RESUMO
Benzene, toluene, ethylbenzene, and xylene (BTEX) pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects, carcinogenic properties, and adverse effects on air quality. BTEX exposure is a matter of grave concern in India owing to the growing vehicular and development activities, necessitating the assessment of atmospheric concentrations and their spatial variation. This paper presents a comprehensive assessment of ambient concentrations and spatiotemporal variations of BTEX in India. The study investigates the correlation of BTEX with other criteria pollutants and meteorological parameters, aiming to identify interrelationships and diagnostic indicators for the source characterization of BTEX emissions. Additionally, the paper categorizes various regions in India according to the Air Quality Index (AQI) based on BTEX pollution levels. The results reveal that the northern zone of India exhibits the highest levels of BTEX pollution compared to central, eastern, and western regions. In contrast, the southern zone experiences the least pollution with BTEX. Seasonal analysis indicates that winter and post-monsoon periods, characterized by lower temperatures, are associated with higher BTEX levels due to the accumulation of localized emissions. When comparing the different zones in India, high traffic emissions and localized activities, such as solvent use and solvent evaporation, are found to be the primary sources of BTEX. The findings of the current study aid in source characterization and identification, and better understanding of the region's air quality problems, which helps in the development of focused BTEX pollution reduction and control strategies.
Assuntos
Poluentes Atmosféricos , Derivados de Benzeno , Benzeno , Monitoramento Ambiental , Tolueno , Xilenos , Índia , Poluentes Atmosféricos/análise , Xilenos/análise , Derivados de Benzeno/análise , Tolueno/análise , Benzeno/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Estações do Ano , Atmosfera/químicaRESUMO
The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (â¼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.
Assuntos
Biodegradação Ambiental , Reatores Biológicos , Hidrocarbonetos , Rhodococcus , Rhodococcus/metabolismo , Reatores Biológicos/microbiologia , Hidrocarbonetos/metabolismo , Carbono/metabolismo , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/análise , Espectrometria de Massas , Tolueno/metabolismo , Xilenos/metabolismo , Butanos/metabolismo , Derivados de Benzeno , PentanosRESUMO
In the present study, we investigated the influence of surface fluorine (F) on TiO2 for the photocatalytic oxidation (PCO) of toluene. TiO2 modified with different F content was prepared and tested. It was found that with the increasing of F content, the toluene conversion rate first increased and then decreased. However, CO2 mineralization efficiency showed the opposite trend. Based on the characterizations, we revealed that F substitutes the surface hydroxyl of TiO2 to form the structure of Ti-F. The presence of the appropriate amount of surface Ti-F on TiO2 greatly enhanced the separation of photogenerated carriers, which facilitated the generation of ·OH and promoted the activity for the PCO of toluene. It was further revealed that the increase of only ·OH promoted the conversion of toluene to ring-containing intermediates, causing the accumulation of intermediates and then conversely inhibited the ·OH generation, which led to the decrease of the CO2 mineralization efficiency. The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.
Assuntos
Fluoretos , Oxirredução , Titânio , Tolueno , Tolueno/química , Titânio/química , Catálise , Fluoretos/química , Processos Fotoquímicos , Modelos QuímicosRESUMO
The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2â 6H2O and CoCl2â 6H2O for Co3O4). Bamboo-like MnO2â Co3O4 (B-MnO2â Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4â H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2â Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2â Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2â Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2â Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2â Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2â Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.
Assuntos
Cobalto , Compostos de Manganês , Oxirredução , Óxidos , Tolueno , Óxidos/química , Compostos de Manganês/química , Catálise , Cobalto/química , Tolueno/química , Poluentes Atmosféricos/químicaRESUMO
It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity. Herein, a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants, which were further applied for catalytic removal of carcinogenic toluene. Among the catalysts with different ratios, the CoCu0.2 composite oxide presented the best performance, where the temperature required for 90% conversion of toluene was only 237°C at the high weight hour space velocity (WHSV) of 240,000 mL/(gcat·hr). Meanwhile, compared to the related Co-Cu composite oxides prepared by using different precipitants (NaOH and H2C2O4), the NH4HCO3-derived CoCu0.2 sample exhibited better catalytic efficiency in toluene oxidation, while the T90 were 22 and 28°C lower than those samples prepared by NaOH and H2C2O4 routes, respectively. Based on various characterizations, it could be deduced that the excellent performance was related to the small crystal size (6.7 nm), large specific surface area (77.0 m2/g), hollow hierarchical nanostructure with abundant high valence Co ions and adsorbed oxygen species. In situ DRIFTS further revealed that the possible reaction pathway for the toluene oxidation over CoCu0.2 catalyst followed the route of absorbed toluene â benzyl alcohol â benzaldehyde â benzoic acid â carbonate â CO2 and H2O. In addition, CoCu0.2 sample could keep stable with long-time operation and occur little inactivation under humid condition (5 vol.% water), which revealed that the NH4HCO3-derived CoCu0.2 nanocatalyst possessed great potential in industrial applications for VOCs abatement.
Assuntos
Cobre , Nanocompostos , Catálise , Nanocompostos/química , Cobre/química , Compostos Orgânicos Voláteis/química , Cobalto/química , Porosidade , Poluentes Atmosféricos/química , Tolueno/química , TemperaturaRESUMO
In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200â. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ â Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.
Assuntos
Poluentes Atmosféricos , Mercúrio , Óxidos , Tolueno , Tolueno/química , Óxidos/química , Poluentes Atmosféricos/química , Mercúrio/química , Coque , Catálise , Cromo/química , Adsorção , Manganês/química , Compostos de Manganês/química , Modelos QuímicosRESUMO
Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ â Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ â Co3+ + Ti3+, Co2+ + Ce4+ â Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.
Assuntos
Cério , Cobalto , Oxirredução , Titânio , Tolueno , Titânio/química , Cobalto/química , Catálise , Tolueno/química , Cério/química , Modelos Químicos , Processos FotoquímicosRESUMO
Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.
Assuntos
Cério , Cobre , Oxirredução , Tolueno , Tolueno/química , Catálise , Cobre/química , Cério/química , Modelos Químicos , Poluentes Atmosféricos/químicaRESUMO
There are many pollutants in the air that can be harmful to human health. Their impact varies based on factors such as the kind of pollutant, duration of exposure, and concentration levels. Volatile organic compounds are particularly significant carcinogens among the various pollutants present in the air. Consequently, people who are exposed to these harmful airborne pollutants suffer permanent consequences. This study examines the properties of BTEX compounds-benzene, toluene, ethylbenzene, and xylene-as well as their sources and risk assessments throughout a one-year period from March 21, 2019, to March 20, 2020, in Karaj, Iran's largest industrialized city. First, utilizing a geographical information system that covered the entire city, 17 locations within Karaj were chosen for this purpose. Then, samplings were carried out in the spring, summer, autumn, and winter months with the NIOSH 1501 method. During the research period, 68 samples of BTEX compounds were collected. The adsorption of these contaminants on the activated carbon adsorbents was performed using an environmental sampling pump with a flow rate of 0.2 L/min for 1 h. The samples were subsequently prepared using a carbon disulfide solution and injected into a GC-FID for analysis. In this research, the average annual concentration of BTEX compounds in the air of Karaj city was obtained at 33.01 µg/m3. Autumn and spring had the highest and lowest average concentrations of BTEX compounds, respectively. In addition, sites 5 and 8 had the highest average annual concentrations of these pollutants. The sourcing conducted in this study showed that transportation and fuel consumption, as well as industries, were the primary sources of pollution in the city. In addition, the excess lifetime cancer risk was higher than the guideline value in some sites and lower in others. Furthermore, the Hazard Quotients were lower than 1, but in general, the citizens of Karaj were at serious risk from exposure to this group of pollutants.
Assuntos
Poluentes Atmosféricos , Derivados de Benzeno , Cidades , Estações do Ano , Tolueno , Compostos Orgânicos Voláteis , Medição de Risco , Humanos , Poluentes Atmosféricos/análise , Derivados de Benzeno/análise , Tolueno/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Irã (Geográfico) , Benzeno/análise , Xilenos/análise , IndústriasRESUMO
The presence of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) compounds in beauty salons has raised concerns about potential health risks. This study aimed to measure the levels of BTEX compounds in the air of beauty salons in Lahijan, Iran and assess the associated health risks. Air samples were collected from 15 beauty salons, and the concentrations of BTEX compounds were measured according to 1501 NIOSH standard method. The results showed that the mean concentrations of benzene (20.62 µg/m3), toluene (18.3 µg/m3), ethylbenzene (38.36 µg/m3), and O and P-xylene (27.35, 23.6 µg/m3) were above the recommended levels. The indoor to outdoor ratios for benzene, toluene, ethylbenzene, O and P-xylene were 3.04, 2.36, 3.75, 4.89, and 6.54, respectively. Also, the toluene/benzene (T/B) ratio in indoor and outdoor was 20.9 and 2.68 respectively. Almost half of the technicians (49.12%) reported adverse health effects, including joint pain, itchy eyes and nose, and respiratory allergies. The IARC guideline suggests that there is a potential risk of cancer development for individuals in all salons with LCR values exceeding 10-6, but the HQ index values indicate no non-carcinogenic risk. The findings suggest that beauty salon workers and customers are at risk of developing health problems from exposure to BTEX compounds. Effective risk management strategies, such as proper ventilation, use of personal protective equipment, and substitution of harmful chemicals with safer alternatives, to minimize exposure and protect the health of salon workers and customers recommended.
Assuntos
Derivados de Benzeno , Exposição Ocupacional , Tolueno , Xilenos , Humanos , Derivados de Benzeno/análise , Derivados de Benzeno/efeitos adversos , Medição de Risco , Tolueno/análise , Tolueno/efeitos adversos , Xilenos/análise , Xilenos/toxicidade , Xilenos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Irã (Geográfico) , Benzeno/análise , Benzeno/toxicidade , Benzeno/efeitos adversos , Feminino , Adulto , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Monitoramento Ambiental , Masculino , Beleza , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/toxicidadeRESUMO
Benzene, toluene, ethylbenzene, and the xylene isomers (m, p, and o-xylene) (BTEX) are known for their harmful effects on human health and have been extensively studied across various environmental matrices. However, quantifying BTEX in exhaust gases poses challenges due to the complexity of the matrices. In this study, we investigated a method development strategy involving solid-phase microextraction (SPME) and gas chromatography coupled with a dielectric barrier discharge ionization Detector (BID) for quantifying BTEX emitted from internal combustion engines operating at idle. Sampling was conducted using 1.0 L Tedlar bags, followed by withdrawal of aliquots and dilution with atmospheric air using a novel device (graduated vial) designed for gaseous samples. The SPME-GC-BID method was developed and validated for the conditions: BTEX extraction in CAR/PDMS 75 µm fiber at a contact time of 5.0 min at a temperature of 27 °C, followed by GC-BID analysis. Method validation to ensure the reliability of quantitative results used the merit figures e.g., limits of detection (LOD) and quantification (LOQ), precision, and accuracy (recovery). LOD varied from 0.194 to 0.340 mg m-3, LOQ varied from 0.587 to 1.03 mg m-3, precision ranged from 1.47 to 7.14 %, and recovery varied from 82.34 to 109.5 %. BTEX concentration in vehicle exhaust varied from 3.40 to 16.4 mg m-3. The results showed, concerning the figures of merit analyzed, that the SPME-GC-BID method provides good sensibility, precision, and accuracy for evaluating the presence of BTEX in the exhaust of internal combustion engines, contributing to the understanding of health risks associated with vehicle emissions.
Assuntos
Poluentes Atmosféricos , Derivados de Benzeno , Benzeno , Limite de Detecção , Microextração em Fase Sólida , Emissões de Veículos , Xilenos , Derivados de Benzeno/análise , Emissões de Veículos/análise , Microextração em Fase Sólida/métodos , Xilenos/análise , Poluentes Atmosféricos/análise , Benzeno/análise , Cromatografia Gasosa/métodos , Reprodutibilidade dos Testes , Tolueno/análiseRESUMO
To investigate the mediating effect of oxidative stress on the relationships between low-concentration benzene, toluene, and xylene (BTX) exposure and blood pressure in workers. A cross-sectional study involving 841 workers from a petroleum refining enterprise in Hainan, China, was conducted. Among the workers, 615 workers were exposed to low-concentration BTX, and 216 workers were in the control group. S-phenylmercapturic acid (S-PMA), hippuric acid (HA), and methyl hippuric acid (MHA, including the three isomers 2-MHA, 3-MHA, and 4-MHA) were measured in the urine of workers via high-performance liquid chromatographyâtandem triple quadrupole mass spectrometry to assess the internal BTX burden. Oxidative stress markers, blood pressure, and their correlations were analysed in both the exposed and control groups of workers. Mediation analysis was used to investigate the potential role of oxidative stress in the relationship between BTX exposure and blood pressure. The concentrations of BTX at the sampling points in the enterprise were all below the limits stipulated in China's national occupational health criteria: occupational exposure limits for hazardous agents. With respect to the internal burden of BTX, the concentrations of the benzene metabolite S-PMA, the toluene metabolite HA, and the xylene metabolites 3-MHA and 4-MHA in the urine samples in the exposure group were greater than those in the control group (P < 0.05). The correlation analysis results revealed that the concentration of the benzene metabolite S-PMA in workers' urine was positively correlated with diastolic blood pressure (DBP) (r = 0.265, P < 0.05). Compared with those in the control group, DBP was greater (ß = 1.363, 95% CI 0.088 -2.639), serum superoxide dismutase (SOD) activity was lower (ß = - 0.037, 95% CI - 0.060 to - 0.013), and the serum malondialdehyde (MDA) concentration was greater (ß = 0.066, 95% CI 0.022-0.110) in the exposure group. Partial correlation analysis revealed a positive correlation between DBP and MDA (rs = 0.115, P < 0.01). The results of the mediation analysis indicated that MDA was a complete mediator between low BTX exposure and DBP (P < 0.05). Occupational exposure to low concentrations of BTX elevates blood pressure and oxidative stress among workers. A positive correlation between DBP and MDA was observed, with MDA acting as a complete mediator between low-concentration BTX exposure and DBP elevation.
Assuntos
Benzeno , Exposição Ocupacional , Estresse Oxidativo , Tolueno , Xilenos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Xilenos/toxicidade , Xilenos/urina , Tolueno/toxicidade , Benzeno/toxicidade , Benzeno/análise , Masculino , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Feminino , China , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/urina , Biomarcadores/urina , Biomarcadores/sangueRESUMO
BACKGROUND: In Brazil, gas stations are not self-service; attendants fill fuel tanks, leading to chronic exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes), which can cause bone marrow degeneration and immunosuppression. This systematic review highlights recent advances in biomonitoring gas station workers (GSW). METHODS: We searched PubMed, Medline, and Cochrane databases for articles in English, French, Portuguese, and Spanish from 2014 to April 30, 2024, using multiple search terms. RESULTS: A total of 1,086 articles were identified, 322 were analyzed, and 13 were included in the final review. We highlighted recent technologies in GSW biomonitoring, such as immunophenotyping, molecular cytogenetics (FISH), and measuring miRNAs and inflammatory markers via ELISA. We also explored the link between benzene exposure and immunosuppression and suggested a potential association with chronic inflammation. Conclusion: GSWs face significant health risks and require continuous clinical monitoring, even in the absence of overt disease. Effect biomarkers may indicate early biological responses to benzene toxicity and highlight potential health risks. However, there is no universally accepted gold standard for assessing these biomarkers.
Assuntos
Benzeno , Monitoramento Biológico , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Monitoramento Biológico/métodos , Benzeno/análise , Benzeno/efeitos adversos , Benzeno/toxicidade , Tolueno/efeitos adversos , Biomarcadores/análise , Derivados de Benzeno/efeitos adversos , Xilenos/efeitos adversos , Brasil , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análiseRESUMO
Hepatitis B virus (HBV), particularly through the HBx protein, induces oxidative stress during liver infections. This study reveals that HBx increases reactive oxygen species (ROS) via two distinct mechanisms. The first mechanism is p53-independent, likely involving mitochondrial dysfunction, as demonstrated by elevated ROS levels in p53-deficient Hep3B cells and p53-knocked-down HepG2 cells after HBx expression or HBV infection. The increase in ROS persisted even when p53 transcriptional activity was inhibited by pifithrin-α (PFT-α), a p53 inhibitor. The second mechanism is p53-dependent, wherein HBx activates p53, which then amplifies ROS production through a feedback loop involving ROS and p53. The ability of HBx to elevate ROS levels was higher in HepG2 than in Hep3B cells. Knocking down p53 in HepG2 cells lowered ROS levels, while ectopic p53 expression in Hep3B cells raised ROS. HBx-activated p53 downregulated catalase and upregulated manganese-dependent superoxide dismutase, contributing to ROS amplification. The transcriptional activity of p53 was crucial for these effects, as cells with a p53 R175H mutation or those treated with PFT-α generated less ROS. Additionally, HBx variants with Ser-101 increased p53 and ROS levels, whereas variants with Pro-101 did not. These dual mechanisms of HBx-induced ROS generation are likely significant in the pathogenesis of HBV and may contribute to liver diseases, including hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Espécies Reativas de Oxigênio , Transativadores , Proteína Supressora de Tumor p53 , Proteínas Virais Reguladoras e Acessórias , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Transativadores/genética , Células Hep G2 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Estresse Oxidativo , Catalase/metabolismo , Catalase/genética , Tolueno/análogos & derivados , BenzotiazóisRESUMO
The chemical components of the e-liquids and aerosols contained in electronic nicotine delivery systems (ENDSs), better known as vapes, were evaluated. The analytical technique used was gas chromatography-mass spectrometry, where the extraction and injection methods were established in this study. The work consisted of the analysis of twenty samples of disposable electronic cigarettes prefilled with new e-liquid, of a known brand, flavor, volume, and, in some of them, the percentage of nicotine and the number of puffs per device were indicated on the label. We detected the presence of many substances (at a qualitative and semi-quantitative level), and we achieved the quantification of benzene, toluene, and xylenes (BTX), dangerous substances that cause severe damage to health. Several of the e-liquids and aerosols present BTX concentrations above the permissible exposure limit (PEL), recommended by the Occupational Safety and Health Administration (OSHA): benzene in aerosol samples 80% > PEL, and toluene in aerosol samples 45% > PEL. The number of chemical compounds found in the samples increases from 13 to 167, the average being 52 compounds for the water extraction method, 42 compounds for the methanol extraction method of e-liquids, and 107 compounds for the direct aerosol analysis. It is a fact that many of those compounds, especially BTX, can cause serious effects on human health, affecting the respiratory, digestive, cardiovascular, pulmonary, and immune systems, as well as the brain. Therefore, the use of these devices should be considered with caution, since the substances and their chemical nature may pose significant health risks to both users and those exposed to secondhand emissions.
Assuntos
Aerossóis , Benzeno , Sistemas Eletrônicos de Liberação de Nicotina , Cromatografia Gasosa-Espectrometria de Massas , Tolueno , Xilenos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Aerossóis/análise , México , Xilenos/análise , Tolueno/análise , Benzeno/análiseRESUMO
BACKGROUND: Volatile substance (thinner) addiction can cause serious cardiac events, such as malignant ventricular arrhythmias, acute coronary syndromes, sudden death syndrome, and dilated cardiomyopathy, as reported in many case studies. We aimed to find echocardiographic and electrocardiographic parameters that could foresee these adverse outcomes in clinical settings. METHODS: We enrolled 32 healthy young adult patients with at least 1 year of thinner addiction and no cardiac symptoms. We also recruited a control group of 30 healthy individuals without any medical problems. Both groups received standard echocardiography and ECG tests. We analyzed the following echocardiographic parameters: LVEDd (left ventricular end-diastolic diameter), LVESd (left ventricular end-systolic diameter), mitral valve EF slope, E/A ratio, and aortic and pulmonary valve VTI (velocity time integral). We also measured the corrected (QTc), uncorrected QT intervals, and widest P-wave values in the ECG. We used the SPSS 13 software for statistical analysis. RESULTS: The echocardiographic findings did not differ significantly between the groups. However, the ECG results showed that the thinner addicts had higher values of corrected (QTc), uncorrected QT intervals, and widest P-wave values than the control group, according to Mann-Whitney U and Student's T test. CONCLUSION: Corrected QT (QTc) and P-wave duration are increased in individuals with a thinner addiction. These findings may suggest a higher risk of sudden cardiac death, atrial, and ventricular dysrhythmias in the future.
Assuntos
Eletrocardiografia , Abuso de Inalantes , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Abuso de Inalantes/complicações , Abuso de Inalantes/fisiopatologia , Tolueno , Função Ventricular Esquerda/fisiologia , Ecocardiografia/métodos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/diagnóstico , Estudos de Casos e ControlesRESUMO
The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated via the continuous recirculation of a liquid inoculum). The effects of white rot fungi enzyme extract addition and system responses to variable VOC loading, liquid trickling patterns, and pH were studied. Positive effects of both packing incubation and enzyme addition on biotrickling filtration performance were identified. BFF A exhibited a shorter start-up period (approximately 20 days) and lower pressure drop (75 ± 6 mm H2O) than BTF B (30 days; 86 ± 5 mm H2O), indicating the superior effects of packing incubation over inoculum circulation during the biotrickling filter start-up. The novel approach of using white rot fungi extracts resulted in fast system recovery and enhanced process performance after the BTF acidification episode. Average BTEX elimination capacities of 28.8 ± 0.4 g/(m3 h) and 23.1 ± 0.4 g/(m3 h) were reached for BTF A and BTF B, respectively. This study presents new strategies for controlling and improving the abatement of BTEX in biotrickling filters.
Assuntos
Derivados de Benzeno , Benzeno , Filtração , Tolueno , Xilenos , Xilenos/química , Xilenos/metabolismo , Benzeno/química , Benzeno/metabolismo , Derivados de Benzeno/química , Filtração/métodos , Filtração/instrumentação , Tolueno/metabolismo , Tolueno/química , Biodegradação Ambiental , Poliuretanos/química , Poluentes Atmosféricos , Fungos/metabolismo , Filtros de Ar/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Concentração de Íons de HidrogênioRESUMO
OBJECTIVES: tert-Butylhydroquinone (TBHQ) is an antioxidant and preservative used in unsaturated vegetable oils and processed foods. However, when consumed in higher doses daily, it may pose a threat to public health by potentially increasing the risk of cancer, as it has an affinity with both the aryl hydrocarbon receptor (AhR) and the estrogen receptor alpha (ERα). METHODS: This study aimed to examine the impact of substituting the 1,4-diol of TBHQ with 1,4-dithiol, referred to as TBDT, on the carcinogenic and antioxidant systems using computational methods. The binding affinity of TBHQ and TBDT to the two carcinogenic receptors, AhR and ERα, as well as to the antioxidant receptor Keap1 alone and in connection with Nrf2 (Nrf2-Keap1) was investigated through docking analysis. RESULTS: The results indicated a decrease in TBDT's binding strength to ERα and AhR when assessed using Molegro Virtual Docker (P-value: 0.0001 and 0.00001, respectively), AutoDock Vina (P-value: 0.0001 and 0.0001), and the online server Fast DRH (P-value: 0.0001 and 0.0001). However, TBDT's binding affinity to Keap1 was predicted to be significantly stronger than TBHQ's by both MVD and AutoDock Vina (P-value: 0.0001 and 0.04), while its binding to Nrf2-Keap1 assessed to be stronger only by MVD (P-value: 0.0001). CONCLUSION: These findings suggest that TBDT not only exhibits higher antioxidant activity as a better ligand for the antioxidant system but also shows lower affinity with the AhR and ERα receptors. Therefore, TBDT can be considered a safer compound than TBHQ.
Assuntos
Antioxidantes , Carcinógenos , Receptor alfa de Estrogênio , Hidroquinonas , Proteína 1 Associada a ECH Semelhante a Kelch , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Receptores de Hidrocarboneto Arílico , Hidroquinonas/química , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Antioxidantes/química , Antioxidantes/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/química , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/química , Carcinógenos/toxicidade , Carcinógenos/química , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/química , Ligação Proteica , Tolueno/análogos & derivadosRESUMO
In this study, molecular dynamics simulation was used to predict the molecular diffusion coefficient of acetic acid and acetone in water, toluene, and benzene. The results showed that COMPASS was the best force field to optimize the atoms and structure of molecules, and the results were compared with experimental equations. The Arrhenius behavior of the molecular diffusion coefficient was investigated at three temperatures. The extraction of acetic acid and acetone from water was investigated using two solvents, toluene, and benzene, with and without SiO2 nanoparticles. The relative concentration change diagram was drawn for three cases without and with SiO2 nanoparticles. To quantitatively examine the results, extraction efficiency, selectivity, and distribution coefficient were calculated. The extraction efficiency of acetone from water by benzene in the absence of silica nanoparticles was 65.748 %, this value in the presence of SiO2 nanoparticles with a concentration of 0.2231 wt% was 72.45 % due to the Brownian motion of the nanoparticles, which increased the mass transfer and as a result, the extraction efficiency. With the further increase of nanoparticles up to 1.7573 wt%, the extraction efficiency decreased to 61.276 %, which can be attributed to the accumulation of silica nanoparticles and the decrease in the free movement of nanoparticles.
Assuntos
Ácido Acético , Acetona , Simulação de Dinâmica Molecular , Nanopartículas , Dióxido de Silício , Solventes , Água , Dióxido de Silício/química , Acetona/química , Ácido Acético/química , Água/química , Solventes/química , Nanopartículas/química , Difusão , Tolueno/químicaRESUMO
Aging petrochemical landfills serve as reservoirs of inorganic and organic contaminants, posing potential risks of contamination to the surrounding environment. Identifying the pollution characteristics and elucidating the translocation/ transformation processes of typical contaminants in aging petrochemical landfills are crucial yet challenging endeavors. In this study, we employed a combination of chemical analysis and microbial metagenomic technologies to investigate the pollution characteristics of benzene, toluene, ethylbenzene, and xylene (BTEX) as well as metal(loid)s in a representative aging landfill, surrounding soils, and underlying groundwater. Furthermore, we aimed to explore their transformations driven by microbial activity. Our findings revealed widespread distribution of metal(loid)s, including Cd, Ni, Cu, As, Mn, Pb, and Zn, in these environmental media, surpassing soil background values and posing potential ecological risks. Additionally, microbial processes were observed to contribute significantly to the degradation of BTEX compounds and the transformation of metal(loid)s in landfills and surrounding soils, with identified microbial communities and functions playing key roles. Notably, co-occurrence network analysis unveiled the coexistence of functional genes associated with BTEX degradation and metal(loid) transformation, driven primarily by As, Ni, and Cd. These results shed light on the co-selection of resistance traits against BTEX and metal(loid) contaminants in soil microbial consortia under co-contamination scenarios, supporting microbial adaptive evolution in aging petrochemical landfills. The insights gained from this study enhance our understanding of characteristic pollutants and microbial transformation processes in aging landfills, thereby facilitating improved landfill management and contamination remediation strategies.