Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.051
Filtrar
1.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675645

RESUMO

In the realm of predictive toxicology for small molecules, the applicability domain of QSAR models is often limited by the coverage of the chemical space in the training set. Consequently, classical models fail to provide reliable predictions for wide classes of molecules. However, the emergence of innovative data collection methods such as intensive hackathons have promise to quickly expand the available chemical space for model construction. Combined with algorithmic refinement methods, these tools can address the challenges of toxicity prediction, enhancing both the robustness and applicability of the corresponding models. This study aimed to investigate the roles of gradient boosting and strategic data aggregation in enhancing the predictivity ability of models for the toxicity of small organic molecules. We focused on evaluating the impact of incorporating fragment features and expanding the chemical space, facilitated by a comprehensive dataset procured in an open hackathon. We used gradient boosting techniques, accounting for critical features such as the structural fragments or functional groups often associated with manifestations of toxicity.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Toxicologia/métodos , Humanos
4.
J Med Toxicol ; 20(2): 77-78, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446354
5.
Br J Clin Pharmacol ; 90(5): 1357-1364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439145

RESUMO

To prepare medical students appropriately for the management of toxicological emergencies, we have developed a simulation-based medical education (SBME) training in acute clinical toxicology. Our aim is to report on the feasibility, evaluation and lessons learned of this training. Since 2019, each year approximately 180 fifth-year medical students are invited to participate in the SBME training. The training consists of an interactive lecture and two SBME stations. For each station, a team of students had to perform the primary assessment and management of an intoxicated patient. After the training, the students completed a questionnaire about their experiences and confidence in clinical toxicology. Overall, the vast majority of students agreed that the training provided a fun, interactive and stimulating way to teach about clinical toxicology. Additionally, they felt more confident regarding their skills in this area. Our pilot study shows that SBME training was well-evaluated and feasible over a longer period.


Assuntos
Competência Clínica , Estudos de Viabilidade , Estudantes de Medicina , Toxicologia , Humanos , Estudantes de Medicina/psicologia , Projetos Piloto , Toxicologia/educação , Treinamento com Simulação de Alta Fidelidade/métodos , Inquéritos e Questionários , Educação de Graduação em Medicina/métodos , Treinamento por Simulação/métodos
7.
Clin Toxicol (Phila) ; 62(3): 164-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38525861

RESUMO

BACKGROUND: Paracetamol overdose is the most common cause of acute liver failure in the United States. Administration of acetylcysteine is the standard of care for this intoxication. Laboratory values and clinical criteria are used to guide treatment duration, but decision-making is nuanced and often complex and difficult. The purpose of this study was to evaluate the effect of the introduction of a medical toxicology service on the rate of errors in the management of paracetamol overdose. METHODS: This was a single center, retrospective, cohort evaluation. Patients with suspected paracetamol overdose were divided into two groups: those attending in the 1 year period before and those in the 1 year after the introduction of the medical toxicology service. The primary outcome was the frequency of deviations from the established management of paracetamol intoxication, using international guidelines as a reference. RESULTS: Fifty-four patients were eligible for the study (20 pre-toxicology-service, 34 post-toxicology-service). The frequency of incorrect therapeutic decisions was significantly lower in the post-toxicology service implementation versus the pre-implementation group (P = 0.005). DISCUSSION: Our study suggests that a medical toxicology service reduces the incidence of management errors, including the number of missed acetylcysteine doses in patients with paracetamol overdose. The limitations include the retrospective study design and that the study was conducted at a single center, which may limit generalizability. CONCLUSIONS: The implementation of a medical toxicology service was associated with a decrease in the number of errors in the management of paracetamol overdose.


Assuntos
Acetaminofen , Acetilcisteína , Overdose de Drogas , Centros de Atenção Terciária , Humanos , Acetaminofen/intoxicação , Estudos Retrospectivos , Overdose de Drogas/terapia , Overdose de Drogas/tratamento farmacológico , Feminino , Masculino , Adulto , Acetilcisteína/uso terapêutico , Pessoa de Meia-Idade , Analgésicos não Narcóticos/intoxicação , Antídotos/uso terapêutico , Toxicologia/métodos , Adulto Jovem
10.
Toxicol Sci ; 199(1): 29-39, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38374304

RESUMO

To avoid adverse events in humans, toxicity studies in nonclinical species have been the foundation of safety evaluation in the pharmaceutical industry. However, it is recognized that working with animals in research is a privilege, and conscientious use should always respect the 3Rs: replacement, reduction, and refinement. In the wake of the shortages in routine nonrodent species and considering that nonanimal methods are not yet sufficiently mature, the value of the rabbit as a nonrodent species is worth exploring. Historically used in vaccine, cosmetic, and medical device testing, the rabbit is seldom used today as a second species in pharmaceutical development, except for embryo-fetal development studies, ophthalmic therapeutics, some medical devices and implants, and vaccines. Although several factors affect the decision of species selection, including pharmacological relevance, pharmacokinetics, and ADME considerations, there are no perfect animal models. In this forum article, we bring together experts from veterinary medicine, industry, contract research organizations, and government to explore the pros and cons, residual concerns, and data gaps regarding the use of the rabbit for general toxicity testing.


Assuntos
Testes de Toxicidade , Coelhos , Animais , Especificidade da Espécie , Modelos Animais , Alternativas aos Testes com Animais , Humanos , Toxicologia/métodos
12.
ALTEX ; 41(2): 273-281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38215352

RESUMO

Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated AI models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public.


Probabilistic risk assessment, initially from engineering, is applied in toxicology to understand chemical-related hazards and their consequences. In toxicology, uncertainties abound ­ unclear molecular events, varied proposed outcomes, and population-level assessments for issues like neurodevelopmental disorders. Establishing links between chemical exposures and diseases, especially rare events like birth defects, often demands extensive studies. Existing methods struggle with subtle effects or those affecting specific groups. Future risk assessments must address developmental disease origins, presenting challenges beyond current capabilities. The intricate nature of many toxicological processes, lack of consensus on mechanisms and outcomes, and the need for nuanced population-level assessments highlight the complexities in understanding and quantifying risks associated with chemical exposures in the field of toxicology.


Assuntos
Inteligência Artificial , Toxicologia , Animais , Humanos , Alternativas aos Testes com Animais , Medição de Risco/métodos , Incerteza , Toxicologia/métodos
16.
J Chem Inf Model ; 64(7): 2624-2636, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38091381

RESUMO

Imputation machine learning (ML) surpasses traditional approaches in modeling toxicity data. The method was tested on an open-source data set comprising approximately 2500 ingredients with limited in vitro and in vivo data obtained from the OECD QSAR Toolbox. By leveraging the relationships between different toxicological end points, imputation extracts more valuable information from each data point compared to well-established single end point methods, such as ML-based Quantitative Structure Activity Relationship (QSAR) approaches, providing a final improvement of up to around 0.2 in the coefficient of determination. A significant aspect of this methodology is its resilience to the inclusion of extraneous chemical or experimental data. While additional data typically introduces a considerable level of noise and can hinder performance of single end point QSAR modeling, imputation models remain unaffected. This implies a reduction in the need for laborious manual preprocessing tasks such as feature selection, thereby making data preparation for ML analysis more efficient. This successful test, conducted on open-source data, validates the efficacy of imputation approaches in toxicity data analysis. This work opens the way for applying similar methods to other types of sparse toxicological data matrices, and so we discuss the development of regulatory authority guidelines to accept imputation models, a key aspect for the wider adoption of these methods.


Assuntos
Relação Quantitativa Estrutura-Atividade , Toxicologia , Toxicologia/métodos
18.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37506331

RESUMO

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Assuntos
Ensaios de Triagem em Larga Escala , Toxicologia , Animais , Humanos , Ensaios de Triagem em Larga Escala/métodos , Toxicologia/métodos
19.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067461

RESUMO

Molecular toxicology is a field that investigates the interactions between chemical or biological molecules and organisms at the molecular level [...].


Assuntos
Neoplasias , Toxicologia , Humanos , Neoplasias/genética , Neoplasias/prevenção & controle
20.
Artigo em Inglês | MEDLINE | ID: mdl-37973293

RESUMO

For reporting toxicology studies, the presentation of historical control data and the validation of the concurrent control group with respect to historical control limits have become requirements. However, many regulatory guidelines fail to define how such limits should be calculated and what kind of target value(s) they should cover. Hence, this manuscript is aimed to give a brief review on the methods for the calculation of historical control limits that are in use as well as on their theoretical background. Furthermore, this manuscript is aimed to identify open issues for the use of historical control limits that need to be discussed by the community. It seems that, even after 40 years of discussion, more issues remain open than solved, both, with regard to the available methodology as well as its implementation in user-friendly software. Since several of these topics equally apply to several research fields, this manuscript is addressed to all relevant stakeholders who deal with historical control data obtained from toxicological studies, regardless of their background or field of research.


Assuntos
Grupos Controle , Toxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA