crAssphage showed high sensitivity (90-100%) with concentrations of 4.5-9.1 and 6.2-7.0 log10 copies/g wet feces (n = 10), respectively, whereas BKPyVs, JCPyVs, HAdVs, and AiV-1 showed poor performances with sensitivities of 30-40%. PMMoV and crAssphage were detected in 40-100% and 8-90%, respectively, of all types of animal fecal sources and showed no significantly different concentrations among most of the fecal sources (Kruskal-Wallis test, P > 0.05), suggesting their applicability as general fecal pollution markers. Furthermore, a total of 115 environmental water samples were tested for PMMoV and crAssphage to identify fecal pollution. PMMoV and crAssphage were successfully detected in 62% (71/115) and 73% (84/115) of water samples, respectively. The greater abundance and higher mean concentration of crAssphage (4.1 ± 0.9 log10 copies/L) compared with PMMoV (3.3 ± 1.4 log10 copies/L) indicated greater chance of detection of crAssphage in water samples, suggesting that crAssphage could be preferred to PMMoV as a marker of fecal pollution.


Assuntos
Fezes/virologia , Água Doce/virologia , Tobamovirus/isolamento & purificação , Vírus/isolamento & purificação , Animais , Biomarcadores/análise , Humanos , Nepal , Tobamovirus/classificação , Tobamovirus/genética , Tobamovirus/crescimento & desenvolvimento , Vírus/classificação , Vírus/genética , Vírus/crescimento & desenvolvimento , Poluição da Água/análise
6.
Food Environ Virol ; 10(3): 297-304, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29679283

RESUMO

This study was designed to determine the quantitative polymerase chain reaction (qPCR) signal persistence of viruses in three effluent-dominated streams. Samples were collected from the effluent outfall of three wastewater treatment plants in the Western United States and downstream at different locations. All samples were tested for the presence of pepper mild mottle virus (PMMoV), adenoviruses, norovirus GI and GII, Aichi virus, and enteroviruses using qPCR. PMMoV was detected most frequently in 54/57 (94.7%) samples, followed by adenoviruses which was detected in 21/57 (36.8%) samples. PMMoV was detected at all locations downstream and up to 32 km from the discharge point. This study demonstrated that the detection signal of PMMoV was able to persist in wastewater discharges to a greater degree than human enteric viruses in effluent-dominated rivers.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Enterovirus/crescimento & desenvolvimento , Kobuvirus/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Rios/virologia , Esgotos/virologia , Tobamovirus/crescimento & desenvolvimento , Adenoviridae/genética , Enterovirus/genética , Monitoramento Ambiental , Humanos , Kobuvirus/genética , Norovirus/genética , Reação em Cadeia da Polimerase/métodos , Tobamovirus/genética , Estados Unidos , Águas Residuárias/virologia , Microbiologia da Água
7.
Virus Genes ; 54(2): 280-289, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429120

RESUMO

During October 2014, unfamiliar mild mosaic and mottling symptoms were identified on leaves of pepper (Capsicum chinense cv. Habanero) seedlings grown in the Arava valley in Israel 2-3 weeks post planting. Symptomatic plants were tested positive by ELISA using laboratory-produced antisera for tobamovirus species. Typical tobamovirus rod-shaped morphology was observed by transmission electron microscopy (TEM) analysis of purified virion preparation that was used for mechanical inoculation of laboratory test plants for the completion of Koch's postulates. The complete viral genome was sequenced from small interfering RNA purified from symptomatic pepper leaves and fruits by next-generation sequencing (NGS) using Illumina MiSeq platform. The contigs generated by the assembly covered 80% of the viral genome. RT-PCR amplification and Sanger sequencing were employed in order to validate the sequence generated by NGS technology. The nucleotide sequence of the complete viral genome was 99% identical to the complete genome of Paprika mild mottle virus isolate from Japan (PaMMV-J), and the deduced amino acid sequence was 99% identical to PaMMV-J protein. Amplicons from seed RNA showed 100% identity to the viral isolate from the collected symptomatic pepper plants. Partial host range analysis revealed a slow development of systemic infection in inoculated tomato plants (Lycopersicon esculentum). Interestingly, double inoculation of susceptible wild-type tomato plants and Tm-22-resistant tomato plants with the PaMMV-IL and Tomato brown rugose fruit virus (ToBRFV) resulted in accelerated viral expression in the plants.


Assuntos
Capsicum/imunologia , Capsicum/virologia , Resistência à Doença , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Tobamovirus/crescimento & desenvolvimento , Tobamovirus/isolamento & purificação , Genoma Viral , Especificidade de Hospedeiro , Israel , Japão , Microscopia Eletrônica de Transmissão , Filogenia , Folhas de Planta/virologia , Plântula/virologia , Análise de Sequência de DNA , Homologia de Sequência , Tobamovirus/genética , Tobamovirus/ultraestrutura , Vírion/ultraestrutura
8.
Food Environ Virol ; 10(1): 107-120, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29098656

RESUMO

Irrigation water is a doorway for the pathogen contamination of fresh produce. We quantified pathogenic viruses [human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, Aichi virus 1 (AiV-1), enteroviruses (EnVs), and salivirus (SaliV)] and examined potential index viruses [JC and BK polyomaviruses (JCPyVs and BKPyVs), pepper mild mottle virus (PMMoV), and tobacco mosaic virus (TMV)] in irrigation water sources in the Kathmandu Valley, Nepal. River, sewage, wastewater treatment plant (WWTP) effluent, pond, canal, and groundwater samples were collected in September 2014, and in April and August 2015. Viruses were concentrated using an electronegative membrane-vortex method and quantified using TaqMan (MGB)-based quantitative PCR (qPCR) assays with murine norovirus as a molecular process control to determine extraction-reverse transcription-qPCR efficiency. Tested pathogenic viruses were prevalent with maximum concentrations of 5.5-8.8 log10 copies/L, and there was a greater abundance of EnVs, SaliV, and AiV-1. Virus concentrations in river water were equivalent to those in sewage. Canal, pond, and groundwater samples were found to be less contaminated than river, sewage, and WWTP effluent. Seasonal dependency was clearly evident for most of the viruses, with peak concentrations in the dry season. JCPyVs and BKPyVs had a poor detection ratio and correspondence with pathogenic viruses. Instead, the frequently proposed PMMoV and the newly proposed TMV were strongly predictive of the pathogen contamination level, particularly in the dry season. We recommend utilizing canal, pond, and groundwater for irrigation to minimize deleterious health effects and propose PMMoV and TMV as indexes to elucidate pathogenic virus levels in environmental samples.


Assuntos
Irrigação Agrícola , Vírus de DNA/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Vírus de Plantas/crescimento & desenvolvimento , Vírus de RNA/crescimento & desenvolvimento , Viroses/virologia , Poluição da Água/análise , Adenoviridae/genética , Adenoviridae/crescimento & desenvolvimento , Produtos Agrícolas/virologia , Vírus de DNA/genética , Enterovirus/genética , Enterovirus/crescimento & desenvolvimento , Humanos , Kobuvirus/genética , Kobuvirus/crescimento & desenvolvimento , Nepal , Norovirus/genética , Norovirus/crescimento & desenvolvimento , Vírus de Plantas/genética , Reação em Cadeia da Polimerase , Vírus de RNA/genética , Rios/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Tobamovirus/genética , Tobamovirus/crescimento & desenvolvimento , Águas Residuárias/virologia , Água/normas
9.
Sci Rep ; 7: 39432, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071648

RESUMO

Yeast associates with many plant parts including the phyllosphere, where it is subject to harsh environmental conditions. Few studies have reported on biological control of foliar pathogens by yeast. Here, we newly isolated leaf-colonizing yeasts from leaves of field-grown pepper plants in a major pepper production area of South Korea. The yeast was isolated using semi-selective medium supplemented with rifampicin to inhibit bacterial growth and its disease control capacity against Xanthomonas axonopodis infection of pepper plants in the greenhouse was evaluated. Of 838 isolated yeasts, foliar spray of Pseudozyma churashimaensis strain RGJ1 at 108 cfu/mL conferred significant protection against X. axonopodis and unexpectedly against Cucumber mosaic virus, Pepper mottle virus, Pepper mild mottle virus, and Broad bean wilt virus under field conditions. Direct antagonism between strain RGJ1 and X. axonopodis was not detected from co-culture assays, suggesting that disease is suppressed via induced resistance. Additional molecular analysis of the induced resistance marker genes Capsicum annuum Pathogenesis-Related (CaPR) 4 and CaPR5 indicated that strain RGJ1 elicited plant defense priming. To our knowledge, this study is the first report of plant protection against bacterial and viral pathogens mediated by a leaf-colonizing yeast and has potential for effective disease management in the field.


Assuntos
Capsicum/imunologia , Capsicum/microbiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Ustilaginales/crescimento & desenvolvimento , Antibiose , Cucumovirus/crescimento & desenvolvimento , Potyvirus/crescimento & desenvolvimento , República da Coreia , Tobamovirus/crescimento & desenvolvimento , Ustilaginales/classificação , Ustilaginales/isolamento & purificação , Xanthomonas axonopodis/crescimento & desenvolvimento
10.
Virol J ; 12: 216, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26666291

RESUMO

BACKGROUND: Since it was first reported in 1935, Cucumber green mottle mosaic virus (CGMMV) has become a serious pathogen in a range of cucurbit crops. The virus is generally transmitted by propagation materials, and to date no effective chemical or cultural methods of control have been developed to combat its spread. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in an infected cucumber host, with the objective of elucidating the infection process and potential strategies to reduce both the economic and yield losses associated with CGMMV. METHODS: Isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC-MS/MS) were used to identify the differentially expressed proteins in cucumber plants infected with CGMMV compared with mock-inoculated plants. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions during CGMMV infection, while their in vivo expression was further verified by qPCR. RESULTS: Infection by CGMMV altered both the expression level and absolute quantity of 38 proteins (fold change >0.6) in cucumber hosts. Of these, 23 were found to be up-regulated, while 15 were down-regulated. Gene ontology (GO) analysis revealed that 22 of the proteins had a combined function and were associated with molecular function (MF), biological process (BP) and cellular component (CC). Several other proteins had a dual function with 1, 7, and 2 proteins being associated with BP/CC, BP/MF, CC/MF, respectively. The remaining 3 proteins were only involved in MF. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 18 proteins that were involved in 13 separate metabolic pathways. These pathways were subsequently merged to generate three network diagrams illustrating the interactions between the different pathways, while qPCR was used to track the changes in expression levels of the proteins identified at 3 time points during CGMMV infection. Taken together these results greatly expand our understanding of the relationships between CGMMV and cucumber hosts. CONCLUSIONS: The results of the study indicate that CGMMV infection significantly changes the physiology of cucumbers, affecting the expression levels of individual proteins as well as entire metabolic pathways. The bioinformatic analysis also identified several pathogenesis-related (PR) proteins that could be useful in the development of disease-resistant plants.


Assuntos
Cucumis sativus/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas de Plantas/análise , Proteoma/análise , Tobamovirus/crescimento & desenvolvimento , Cromatografia Líquida , Cucumis sativus/fisiologia , Proteômica , Estresse Fisiológico , Espectrometria de Massas em Tandem
11.
Sci Total Environ ; 506-507: 287-98, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460962

RESUMO

We analyzed pepper mild mottle virus (PMMoV) in 36 samples taken from surface water, wastewater, groundwater, tap water and bottled water in Hanoi, Vietnam. We then compared the occurrence and fates of PMMoV with pharmaceuticals and personal care products (PPCPs), which are known wastewater tracers. PMMoV was detected in 94% of the surface water samples (ponds, water from irrigated farmlands and rivers) and in all the wastewater samples. The PMMoV concentration ranged from 5.5×10(6)-7.2×10(6)copies/L in wastewater treatment plant (WWTP) influents, 6.5×10(5)-8.5×10(5)copies/L in WWTP effluents and 1.0×10(4)-1.8×10(6)copies/L in surface water. Among the sixty PPCPs analyzed, caffeine and carbamazepine had high detection rates in surface water (100% and 88%, respectively). In surface water, the concentration ratio of PMMoV to caffeine remained unchanged than that in WWTP influents, suggesting that the persistence of PMMoV in surface water was comparable to that of caffeine. The persistence and the large concentration ratio of PMMoV in WWTP influents to the method detection limit would account for its ubiquitous detection in surface water. In comparison, human enteric viruses (HEV) were less frequently detected (18-59%) than PMMoV in surface water, probably because of their faster decay. Together with the reported high human feces-specificity, our results suggested that PMMoV is useful as a sensitive fecal indicator for evaluating the potential occurrence of pathogenic viruses in surface water. Moreover, PMMoV can be useful as a moderately conservative fecal tracer for specifically tracking fecal pollution of surface water. PMMoV was detected in 38% of the groundwater samples at low concentrations (up to 19copies/L). PMMoV was not detected in the tap water and bottled water samples. In groundwater, tap water and bottled water samples, the occurrence of PPCPs and HEV disagreed with that of PMMoV, suggesting that PMMoV is not suitable as an indicator or a tracer in those waters.


Assuntos
Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Tobamovirus/isolamento & purificação , Águas Residuárias/virologia , Poluentes da Água/análise , Água Potável/química , Água Potável/virologia , Água Subterrânea/química , Água Subterrânea/virologia , Esgotos/química , Esgotos/virologia , Tobamovirus/crescimento & desenvolvimento , Vietnã , Eliminação de Resíduos Líquidos , Águas Residuárias/química
12.
J Virol Methods ; 186(1-2): 78-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22814091

RESUMO

The host proteins TOM1 and TOM3 associated with tonoplast membrane are shown to be required for efficient multiplication of Tobamoviruses. In this study, homologous of TOM1 and TOM3 genes were identified in pepper (Capsicum annuum) using specific primers. Their gene sequences have similarity to Nicotiana tabacum NtTOM1 and NtTOM3. Sequence alignment showed that CaTOM1 and CaTOM3 are closely related to TOM1 and TOM3 of N. tabacum and Solanum lycopersicum with 90% and 70% nucleotide sequence identities, respectively. RNA interference approach was used to suppress the TOM1 and TOM3 gene expression which in turn prevented Tobacco mosaic virus replication in tobacco. Nicotiana plants agro-infiltrated with siRNA constructs of TOM1 or TOM3 showed no mosaic or necrotic infection symptoms upon inoculation with TMV. The results indicated that silencing of TOM1 and TOM3 of pepper using the siRNA constructs is an efficient method for generating TMV-resistant plants.


Assuntos
Capsicum/genética , Capsicum/virologia , Inativação Gênica , Proteínas de Plantas/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Tobamovirus/fisiologia , Replicação Viral , Interações Hospedeiro-Patógeno , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Homologia de Sequência do Ácido Nucleico , Nicotiana/genética , Tobamovirus/crescimento & desenvolvimento
13.
Arch Virol ; 155(3): 297-303, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20035436

RESUMO

An inducible virus infection system was demonstrated to be an efficient protein expression system for inducing synchronous virus vector multiplication in suspension-cultured plant cells. A GFP-tagged tomato mosaic virus (ToMV-GFP) derivative that has a defect in its 130 K protein, a silencing suppressor of ToMV, was synchronously infected to tobacco BY2 cultured cells using this system. In the infection-induced cells, viral RNA was degraded rapidly, and a cytosol extract prepared from the infected cells showed RNA degradation activity specific for ToMV- or GFP-related sequences. In lysate prepared from cells infected by ToMV-GFP carrying the wild-type 130 K protein, sequence-specific RNA degradation activity was suppressed, although siRNA derived from the virus was generated. Furthermore, the 130 K protein interfered with 3'-end methylation of siRNA. The inducible virus infection system may provide a method for biochemical analysis of antiviral RNA silencing and silencing suppression by ToMV.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/virologia , Interferência de RNA , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/antagonistas & inibidores , Tobamovirus/crescimento & desenvolvimento , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Estabilidade de RNA , Coloração e Rotulagem/métodos , Tobamovirus/genética , Proteínas Virais/genética , Replicação Viral
14.
Virology ; 390(2): 163-73, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19524993

RESUMO

Potyvirus infection has been reported to cause an increase in the mRNA transcripts of many plant ribosomal proteins (r-proteins). In this study, increased expression of r-protein mRNA transcripts was determined to occur in Nicotiana benthamiana during infection by potyviruses as well as a tobamovirus demonstrating that this response is not unique to potyviruses. Five r-protein genes, RPS6, RPL19, RPL13, RPL7, and RPS2, were silenced in N. benthamiana to test their roles in viral infection. The accumulation of both Turnip mosaic virus (TuMV), a potyvirus, and Tobacco mosaic virus (TMV), a tobamovirus, was dependent on RPL19, RPL13, RPL7, and RPS2. However, TMV was able to accumulate in RPS6-silenced plants while accumulation of TuMV and Tomato bushy stunt virus (TBSV) was abolished. These results demonstrate that cap-independent TuMV and TBSV require RPS6 for their accumulation, whereas accumulation of TMV is independent of RPS6.


Assuntos
Nicotiana/virologia , Iniciação Traducional da Cadeia Peptídica , Potyvirus/fisiologia , Proteína S6 Ribossômica/biossíntese , Tobamovirus/fisiologia , Inativação Gênica , Potyvirus/crescimento & desenvolvimento , Tobamovirus/crescimento & desenvolvimento
15.
Virology ; 376(1): 132-9, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18440043

RESUMO

A plant integral membrane protein TOM1 is involved in the multiplication of Tomato mosaic virus (ToMV). TOM1 interacts with ToMV replication proteins and has been suggested to tether the replication proteins to the membranes where the viral RNA synthesis takes place. We have previously demonstrated that inactivation of TOM1 results in reduced ToMV multiplication. In the present study, we show that overexpression of TOM1 in tobacco also inhibits ToMV propagation. TOM1 overexpression led to a decreased accumulation of the soluble form of the replication proteins and interfered with the ability of the replication protein to suppress RNA silencing. The reduced accumulation of the soluble replication proteins was also observed in a silencing suppressor-defective ToMV mutant. Based on these results, we propose that RNA silencing suppression is executed by the soluble form of the replication proteins and that efficient ToMV multiplication requires balanced accumulation of the soluble and membrane-bound replication proteins.


Assuntos
Dosagem de Genes , Nicotiana/virologia , Proteínas de Plantas/biossíntese , Tobamovirus/crescimento & desenvolvimento , Tobamovirus/fisiologia , Antivirais/metabolismo , Antivirais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Nicotiana/genética , Tobamovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
16.
J Virol ; 82(7): 3250-60, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18216118

RESUMO

Mosaic is a common disease symptom caused by virus infection in plants. Mosaic leaves of Tomato mosaic virus (ToMV)-infected tobacco plants consist of yellow-green and dark green tissues that contain large and small numbers of virions, respectively. Although the involvement of RNA silencing in mosaic development has been suggested, its role in the process that results in an uneven distribution of the virus is unknown. Here, we investigated whether and where ToMV-directed RNA silencing was established in tobacco mosaic leaves. When transgenic tobaccos defective in RNA silencing were infected with ToMV, little or no dark green tissue appeared, implying the involvement of RNA silencing in mosaic development. ToMV-related small interfering RNAs were rarely detected in the dark green areas of the first mosaic leaves, and their interior portions were susceptible to infection. Thus, ToMV-directed RNA silencing was not effective there. By visualizing the cells where ToMV-directed RNA silencing was active, it was found that the effective silencing occurs only in the marginal regions of the dark green tissue ( approximately 0.5 mm in width) and along the major veins. Further, the cells in the margins were resistant against recombinant potato virus X carrying a ToMV-derived sequence. These findings demonstrate that RNA silencing against ToMV is established in the cells located at the margins of the dark green areas, restricting the expansion of yellow-green areas, and consequently defines the mosaic pattern. The mechanism of mosaic symptom development is discussed in relation to the systemic spread of the virus and RNA silencing.


Assuntos
Nicotiana/imunologia , Nicotiana/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , Interferência de RNA , Tobamovirus/crescimento & desenvolvimento , Dados de Sequência Molecular , Folhas de Planta/química , Plantas Geneticamente Modificadas/virologia , Potexvirus/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Nicotiana/química , Tobamovirus/genética
17.
Commun Agric Appl Biol Sci ; 69(4): 499-506, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15756830

RESUMO

Zucchini yellow mosaic virus (ZYMV) is a widespread serious pathogen of cucurbitaceous plants. ZYMV was first detected in Hungary in 1995. Since then it has become one of the most dangerous viruses of the Cucurbitaceae family causing serious epidemics. The virus has many hosts, which - particularly perennial ones - may play important role as virus reservoirs and infection sources in virus epidemiology. On the other hand wild weed species maybe sources of resistance to viruses. Our research was carried out on a total of 15 wild species from 8 genera (Cucumis, Cucurbita, Cyclanthera, Ecballium Momordica, Lagenaria, Zehneria, Bryonia). Test plants were mechanically inoculated with ZYMV. Local and systemic symptoms were determined and 5 weeks after inoculation DAS-ELISA tests were also carried out. Symptomless plants were reinoculated to Cucumis sativus cv. Accordia test plants. On the basis of the results we determined the percentages of infections and so we classified the test-plants into sensitive and resistance categories. On the basis of the results new host plants of ZYMV are the followings: Bryonia dioica, Cyclanthera pedata, Ecballium elaterium, Momordica balsamina, Momordica rostrata, and Zehneria scabra. Among them Momordica balsamina and Ecballium elaterium showed latent to ZYMV. Bryonia alba and Zehneria indica are especially remarkable, because they proved resistant to ZYMV on the basis of symptomatology and serology. Our results might have significant role in the field of research of host range, virus resistance and virus differentiation.


Assuntos
Cucurbita/virologia , Tobamovirus/patogenicidade , Cucurbita/classificação , Cucurbitaceae/classificação , Cucurbitaceae/virologia , Imunidade Inata , Doenças das Plantas/virologia , Especificidade da Espécie , Tobamovirus/crescimento & desenvolvimento
18.
Arch Virol ; 143(1): 163-71, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9505974

RESUMO

A full-length DNA clone encoding the genome of odontoglossum ringspot tobamovirus (ORSV) was synthesized and placed adjacent to a bacteriophage T7 RNA polymerase promoter. Capped-RNA transcripts produced in vitro were highly infectious when mechanically inoculated onto seedlings of Nicotiana benthamiana and Oncidium Gower Ramsey. A representative clone, designated pOT2, caused a disease phenotype identical to that produced by parental viral RNA. ELISA, Western blot analysis, Northern blot hybridization and electron microscopy verified the infectivity of pOT2. A coat protein deficient mutant of the clone, pO delta CP1, was produced with the initiation codon of the coat protein cistron of ORSV abolished. Transcripts from pO delta CP1 were infective, able to move in N. benthamiana but produced no coat protein. This demonstrates that the coat protein was dispensable for RNA replication and for movement. This is believed to be the first report of an ORSV infectious clone driven by a T7 RNA polymerase promoter.


Assuntos
Capsídeo/genética , Genes Virais/genética , Infecções por Vírus de RNA/genética , Tobamovirus/genética , Proteínas Estruturais Virais/genética , Northern Blotting , DNA Recombinante/genética , Ensaio de Imunoadsorção Enzimática , Engenharia Genética , Genoma Viral , Mutagênese Sítio-Dirigida , Folhas de Planta/virologia , Plantas/virologia , Plantas Tóxicas , Infecções por Vírus de RNA/virologia , RNA Viral/genética , Nicotiana/virologia , Tobamovirus/crescimento & desenvolvimento , Transcrição Gênica/genética , Replicação Viral/genética
19.
Plant J ; 10(6): 1079-88, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9011088

RESUMO

The intercellular and intracellular distribution of the movement protein (MP) of the Ob tobamovirus was examined in infected leaf tissues using an infectious clone of Ob in which the MP gene was translationally fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria. In leaves of Nicotiana tabacum and N. benthamiana, the modified virus caused fluorescent infection sites that were visible as expanding rings. Microscopy of epidermal cells revealed subcellular patterns of accumulation of the MP:GFP fusion protein which differed depending upon the radial position of the cells within the fluorescent ring. Punctate, highly localized fluorescence was associated with cell walls of all of the epidermal cells within the infection site, and apparently represents association of the fusion protein with plasmodesmata; furthermore, fluorescence was retained in cell walls purified from infected leaves. Within the brightest region of the fluorescent ring, the MP:GFP was observed in irregularly shaped inclusions in the cortical regions of infected cells. Fluorescent filamentous structures presumed to represent association of MP:GFP with microtubules were observed, but were distributed differently within the infection sites on the two hosts. Within cells containing filaments, a number of fluorescent bodies, some apparently streaming in cytoplasmic strands, were also observed. The significance of these observations is discussed in relation to MP accumulation, targeting to plasmodesmata, and degradation.


Assuntos
Compartimento Celular , Nicotiana/virologia , Doenças das Plantas/virologia , Plantas Tóxicas , Tobamovirus/crescimento & desenvolvimento , Proteínas Virais/isolamento & purificação , Transporte Biológico , Parede Celular/química , Proteínas de Fluorescência Verde , Immunoblotting , Proteínas Luminescentes/genética , Mutagênese , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas , Protoplastos/virologia , Proteínas Recombinantes de Fusão , Especificidade da Espécie , Distribuição Tecidual , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA