Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Int J Pharm ; 656: 124115, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614430

RESUMO

Fibroblast growth factor 21 (FGF21) shows great therapeutic potential in metabolic, neurodegenerative and inflammatory diseases. However, current FGF21 administration predominantly relies on injection rather than oral ingestion due to its limited stability and activity post-gastrointestinal transit, thereby hindering its clinical utility. Milk-derived exosomes (mEx) have emerged as a promising vehicle for oral drug delivery due to their ability to maintain structural integrity in the gastrointestinal milieu. To address the challenge associated with oral delivery of FGF21, we encapsulated FGF21 within mEx (mEx@FGF21) to protect its activity post-oral administration. Additionally, we modified the surface of mEx@FGF21 by introducing transferrin (TF) to enhance intestinal absorption and transport, designated TF-mEx@FGF21. In vitro results demonstrated that the surface modification of TF promoted FGF21 internalization by intestinal epithelial cells. Orally administered TF-mEx@FGF21 showed promising therapeutic effects in septic mice. This study represents a practicable strategy for advancing the clinical application of oral FGF21 delivery.


Assuntos
Fatores de Crescimento de Fibroblastos , Inflamação , Sepse , Fatores de Crescimento de Fibroblastos/administração & dosagem , Animais , Administração Oral , Camundongos , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Exossomos , Transferrina/administração & dosagem , Transferrina/química , Camundongos Endogâmicos C57BL , Leite , Humanos , Sistemas de Liberação de Medicamentos , Absorção Intestinal/efeitos dos fármacos
2.
Adv Mater ; 35(10): e2209603, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524741

RESUMO

Glutathione (GSH)-activatable probes hold great promise for in vivo cancer imaging, but are restricted by their dependence on non-selective intracellular GSH enrichment and uncontrollable background noise. Here, a holographically activatable nanoprobe caging manganese tetraoxide is shown for tumor-selective contrast enhancement in magnetic resonance imaging (MRI) through cooperative GSH/albumin-mediated cascade signal amplification in tumors and rapid elimination in normal tissues. Once targeting tumors, the endocytosed nanoprobe effectively senses the lysosomal microenvironment to undergo instantaneous decomposition into Mn2+ with threshold GSH concentration of ≈ 0.12 mm for brightening MRI signals, thus achieving high contrast tumor imaging and flexible monitoring of GSH-relevant cisplatin resistance during chemotherapy. Upon efficient up-regulation of extracellular GSH in tumor via exogenous injection, the relaxivity-silent interstitial nanoprobe remarkably evolves into Mn2+ that are further captured/retained and re-activated into ultrahigh-relaxivity-capable complex by stromal albumin in the tumor, and simultaneously allows the renal clearance of off-targeted nanoprobe in the form of Mn2+ via lymphatic vessels for suppressing background noise to distinguish tiny liver metastasis. These findings demonstrate the concept of holographic tumor activation via both tumor GSH/albumin-mediated cascade signal amplification and simultaneous background suppression for precise tumor malignancy detection, surveillance, and surgical guidance.


Assuntos
Albuminas , Glutationa , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Sondas Moleculares , Neoplasias , Glutationa/administração & dosagem , Glutationa/farmacocinética , Glutationa/farmacologia , Sondas Moleculares/administração & dosagem , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacologia , Albuminas/administração & dosagem , Albuminas/farmacocinética , Albuminas/farmacologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Aumento da Imagem/métodos , Holografia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Nanopartículas Metálicas/administração & dosagem , Transferrina/administração & dosagem , Transferrina/farmacocinética , Transferrina/farmacologia , Distribuição Tecidual , Células A549 , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Cisplatino/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia
3.
Technol Cancer Res Treat ; 20: 15330338211062325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34825851

RESUMO

Objective: Conventional chemotherapy remains the mainstay treatment for many breast cancer patients, but its effectiveness is limited by toxic side effects. Incorporating drugs such as docetaxel into nanoparticle medicines can reduce toxicity but further improvements are required. To facilitate more active tumor targeting, we prepared transferrin-docetaxel-loaded pegylated-albumin nanoparticles (Tf-PEG-DANPS). Methods: The growth inhibitory effects and the ability of unmodified DANPS or PEG-DANPS to induce apoptosis in 4T1 mouse mammary cancers were compared to Tf-PEG-DANPS treatment using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry. These experiments were extended in vivo to the intravenous treatment of 4T1 tumors where PEG-DANPS was compared to Tf-PEG-DANPS alone or Tf-PEG-DANPS combined with ultrasound (US + Tf-PEG-DANPS). Histological assessments using hematoxylin and eosin (HE) sections were performed to examine antitumor activity, metastasis to lung and liver, and body weight measurements taken as an indicator of toxicity. Results: MTT experiments show that, in the normal and low concentration interval, the inhibition ability of the Tf-PEG-DANPS is higher than that of other drug-giving groups, and the flow cytometry show that the proportion of induced apoptosis in each given group is 2.88%, 42.95%, 48.23%, and 57.89%, indicating that the Tf-PEG-DANPS group has more significant ability to induce apoptosis than other drug-giving groups. From the pathological HE staining and semiquantitative analysis, US+Tf-PEG-DANPS can effectively inhibit the growth of breast cancer transplanted tumors and suppress metastases, it also has smaller toxic side effects on mice. Conclusion: The antitumor effect of US+Tf-PEG-DANPS represents an effective combination that exhibits increased antitumor activity and metastasis reduction with an improved side-effect profile.


Assuntos
Nanopartículas , Transferrina/administração & dosagem , Terapia por Ultrassom , Ondas Ultrassônicas , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Composição de Medicamentos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/secundário , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanomedicina Teranóstica , Terapia por Ultrassom/métodos
4.
Bioconjug Chem ; 32(8): 1535-1540, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34328322

RESUMO

Photoactivatable ligand proteins are potentially useful for light-induced intracellular delivery of therapeutic and diagnostic cargos through receptor-mediated cellular uptake. Here, we report the simple and effective caging of transferrin (Tf), a representative ligand protein with cellular uptake ability, which has been used in the delivery of various cargos. Tf was modified with several biotin molecules through a photocleavable linker, and then the biotinylated Tf (bTf) was conjugated with the biotin-binding protein, streptavidin (SA), to provide steric hindrance to block the interaction with the Tf receptor. Without exposure to light, the cellular uptake of the bTf-SA complex was effectively inhibited. In response to light exposure, the complex was degraded with the release of Tf, leading to cellular uptake of Tf. Similarly, the cellular uptake of Tf-doxorubicin (Dox) conjugates could be suppressed by caging with biotinylation and SA binding, and the intracellular delivery of Dox could be triggered in a light-dependent manner. The intracellularly accumulated Dox decreased the cell viability to 25% because of the cell growth inhibitory effect of Dox. These results provided proof of principle that the caged Tf can be employed as a photoactivatable molecular device for the intracellular delivery of cargos.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Doxorrubicina/administração & dosagem , Transferrina/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Biotinilação , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Humanos , Luz , Modelos Moleculares , Neoplasias/tratamento farmacológico , Transferrina/química , Transferrina/farmacocinética
5.
Toxicol In Vitro ; 75: 105192, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33984456

RESUMO

Targeted delivery aims to enhance cellular uptake and improve therapeutic outcome with higher disease specificity. The expression of transferrin receptor (TfR) is upregulated on tumor cells, which make the protein Tf and its receptor vastly relevant when applied to targeting strategies. Here, we proposed Tf-decorated pH-sensitive PLGA nanoparticles containing the chemosensitizer poloxamer as a carrier for doxorubicin delivery to tumor cells (Tf-DOX-PLGA-NPs), aiming at alleviating multidrug resistance (MDR). We performed a range of in vitro studies to assess whether targeted NPs have the ability to improve DOX antitumor potential on resistant NCI/ADR-RES cells. All evaluations of the Tf-decorated NPs were performed comparatively to the nontargeted counterparts, aiming to evidence the real role of NP surface functionalization, along with the benefits of pH-sensitivity and poloxamer, in the improvement of antiproliferative activity and reversal of MDR. Tf-DOX-PLGA-NPs induced higher number of apoptotic events and ROS generation, along with cell cycle arrest. Moreover, they were efficiently internalized by NCI/ADR-RES cells, increasing DOX intracellular accumulation, which supports the greater cell killing ability of these targeted NPs with respect to MDR cells. Altogether, these findings supported the effectiveness of the Tf-surface modification of DOX-PLGA-NPs for an improved antiproliferative activity. Therefore, our pH-responsive Tf-inspired NPs are a promising smart drug delivery system to overcome MDR effect at some extent, enhancing the efficacy of DOX antitumor therapy.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Transferrina/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Células HeLa , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
ACS Appl Mater Interfaces ; 13(11): 12888-12898, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33715358

RESUMO

With the gradual deep understanding of the tumorigenesis and development process, nanodrug are thought to have great prospects for individualized treatment of tumors. To deliver adequate concentration of active ingredients to targeted tissues, proteins are usually used as carriers to avoid clearance by the immune system. Herein, a new strategy is developed for preparation of the protein-functionalized targeting nanodrugs; different kinds of proteins (albumin, horseradish, transferrin, and ricin) can be quickly loaded in polyacrylic acid nanohydrogels (PAA-NGs) without discrimination within 1 min under the strong driving force of entropy; and the loading efficiency can reach 99% with about 50% loading content. Meanwhile, the activity of the released protein can be well retained. After oriented binding of the targeting agent on the surface of the nanocarriers by a unique and facile technique, the protein-loaded nanodrug exhibits excellent tumor cell uptake and targeting effect. The excellent targeting ability from the oriented binding is further proved by comparing with the non-oriented targeting system. With quick loading of the anti-tumor protein of ricin and oriented binding of transferrin protein (Tf), the targeting nanodrug (PAA-BB@Ricin/Tf) shows a remarkable anti-tumor effect. This study proves a new universal delivery and targeting strategy for improving the nanodelivery system, which has great potentials for clinical application.


Assuntos
Resinas Acrílicas/química , Portadores de Fármacos/química , Hidrogéis/química , Neoplasias/tratamento farmacológico , Proteínas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Entropia , Células Hep G2 , Humanos , Camundongos Endogâmicos ICR , Camundongos Nus , Nanoestruturas/química , Neoplasias/patologia , Proteínas/farmacocinética , Proteínas/uso terapêutico , Ricina/administração & dosagem , Ricina/farmacocinética , Albumina Sérica Humana/administração & dosagem , Albumina Sérica Humana/farmacocinética , Albumina Sérica Humana/uso terapêutico , Transferrina/administração & dosagem , Transferrina/farmacocinética , Transferrina/uso terapêutico
7.
Cancer Res ; 81(3): 763-775, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177062

RESUMO

New treatments are needed to address persistent unmet clinical needs for diffuse large B-cell lymphoma (DLBCL). Overexpression of transferrin receptor 1 (TFR1) is common across cancer and permits cell-surface targeting of specific therapies in preclinical and clinical studies of various solid tumors. Here, we developed novel nanocarrier delivery of chemotherapy via TFR1-mediated endocytosis, assessing this target for the first time in DLBCL. Analysis of published datasets showed novel association of increased TFR1 expression with high-risk DLBCL cases. Carbon-nitride dots (CND) are emerging nanoparticles with excellent in vivo stability and distribution and are adaptable to covalent conjugation with multiple substrates. In vitro, linking doxorubicin (Dox) and transferrin (TF) to CND (CND-Dox-TF, CDT) was 10-100 times more potent than Dox against DLBCL cell lines. Gain- and loss-of-function studies and fluorescent confocal microscopy confirmed dependence of these effects on TFR1-mediated endocytosis. In contrast with previous therapeutics directly linking Dox and TF, cytotoxicity of CDT resulted from nuclear entry by Dox, promoting double-stranded DNA breaks and apoptosis. CDT proved safe to administer in vivo, and when incorporated into standard frontline chemoimmunotherapy in place of Dox, it improved overall survival by controlling patient-derived xenograft tumors with greatly reduced host toxicities. Nanocarrier-mediated Dox delivery to cell-surface TFR1, therefore, warrants optimization as a potential new therapeutic option in DLBCL. SIGNIFICANCE: Targeted nanoparticle delivery of doxorubicin chemotherapy via the TRF1 receptor presents a new opportunity against high-risk DLBCL tumors using potency and precision.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antígenos CD/metabolismo , Doxorrubicina/administração & dosagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Nanopartículas/administração & dosagem , Receptores da Transferrina/metabolismo , Transferrina/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Linhagem Celular Tumoral , Núcleo Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Ciclofosfamida/farmacologia , Quebras de DNA de Cadeia Dupla , Doxorrubicina/farmacologia , Endocitose , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanoconjugados/administração & dosagem , Prednisona/administração & dosagem , Prednisona/farmacologia , Rituximab/administração & dosagem , Rituximab/farmacologia , Transferrina/farmacologia , Vincristina/administração & dosagem , Vincristina/farmacologia
8.
ACS Appl Bio Mater ; 4(6): 5033-5048, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007052

RESUMO

Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, lacks effective targeted therapies due to negative expression of the targetable bioreceptors. Additionally, hypoxic condition in solid tumors contributes to the epithelial to mesenchymal transition (EMT), which aggravates cancer progression, multidrug resistance (MDR), migration, and stemness of the TNBC. A therapeutic module has been established in this regard by coating PLGA nanoparticle with d-penicillamine templated Au-Cu bimetallic nanoclusters. Further, the resultant nanomaterials were coated with recombinant transferrin protein to specifically target transferrin receptor overexpressing TNBC. The synthesized nanocomposites showed strong orange emission band at 630 nm with fluorescence quantum yield of 2%, rendering it suitable for theranostic applications. Experimental results demonstrated efficient cellular internalization and significant innate anti-cell proliferative potential of the nanocomposites. The fabricated nanocomposites were also able to induce cell death in spheroids, which was confirmed by live/dead dual staining results. Furthermore, when EMT-induced TNBC cells were treated with nanocomposites, they generated reactive oxygen species (ROS), depolarized the mitochondrial membrane potential, and induced apoptosis. Gene expression by real-time PCR indicated that treatment of EMT-induced TNBC cells with nanocomposites facilitated mesenchymal to epithelial transition (MET). In MDA-MB-468 cells, treatment with nanocomposites resulted in a 1.35-fold rise in E-cadherin an epithelial marker and a 1.36-fold decrease in vimentin a mesenchymal marker. Similarly, 2.87-fold and 1.76-fold decrease in stemness markers ALDH1A3 and EpCAM were observed in MDA-MB-231. Furthermore, 4.63-fold decrease in expression of ABCC1, a prominent contributor of MDR, was observed in MDA-MB-231. Protein expression studies revealed that nanocomposites reduced p-STAT-3 by 1.61-fold in MDA-MB-231 and by 7.8-fold in MDA-MB-468. Importantly, nanocomposites downregulated the expression of ß-catenin by 3-fold in MDA-MB-231 and by 3.11-fold in MDA-MB-468. Downregulation of EMT with concomitant alteration of STAT-3 and ß-catenin signaling pathways led to reduced migration ability of the TNBC cells.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Cobre/administração & dosagem , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ouro/administração & dosagem , Nanoestruturas/administração & dosagem , Penicilamina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Transferrina/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , beta Catenina/metabolismo
9.
J Pharmacol Exp Ther ; 374(3): 354-365, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561686

RESUMO

The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.


Assuntos
Encéfalo/efeitos dos fármacos , Lipossomos/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Feminino , Técnicas de Transferência de Genes , Terapia Genética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Distribuição Tecidual/fisiologia , Transferrina/administração & dosagem
10.
J Inorg Biochem ; 209: 111100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32502874

RESUMO

In order to effectively avoid the side effects induced by multiple components and tedious synthesis process, a simple therapy system based on one material to simultaneously realize both photothermal therapy (PTT) and photodynamic therapy (PDT) under single laser irradiation will promote the overall phototherapeutic efficiency and make the PTT/PDT system easier to operate. Here, by using transferrin (Tf) as protein template, ultrasmall CuS@transferrin nanodots (CuS@Tf NDs) were successfully synthesized through a facile one-pot protein-based biomineralization method. The obtained CuS@Tf NDs exhibited not only excellent photothermal conversion ability (34.4%) but also high photoactivated formation of reactive oxygen species (ROS) upon 980 nm near-infrared (NIR) irradiation. By loading the drug doxorubicin (DOX) to CuS@Tf NDs, a synergistic therapy system with multiple therapeutic effects combined PTT, PDT, chemotherapy (CT) and tumor targeting properties could be perfectly implemented together by CuS@Tf-DOX NDs without any complicated post-modification process. Results from the in vitro cell experiments confirmed that these CuS@Tf-DOX NDs could produce excellent effect on cancer cells with 88.5% cell inhibition rate. In comparison with the complicated systems based on "multiple-components-in-one" strategy, this therapy system based on one single material but possess multifunctional purpose is easy to operate and more suitable for clinical applications.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Cobre/química , Doxorrubicina/administração & dosagem , Nanopartículas/química , Fototerapia/métodos , Transferrina/química , Antibióticos Antineoplásicos/química , Biomineralização , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Cobre/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Transferrina/administração & dosagem
11.
Theriogenology ; 152: 147-155, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32413800

RESUMO

Hypothermic storage of gametes and embryos at 4 °C can be used as an alternative to cryopreservation, but hypothermic preservation can maintain embryo viability for a short duration only. This study investigated the effect of insulin-transferrin-sodium selenite (ITS) in embryo culture medium on hypothermic storage of bovine embryos at 4 °C. Day 7 bovine embryos were subjected to hypothermic storage in tissue culture medium 199 supplemented with 50% fetal bovine serum and 25 mM HEPES for different time durations. After recovery, the embryos were assessed for survival and hatching rate and gene and protein expression levels. Supplementation of embryo culture medium with ITS significantly increased (P < 0.05) the survival and hatching ability of blastocysts stored at 4 °C for 72 h compared to the control group (100% and 76.3% vs 68.5% and 40.5%, respectively). Furthermore, the beneficial effects of ITS on embryos were associated with greater (P < 0.05) total cell number per blastocyst and lesser apoptotic cells number. Moreover, embryos cultured in ITS had lower intracellular lipid content. The protein expression of sirt1 was greater (P < 0.05) in the ITS group, however, caspase3 protein expression was significantly lesser (P < 0.05) in the ITS group. Quantitative reverse transcription PCR indicated that the mRNA levels of SIRT1 and HSP70 were (P < 0.05) increased upon culture with ITS; however, the mRNA levels of the pro-apoptotic genes BAX and CASP3 were reduced (P < 0.05). Taken together, these data suggest that supplementation of embryo culture medium with ITS improves in vitro bovine embryo quality and survival following hypothermic storage.


Assuntos
Bovinos/embriologia , Técnicas de Cultura Embrionária/veterinária , Insulina/farmacologia , Selenito de Sódio/farmacologia , Transferrina/farmacologia , Animais , Temperatura Baixa , Meios de Cultura , Citoplasma/química , Embrião de Mamíferos/efeitos dos fármacos , Fertilização in vitro/veterinária , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/administração & dosagem , Lipídeos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Selenito de Sódio/administração & dosagem , Oligoelementos/farmacologia , Transferrina/administração & dosagem
12.
J Neurochem ; 155(3): 327-338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32248519

RESUMO

Previous work by our group has shown the pro-differentiating effects of apotransferrin (aTf) on oligodendroglial cells in vivo and in vitro. Further studies showed the remyelinating effect of aTf in animal demyelination models such as hypoxia/ischemia, where the intranasal administration of human aTf provided brain neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis in different brain regions. These data led us to search for a less invasive and controlled technique to deliver aTf to the CNS. To such end, we isolated extracellular vesicles (EVs) from human and mouse plasma and different neuron and glia conditioned media and characterized them based on their quality, quantity, identity, and structural integrity by western blot, dynamic light scattering, and scanning electron microscopy. All sources yielded highly pure vesicles whose size and structures were in keeping with previous literary evidence. Given that, remarkably, EVs from all sources analyzed contained Tf receptor 1 (TfR1) in their composition, we employed two passive cargo-loading strategies which rendered successful EV loading with aTf, specifically through binding to TfR1. These results unveil EVs as potential nanovehicles of aTf to be delivered into the CNS parenchyma, and pave the way for further studies into their possible clinical application in the treatment of demyelinating diseases.


Assuntos
Apoproteínas/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Adulto , Animais , Apoproteínas/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Ratos , Ratos Wistar , Receptores da Transferrina/administração & dosagem , Transferrina/administração & dosagem
13.
Theranostics ; 10(6): 2479-2494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194814

RESUMO

Rationale: "Active targeting" based on the ligand-target affinity is a common strategy to precisely deliver nanoparticle (NP) imaging probes or drug carriers to the diseased tissue. However, such ligand-mediated active targeting inevitably takes place with prerequisite "passive targeting", driven by the enhanced permeability and retention (EPR) effect. Thus, the efficiency of active targeting in relation to off-targeted unbound NPs is of great importance in quantitative imaging of tumor biomarkers and delivery. With the notion that easy clearance of off-targeted uIONPs may lead to enhanced active targeting and tumor accumulation, we examined the NP size effect on "active targeting" of the transferrin receptor (TfR) using transferrin (Tf)-conjugated sub-5 nm (3 nm core) ultrafine iron oxide NPs (uIONPs) and larger IONPs (30 nm core). Methods: Green fluorescent dye (FITC)-labeled active targeting uIONPs (FITC-Tf-uIONPs) and red fluorescent dye (TRITC)-labeled passive targeting uIONPs (TRITC-uIONPs) were prepared. FITC-Tf-IONPs and TRITC-IONPs were used as comparison for the NP size effect. Multiphoton imaging, confocal fluorescence imaging, histological staining and computational analysis were applied to track different types of NPs in tumors at 1, 3 and 24 hours after co-injection of equal amounts of paired NPs, e.g., active targeting FITC-Tf-uIONPs and non-targeting TRITC-uIONPs, or FITC-Tf-IONPs and TRITC-IONPs into the same mice bearing 4T1 mouse mammary tumors. Results: Active targeting uIONPs exhibited an almost 6-fold higher level of tumor retention with deeper penetration comparing to non-targeting uIONPs at 24 hours after co-injection. However, accumulation of active targeting IONPs with a 30-nm core is only about 1.15-fold higher than non-targeting IONPs. The enhanced active targeting by uIONPs can be attributed to the size dependent clearance of unbound off-targeted NPs, as majority off-targeted uIONPs were readily cleared from the tumor by intravasation back into tumor blood vessels likely due to high interstitial pressure, even though they are not favorable for macrophage uptake. Conclusion: Ligand-mediated active targeting improves the delivery and accumulation of the sub-5 nm NPs. The improvement on active targeting is size-dependent and facilitated by NPs with sub-5 nm core sizes. Thus, sub-5 nm NPs may serve as favorable platforms for development of NP-based molecular imaging probes and targeted drug carriers.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Neoplasias Mamárias Experimentais/diagnóstico , Neoplasias Mamárias Experimentais/terapia , Transferrina/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Ligantes , Nanopartículas Magnéticas de Óxido de Ferro/química , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Imagem Óptica/métodos , Tamanho da Partícula , Receptores da Transferrina/metabolismo , Nanomedicina Teranóstica/métodos , Transferrina/química , Transferrina/farmacologia
14.
Brain Res ; 1734: 146738, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32081534

RESUMO

Effective transport of therapeutic nucleic acid to brain has been a challenge for the success of gene therapy for treating brain diseases. In this study, we proposed liposomal nanoparticles modified with brain targeting ligandsfor active brain targeting with enhanced BBB permeation and delivery of genes to brain. We targeted transferrin and nicotinic acetylcholine receptors by conjugating transferrin (Tf) and rabies virus glycoprotein (RVG) peptide to surface of liposomes. Liposomal formulations showed homogeneous particle size and ability to protect plasmid DNA against enzymatic degradation. These nanoparticles were internalized by brain endothelial cells, astrocytes and primary neuronal cells through energy-dependent endocytosis pathways. RVG-Tf coupled liposomes showed superior ability to transfect cells compared to liposomes without surface modification or single modification. Characterization of permeability through blood brain barrier (BBB) and functionality of designed liposomes were performed using an in vitro triple co-culture BBB model. Liposome-RVG-Tf efficiently translocated across in vitro BBB model and, consecutively, transfected primary neuronal cells. Notably, brain-targeted liposomes promoted in vivo BBB permeation. These studies suggest that modifications of liposomes with brain-targeting ligands are a promising strategy for delivery of genes to brain.


Assuntos
Glicoproteínas/genética , Glicoproteínas/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transfecção/métodos , Transferrina/genética , Transferrina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Marcação de Genes/métodos , Glicoproteínas/administração & dosagem , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transferrina/administração & dosagem , Proteínas Virais/administração & dosagem
15.
Sci Rep ; 10(1): 2320, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047170

RESUMO

Mortality of glioblastoma multiforme (GBM) has not improved over the last two decades despite medical breakthroughs in the treatment of other types of cancers. Nanoparticles hold tremendous promise to overcome the pharmacokinetic challenges and off-target adverse effects. However, an inhibitory effect of nanoparticles by themselves on metastasis has not been explored. In this study, we developed transferrin-conjugated porous silicon nanoparticles (Tf@pSiNP) and studied their effect on inhibiting GBM migration by means of a microfluidic-based migration chip. This platform, designed to mimic the tight extracellular migration tracts in brain parenchyma, allowed high-content time-resolved imaging of cell migration. Tf@pSiNP were colloidally stable, biocompatible, and their uptake into GBM cells was enhanced by receptor-mediated internalisation. The migration of Tf@pSiNP-exposed cells across the confined microchannels was suppressed, but unconfined migration was unaffected. The pSiNP-induced destabilisation of focal adhesions at the leading front may partially explain the migration inhibition. More corroborating evidence suggests that pSiNP uptake reduced the plasticity of GBM cells in reducing cell volume, an effect that proved crucial in facilitating migration across the tight confined tracts. We believe that the inhibitory effect of Tf@pSiNP on cell migration, together with the drug-delivery capability of pSiNP, could potentially offer a disruptive strategy to treat GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Espaço Extracelular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Silício/química , Transferrina/administração & dosagem , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas/química , Porosidade , Transferrina/química , Células Tumorais Cultivadas
16.
Curr Mol Med ; 20(2): 134-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31965934

RESUMO

Diabetes mellitus greatly affects the quality of life of patients and has a worldwide prevalence. Insulin is the most commonly used drug to treat diabetic patients and is usually administered through the subcutaneous route. However, this route of administration is ineffective due to the low concentration of insulin at the site of action. This route of administration causes discomfort to the patient and increases the risk of infection due to skin barrier disturbance caused by the needle. The oral administration of insulin has been proposed to surpass the disadvantages of subcutaneous administration. In this review, we give an overview of the strategies to deliver insulin by the oral route, from insulin conjugation to encapsulation into nanoparticles. These strategies are still under development to attain efficacy and effectiveness that are expected to be achieved in the near future.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Administração Oral , Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Suco Gástrico , Humanos , Concentração de Íons de Hidrogênio , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Nanocápsulas , Inibidores de Proteases/farmacologia , Junções Íntimas/fisiologia , Transcitose , Transferrina/administração & dosagem , Transferrina/farmacocinética
17.
Biomater Sci ; 7(10): 4325-4344, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411213

RESUMO

Non-small cell lung carcinoma (NSCLC) is a highly lethal type of cancer with limited therapeutic avenues available to date. In the present study, we formulated PEGylated PLGA thymoquinone nanoparticles (TQ-Np) for improved TQ delivery to NSCLC cells. Transferrin (TF), a biodegradable, non-immunogenic and non-toxic protein, is well known to bind to TFR (transferrin receptor) over-expressed in non-small cell lung carcinoma A549 cells. Thus, the further decoration of the PEGylated PLGA thymoquinone nanoparticles with transferrin (TF-TQ-Np) enhanced the internalization of the nanoparticles within the A549 cells and the activity of TQ. We established TF-TQ-Np as a potent anti-tumorigenic agent through the involvement of p53 and the ROS feedback loop in regulating the microRNA (miRNA) circuitry to control apoptosis and migration of NSCLC cells. TF-TQ-Np-mediated p53 up-regulation favored the potential simultaneous activation of miR-34a and miR-16 targeting Bcl2 to induce apoptosis in the A549 cells. Additionally, TF-TQ-Np also restricted the migration through actin de-polymerization via activation of the p53/miR-34a axis. Further studies in chick CAM xenograft models confirmed the anti-cancer activity of TF-TQ-Np by controlling the p53/miR-34a/miR-16 axis. Furthermore, in vivo experiments conducted in a xenograft model in immunosuppressed Balb/c mice also proved the efficacy of the nanoparticles as an antitumor agent against NSCLC. Thus, our findings cumulatively suggest that the transferrin-adorned TQ-Np successfully coupled two distinct miRNA pathways to potentiate the apoptotic death cascade in the very lethal NSCLC cells and also restricts the migration of these cells without imparting any significant toxicity, which occurs in the widely used chemotherapeutic combinations. Thereby, our findings rekindle new hopes for the development of improved targeted therapeutic options with specified molecular objectives for combating the deadly NSCLC.


Assuntos
Antineoplásicos/administração & dosagem , Benzoquinonas/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Transferrina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos
18.
Drug Deliv ; 26(1): 744-755, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31340676

RESUMO

A drug and gene co-delivery system with chemotherapeutic sensibilization was prepared and used for nasopharyngeal carcinoma therapy. For this purpose, the graphene oxide (GO) was conjugated with the redox hyperbranched poly(amido amine) (HPAA) and then the targeting molecule, transferrin (Tf), was also conjugated. The obtained Tf-HPAA-GO could co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid (pMMP-9) effectively and showed the targeting effect to HNE-1 cells. The co-delivery system showed the effective drug and gene delivery ability with high cytotoxicity and gene transfection efficiency. Besides that, Tf-HPAA-GO/DOC also showed the chemotherapeutic sensibilization effect, the formulation containing HPAA segments showed much higher cytotoxicity than free DOC. Benefiting from the sensibilization effect and DOC/pMMP-9 co-delivery strategy, this Tf-HPAA-GO/DOC/pMMP-9 co-delivery system exhibited the significantly improved therapeutic efficacy to HNE-1 tumor in a combined manner which was confirmed by in vitro and in vivo assays. This strategy provided an easily delivery system combining the drug/gene co-delivery, chemotherapeutic sensibilization, and targeting into one single platform, which showed a promising application in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Grafite/administração & dosagem , Metaloproteinase 9 da Matriz/genética , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Transferrina/administração & dosagem , Células 3T3 , Aminas/síntese química , Aminas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Terapia Genética , Glutationa/metabolismo , Grafite/química , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo
19.
Int J Pharm ; 566: 717-730, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31202901

RESUMO

Liposome based delivery systems provide a promising strategy for treatment of neurodegenerative diseases. A rational design of brain-targeted liposomes can support the development of more efficient treatments with drugs and gene materials. Here, we characterized surface modified liposomes with transferrin (Tf) protein and penetratin (Pen), a cell-penetrating peptide, for efficient and targeted gene delivery to brain cells. PenTf-liposomes efficiently encapsulated plasmid DNA, protected them against enzymatic degradation and exhibited a sustained in vitro release kinetics. The formulation demonstrated low cytotoxicity and was non-hemolytic. Liposomes were internalized into cells mainly through energy-dependent pathways especially clathrin-mediated endocytosis. Reporter gene transfection and consequent protein expression in different cell lines were significantly higher using PenTf-liposomes compared to unmodified liposomes. The ability of these liposomes to escape from endosomes can be an important factor which may have likely contributed to the high transfection efficiency observed. Rationally designed bifunctional targeted-liposomes provide an efficient tool for improving the targetability and efficacy of synthesized delivery systems. This investigation of liposomal properties attempted to address cell differences, as well as, vector differences, in gene transfectability. The findings indicate that PenTf-liposomes can be a safe and non-invasive approach to transfect neuronal cells through multiple endocytosis pathways.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , DNA/administração & dosagem , Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Neurônios/metabolismo , Transferrina/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Lipossomos , Neurônios/efeitos dos fármacos , Plasmídeos , Ratos
20.
J Control Release ; 307: 247-260, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252036

RESUMO

Glioblastoma is a hostile brain tumor associated with high infiltration leading to poor prognosis. Anti-cancer chemotherapeutic agents have limited access into the brain due to the presence of the blood brain barrier (BBB). In this study, we designed a dual functionalized liposomal delivery system, surface modified with transferrin (Tf) for receptor mediated transcytosis and a cell penetrating peptide-penetratin (Pen) for enhanced cell penetration. We loaded doxorubicin and erlotinib into liposomes to enhance their translocation across the BBB to glioblastoma tumor. In vitro cytotoxicity and hemocompatibility studies demonstrated excellent biocompatibility for in vivo administration. Co-delivery of doxorubicin and erlotinib loaded Tf-Pen liposomes revealed significantly (p < 0.05) higher translocation (~15%) across the co-culture endothelial barrier resulting in regression of tumor in the in vitro brain tumor model. The biodistribution of Tf-Pen liposomes demonstrated ~12 and 3.3 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively compared to free drugs. In addition, Tf-Pen liposomes showed excellent antitumor efficacy by regressing ~90% of tumor in mice brain with significant increase in the median survival time (36 days) along with no toxicity. Thus, we believe that this study would have high impact for treating patients with glioblastoma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/administração & dosagem , Doxorrubicina/administração & dosagem , Cloridrato de Erlotinib/administração & dosagem , Glioblastoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Transferrina/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacocinética , Doxorrubicina/farmacocinética , Cloridrato de Erlotinib/farmacocinética , Feminino , Glioblastoma/metabolismo , Humanos , Lipossomos , Masculino , Camundongos Nus , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Transferrina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA