RESUMO
BACKGROUND: Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA). MATERIALS AND METHODS: We searched recent studies and references to summary the research progress of exosomal circRNA. RESULTS: Recent studies have revealed that exosome-derived circRNAs including exo-CDR1as, exo-circRanGAP1, exo-circIAR play vital roles in cell proliferation and apoptosis, epithelial mesenchymal transition, invasion and metastasis, angiogenesis, immune evasion, cellular crosstalk, cancer cachexia through a variety of biological mechanisms, such as serving as microRNA sponges, interacting with RNA binding proteins, regulating gene transcription, N6-Methyladenosine modification and so on. Due to their characteristics of origin, structure, properties and biological functions, exo-circRNAs are expected to apply in precious diagnosis and prognostic indicators, improving drug and radiation resistance and sensitivity, becoming biological therapeutic targets. CONCLUSION: We summarize the update of digestive malignancies associated exo-circRNAs in biogenesis, biological functions, molecular mechanisms, clinical implications, potential applications and experimental technique in order to effectively promote transformation and application in the future.
Assuntos
Exossomos , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Exossomos/genética , Exossomos/metabolismo , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Apoptose/genética , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Immunotherapy has become a primary and secondary treatment for gastric cancer (GC) patients with mismatch repair deficiency (dMMR), and is used in both perioperative and advanced stages. The tumor immune microenvironment (TiME) is crucial for immunotherapy efficacy, yet the impact of MMR status on TiME remains understudied. We employed single-cell RNA sequencing (scRNA-seq) to analyze 33 fresh tissue samples from 25 patients, which included 10 normal tissues, 6 dMMR tumor tissues, and 17 pMMR tumor tissues, aiming to characterize the cellular and molecular components of the TiME. The proficient mismatch repair (pMMR) group displayed a significantly higher prevalence of a specific GC cell type, termed GC2, characterized by increased hypoxia, epithelial-mesenchymal transition (EMT), and angiogenic activities compared to the dMMR group. GC2 cells overexpressed BEX3 and GPC3, and they significantly correlated with poorer survival. The pMMR group also showed increased infiltration of SPP1 + macrophages and FAP + fibroblasts, exhibiting strong hypoxic and pro-angiogenic features. Furthermore, a higher proportion of E2 endothelial cells, involved in extracellular matrix (ECM) remodeling and showing heightened VEGF pathway, HIF pathway, and angiogenesis activity, were identified in pMMR patients. Intercellular communication analyses revealed that GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells interact through VEGF, SPP1, and MIF signals, forming a TiME characterized by hypoxia, pro-angiogenesis, and ECM remodeling. This study uncovered TiME heterogeneity among GC patients with different MMR states, highlighting that the pMMR TiME is distinguished by hypoxia, pro-angiogenesis, and ECM remodeling, driven by the presence of GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells. These findings are pivotal for developing targeted immunotherapies for GC patients with pMMR.
Assuntos
Progressão da Doença , Macrófagos , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Macrófagos/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Masculino , Fibroblastos/metabolismo , Fibroblastos/patologia , Reparo de Erro de Pareamento de DNA , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Gelatinases/metabolismo , Gelatinases/genética , Proteínas de Membrana , EndopeptidasesRESUMO
BACKGROUND: The protein kinase DYRK1B is a negative regulator of cell proliferation but has been found to be overexpressed in diverse human solid cancers. While DYRK1B is recognized to promote cell survival and adaption to stressful conditions, the consequences of elevated DYRK1B levels in cancer cells are largely uncharted. METHODS: To elucidate the role of DYRK1B in cancer cells, we established a A549 lung adenocarcinoma cell model featuring conditional overexpression of DYRK1B. This system was used to characterize the impact of heightened DYRK1B levels on gene expression and to monitor phenotypic and functional changes. RESULTS: A549 cells with induced overexpression of wild type DYRK1B acquired a mesenchymal cell morphology with diminished cell-cell contacts and a reorganization of the pericellular actin cytoskeleton into stress fibers. This transition was not observed in cells overexpressing a catalytically impaired DYRK1B variant. The phenotypic changes were associated with increased expression of the transcription factors SNAIL and SLUG, which are core regulators of epithelial mesenchymal transition (EMT). Further profiling of DYRK1B-overexpressing cells revealed transcriptional changes that are characteristic for the mesenchymal conversion of epithelial cells, including the upregulation of genes that are related to cancer cell invasion and metastasis. Functionally, DYRK1B overexpression enhanced the migratory capacity of A549 cells in a wound healing assay. CONCLUSIONS: The present data identify DYRK1B as a regulator of phenotypic plasticity in A549 cells. Increased expression of DYRK1B induces mesenchymal traits in A549 lung adenocarcinoma cells.
Assuntos
Quinases Dyrk , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células A549 , Movimento Celular/genética , Adenocarcinoma/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Linhagem Celular Tumoral , Proliferação de Células , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismoRESUMO
OBJECTIVE: We aimed to explore the role of structural maintenance of chromosomes 4 (SMC4) in malignant progression and immunology of colon adenocarcinoma (COAD). METHODS: The expression, genetic and protein features, and immune cell infiltration of SMC4 in pan-cancer were provided by public databases and websites. The protein expression of SMC4 in COAD tissues was screened by immunohistochemical assay. Si-RNA-mediated transfection was performed in COAD cells and the proliferation viability was measured using MTT, colony formation and EdU assays. Cell autophagy was detected by AO staining, western blots, and immunofluorescence staining. The migratory ability was determined using scratch and transwell assays. The expression of epithelial-to-mesenchymal transition (EMT) markers and transcriptional factors were detected using western blots. RESULTS: The expression of SMC4 was upregulated in pan-cancer and had relationships with prognosis, TMB, and MSI of cancer patients. Particularly, SMC4 protein was highly expressed in COAD tissues and correlated with poor prognosis of patients. Depletion of SMC4 inhibited cell proliferation, induced autophagy, and decreased migration through EMT progression in COAD cells. In addition, SMC4 was associated with infiltration of neutrophils, M2 macrophages, and CD4 + T cells in COAD, and had positive association with M2 macrophage markers and immune checkpoints. CONCLUSION: SMC4 was correlated with patients' poor prognosis, proliferation, metastasis, and immune cell infiltrates, and might function as a potential diagnosis and prognostic biomarker in COAD.
Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Proteínas de Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo , Transição Epitelial-Mesenquimal , Humanos , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Autofagia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Masculino , Feminino , Regulação para Cima , Adenosina TrifosfatasesRESUMO
This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the "therapeutic" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.
Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs , Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Humanos , Masculino , Camundongos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Transição Epitelial-Mesenquimal/fisiologia , Transição Epitelial-Mesenquimal/genética , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genéticaRESUMO
Metastasis is a major cause of treatment failure in patients with pancreatic cancer, highlighting the urgent need for effective therapeutic strategies. Here, we focused on identifying novel miRNAs with key roles in metastasis of pancreatic cancer. Microarray analysis of miRNA expression in metastatic and non-metastatic pancreatic cancer samples revealed significantly lower expression of miR-6794-3p in the metastatic tumor group. Gain- and loss-of-function approaches using the pancreatic cancer cell lines MIA-PaCa-2 and HPAF-II expressing low and high levels of miR-6794-3p, respectively, indicated a role of miR-6794-3p in suppression of cell invasion, migration, and EMT signaling. Importantly, our results showed that miR-6794-3p exerts its effects by inhibiting expression of the chromatin remodeling factor, RBBP4. The resulting suppression of RBBP4 induced an increase in the levels of GRHL2 involved in regulating invasion, migration, and EMT signaling in metastatic pancreatic cancer cells. Consistent with these findings, low miR-6794-3p expression levels correlate with poor pancreatic cancer patient survival. Additional preclinical experiments on nude mice clearly demonstrated inhibitory effects of miR-6794-3p on pancreatic cancer cell metastasis. The collective results highlight the functional significance of miR-6794-3p as a suppressor of metastasis and support its predictive utility as a prognostic biomarker and therapeutic target in pancreatic cancer.
Assuntos
Camundongos Nus , MicroRNAs , Neoplasias Pancreáticas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Metástase Neoplásica , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genéticaRESUMO
Malignant transformation is concomitant with excessive activation of stress response pathways. Heat shock proteins (HSPs) are stress-inducible proteins that play a role in folding and processing proteins, contributing to the non-oncogene addiction of stressed tumor cells. However, the detailed role of the HSP family in osteosarcoma has not been investigated. Bulk and single-cell transcriptomic data from the GEO and TARGET databases were used to identify HSPs associated with prognosis in osteosarcoma patients. The expression level of HSPD1 was markedly increased in osteosarcoma, correlating with a negative prognosis. Through in vitro and in vivo experiments, we systematically identified HSPD1 as an important contributor to the regulation of proliferation, metastasis, and apoptosis in osteosarcoma by promoting the epithelial-mesenchymal transition (EMT) and activating AKT/mTOR signaling. Subsequently, ATP5A1 was determined as a potential target of HSPD1 using immunoprecipitation followed by mass spectrometry. Mechanistically, HSPD1 may interact with ATP5A1 to reduce the K48-linked ubiquitination and degradation of ATP5A1, which ultimately activates the AKT/mTOR pathway to ensure osteosarcoma progression and EMT process. These findings expand the potential mechanisms by which HSPD1 exerts biological effects and provide strong evidence for its inclusion as a potential therapeutic target in osteosarcoma.
Assuntos
Transição Epitelial-Mesenquimal , Osteossarcoma , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Animais , Transição Epitelial-Mesenquimal/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Camundongos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Proliferação de Células/genética , Camundongos Nus , Apoptose/genética , Chaperonina 60 , Proteínas MitocondriaisRESUMO
BACKGROUND: Tumour invading muscle in head and neck squamous cell carcinoma (HNSCC) is often associated with destructive growth and poor prognosis. However, the phenotypic functions and pathological mechanisms of muscle-invasive cancer cells in tumour progress remains unknown. In this study, we aimed to investigate the phenotypic functions of muscle-invasive cancer cells of HNSCC and their potential crosstalk with tumour microenvironment. METHODS: We obtained scRNA-seq data (SC) from GSE103322 (N = 18) and GSE181919 (N = 37), spatial RNA-seq data (ST) from GSE208253 and GSE181300 (N = 4), transcriptomics of human HNSCC samples from GSE42743 (N = 12) and GSE41613 (N = 97). Utilizing the TCGA-HNSC dataset, we conducted univariate and multivariate Cox analyses to investigate the prognostic impact of muscle-invasion in HNSCC, with validation in an additional cohort. Through Stutility and AUCell approaches, we identified and characterized muscle-invasive cancer cell clusters, including their functional phenotypes and gene-specific profiles. Integration of SC and ST data was achieved using Seurat analysis, multimodal intersection analysis, and spatial deconvolution. The results were further validated via in vitro and in vivo experiments. RESULTS: Our analyses of the TCGA-HNSC cohort revealed the presence of muscle-invasion was associated with a poor prognosis. By combining ST and SC, we identified muscle-invasive cancer cells exhibiting epithelial-to-mesenchymal transition (EMT) and myoepithelial-like transcriptional programs, which were correlated with a poor prognosis. Furthermore, we identified G0S2 as a novel marker of muscle-invasive malignant cells that potentially promotes EMT and the acquisition of myoepithelium-like phenotypes. These findings were validated through in vitro assays and chorioallantoic membranes experiments. Additionally, we demonstrated that G0S2-overexpressing cancer cells might attract human ECs via VEGF signalling. Subsequent in vitro and in vivo experiments revealed G0S2 plays key roles in promoting the proliferation and invasion of cancer cells. CONCLUSIONS: In this study, we profiled the transcriptional programs of muscle-invasive HNSCC cell populations and characterized their EMT and myoepithelial-like phenotypes. Furthermore, our findings highlight the presence of muscle-invasion as a predictive marker for HNSCC patients. G0S2 as one of the markers of muscle-invasive cancer cells is involved in HNSCC intravasation, probably via VEGF signalling.
Assuntos
Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Animais , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Músculos/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , MasculinoRESUMO
Pulmonary fibrosis is characterized by excessive extracellular matrix (ECM) accumulation caused by detrimental stimuli. The progressive impairment in lung functions is chronic and highly fatal, presenting itself as a global health challenge. Because of the lack of efficacious treatments, the underlying mechanism should be investigated. The progression of fibrosis involves transforming growth factor-beta 1 (TGF-ß1), which accelerates ECM production via epithelial-mesenchymal transition and cell invasion. As microRNAs (miRNAs) serve as regulators of disease development and progression, this study aimed to investigate the interaction of miRNAs and target genes that could contribute to pulmonary fibrosis when exposed to TGF-ß1. Differentially expressed mRNA and miRNA were identified in respiratory epithelial cells via transcriptome analysis by using the constructed TGF-ß1-induced fibrosis model. Our results revealed a significant increase in the expression of thrombospondin 1 (THBS1), which participates in TGF-ß1 activation, where THBS1 was identified as a core gene in protein interactions analyzed through bioinformatics. The expression of miR-335-3p, which targets 3'-UTR of THBS1, substantially decreased upon TGF-ß1 treatment. The TGF-ß1 downstream signal was suppressed by inhibiting the interaction between TGF-ß1 and THBS1, consequently alleviating fibrosis. When the miR-335-3p mimic was transfected in TGF-ß1-treated respiratory epithelial cells, THBS1 and fibrosis markers were downregulated, while the introduction of miR-335-3p inhibitor exhibited a reverse phenomenon. Our findings demonstrated that TGF-ß1 exposure to respiratory epithelial cells led to a decrease in miR-335-3p expression, resulting in the upregulation of THBS1 and ultimately exacerbating fibrosis. This study provides insights into TGF-ß1-induced pulmonary fibrosis, suggesting new therapeutic targets and mechanisms.
Assuntos
MicroRNAs , Fibrose Pulmonar , Trombospondina 1 , Fator de Crescimento Transformador beta1 , MicroRNAs/genética , MicroRNAs/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Animais , Humanos , Camundongos , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais , Masculino , Regiões 3' não Traduzidas , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacosRESUMO
Cutaneous malignant melanoma is the most aggressive and the deadliest form of skin cancer. There are two types of limitations which universally exist in current melanoma therapy: Adverse effects and reduced efficiency. Cytoglobin (CYGB), an iron hexacoordinated globin, is highly enriched in melanocytes and frequently epigenetically silenced during melanoma genesis. The present study aimed to explore its potential role as a biomarker for ferroptosis treatment. It was observed that B16F10 and A375 melanoma cells with loss of CYGB expression were highly sensitive to ferroptosis inducers RSL3 and erastin, whereas G361 melanoma cells with highly enriched CYGB were resistant to RSL3 or erastin. Ectopically overexpressed CYGB rendered B16F10 and A375 cells resistant to RSL3 or erastin, accompanied by decreased proliferation and epithelialmesenchymal transition (EMT). By contrast, knockdown of CYGB expression made G361 cells sensitive to ferroptosis induction but induced proliferation and EMT progression of G361 cells. Mechanistically, CYGBinduced resistance of melanoma cells to ferroptosis may have been associated, in part, with i) Suppression of EMT; ii) upregulation of glutathione peroxidase 4 expression; iii) decrease of labile iron pool. In vivo study also demonstrated that CYGB overexpression rendered xenograft melanoma much more resist to RSL3 treatment. Based on these findings, CYGB is a potential therapeutic biomarker to screen the melanoma patients who are most likely benefit from ferroptosis treatment.
Assuntos
Proliferação de Células , Citoglobina , Transição Epitelial-Mesenquimal , Ferroptose , Melanoma , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Citoglobina/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Transição Epitelial-Mesenquimal/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Piperazinas/farmacologia , CarbolinasRESUMO
Hepatocellular carcinoma (HCC) ranks as the sixth most prevalent cancer worldwide. The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, contributing to increased malignancy. While Pleiotropic Regulator 1 (PLRG1) is upregulated in HCC and is associated with enhanced cell proliferation, its oncogenic role in EMT remains unclear. In this study, we demonstrate that PLRG1 promotes EMT in HCC cells. Knockdown of PLRG1 in Huh7 cells resulted in decreased expression of the EMT markers N-cadherin and Snail, and impaired cell migration and invasion. Chromatin immunoprecipitation (ChIP) and luciferase assays identified Y-box binding protein 1 (YBX1) as a direct regulator of PLRG1 transcription, binding to its promoter region. Overexpression of YBX1 in SNU-449 cells led to increased PLRG1 expression and subsequent EMT activation, as well as enhanced migration, and invasion. These effects were attenuated by PLRG1 knockdown. Our findings indicate that YBX1 drives EMT in HCC by upregulating PLRG1, offering novel insights into the molecular mechanisms underlying HCC progression.
Assuntos
Carcinoma Hepatocelular , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas , Proteínas Nucleares , Proteína 1 de Ligação a Y-Box , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/genéticaRESUMO
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as markers for cancer stem cells (CSCs). Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme involved in the detoxification of lipid peroxidation by-products and metabolism of various aldehyde substrates. This study examines the potential role of ALDH1B1 in human lung adenocarcinoma and its association with the CSC phenotype. To this end, we utilized the lung adenocarcinoma cell line A549, engineered to stably express the human ALDH1B1 protein tagged with green fluorescent protein (GFP). Overexpression of ALDH1B1 led to notable changes in cell morphology, proliferation rate and clonogenic efficiency. Furthermore, ALDH1B1-overexpressing A549 cells exhibited enhanced resistance to the chemotherapeutic agents etoposide and cisplatin. Additionally, ALDH1B1 overexpression correlated with increased migratory potential and epithelial-mesenchymal transition (EMT), mediated by the upregulation of transcription factors such as SNAI2, ZEB2 and TWIST1, alongside the downregulation of E-cadherin. Moreover, Spearman's rank correlation coefficient analysis using data from 507 publicly available lung adenocarcinoma clinical samples revealed a significant correlation between ALDH1B1 and various molecules implicated in CSC-related signaling pathways, including Wnt, Notch, hypoxia, Hedgehog, retinoic acid, Hippo, NF-κΒ, TGF-ß, PI3K/PTEN-AKT and glycolysis/gluconeogenesis. These findings provide insights into the role of ALDH1B1 in lung tumor progression and its relation to the lung CSC phenotype, thereby offering potential therapeutic targets in the clinical management of lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão , Família Aldeído Desidrogenase 1 , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Transição Epitelial-Mesenquimal/genética , Células A549 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Movimento Celular , Transdução de Sinais , Aldeído-Desidrogenase MitocondrialRESUMO
Osteosarcoma (OS) is the most frequent primary malignant bone tumour, whose heterogeneity represents a major challenge for common antitumour therapies. Inflammatory cytokines are known to be necessary for OS progression. Therefore, to optimise therapy, it is important to discover reliable biomarkers by identifying the mechanism generating OS and investigating the inflammatory pathways that support the undifferentiated state. In this work, we highlight the differences of epigenetic activities of IL-1ß and TNFα, and the susceptibility of TET-1 enzymatic inhibition, in tumour progression of three different OS cell lines. Investigating DNA methylation of IL-6 promoter and determining its expression, we found that TET enzymatic inhibition influences proliferation induced by inflammatory cytokines in OS cell lines. Moreover, Bobcat 339 treatment blocks IL-1ß epigenetic action on IL-6 promoter, while only partially those of TNFα as well as inhibits IL-1ß-dependent epithelial-mesenchymal transition (EMT) process, but only partially those of TNFα. In conclusion, this work highlights that IL-1ß and TNFα have different effects on DNA demethylation in OS cell lines, making DNA methylation a potential biomarker of disease. Specifically, in IL-1ß treatment, TET-1 inhibition completely blocks tumour progression, while in TNFα actions, it is only partially effective. Given that these two inflammatory pathways can be therapeutic targets for treating these tumours, knowledge of their distinct epigenetic behaviours can be useful for developing precise and specific therapeutic strategies for this disease.
Assuntos
Metilação de DNA , Epigênese Genética , Interleucina-1beta , Osteossarcoma , Proteínas Proto-Oncogênicas , Fator de Necrose Tumoral alfa , Humanos , Interleucina-1beta/genética , Interleucina-1beta/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Metilação de DNA/genética , Metilação de DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas/genética , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Progressão da Doença , Regiões Promotoras Genéticas/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Oxigenases de Função Mista/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Interleucina-6/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologiaRESUMO
Synaptojanin 2 (SYNJ2) has crucial role in various tumors, but its role in papillary thyroid carcinoma (PTC) remains unexplored. This study first detected SYNJ2 protein expression in PTC using immunohistochemistry method and further assessed SYNJ2 mRNA expression through mRNA chip and RNA sequencing data and its association with clinical characteristics. Additionally, KEGG, GSVA, and GSEA analyses were conducted to investigate potential biological functions, while single-cell RNA sequencing data were used to explore SYNJ2's underlying mechanisms in PTC. Meanwhile, immune infiltration status in different SYNJ2 expression groups were analyzed. Besides, we investigated the immune checkpoint gene expression and implemented drug sensitivity analysis. Results indicated that SYNJ2 is highly expressed in PTC (SMD = 0.66 [95% CI: 0.17-1.15]) and could distinguish between PTC and non-PTC tissues (AUC = 0.74 [0.70-0.78]). Furthermore, the study identified 134 intersecting genes of DEGs and CEGs, mainly enriched in the angiogenesis and epithelial-mesenchymal transition (EMT) pathways. Subsequent analysis showed the above pathways were activated in PTC epithelial cells. PTC patients with high SYNJ2 expression showed higher sensitivity to the six common drugs. Summarily, SYNJ2 may promote PTC progression through angiogenesis and EMT pathways. High SYNJ2 expression is associated with better response to immunotherapy and chemotherapy.
Assuntos
Regulação Neoplásica da Expressão Gênica , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Transcriptoma , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Masculino , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Feminino , RNA-Seq , Pessoa de Meia-Idade , Análise da Expressão Gênica de Célula ÚnicaRESUMO
BACKGROUND: Asthma, a prevalent chronic respiratory condition, is characterized by airway remodeling. Long non-coding RNA (lncRNA) NEAT1 has been demonstrated to participate in airway fibrosis. Furthermore, the miR-204-5p/Six1 axis significantly influences epithelial mesenchymal transition (EMT). However, the function of NEAT1/miR-204-5p/Six1 in asthmatic EMT remains unclear. PURPOSE: This study intends to elucidate the function of NEAT1/miR-204-5p/Six1 axis in asthmatic EMT. METHODS: TGF-ß1 was used to induce the EMT model in BEAS-2B cells. Immunofluorescence and western blot were executed to verify the establishment of the EMT model. NEAT1, miR-204-5p, and Six1 expression levels were evaluated using RT-qPCR. The role of NEAT1 in EMT in vitro was explored by CCK8 assays and flow cytometry. The luciferase reporter assay was performed to validate the interaction between NEAT1 and miR-204-5p/Six1. RESULTS: NEAT1 expression was increased during EMT. Functional experiments showed that the knockdown of NEAT1 suppressed cell proliferation and promoted cell apoptosis in vitro. Furthermore, inhibition of NEAT1 decreased the expression of N-cadherin, vimentin, and α-SMA and increased the expression of E-cadherin. Mechanistically, NEAT1 was identified as a sponge for miR-204-5p, and Six1 was found to be a direct target of miR-204-5p. CONCLUSION: Down-regulation of NEAT1 reduced the Six1 expression via targeting miR-204-5p to inhibit the process of EMT in asthma. This study may provide new insight to reveal the underlying mechanisms of asthma.
Assuntos
Asma , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Asma/genética , Asma/metabolismo , Asma/patologia , Humanos , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Apoptose/genética , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Caderinas/metabolismo , Caderinas/genética , Vimentina/metabolismo , Vimentina/genética , Proteínas de HomeodomínioRESUMO
Genomic instability is associated with late stage carcinomas and the epithelial mesenchymal transition (EMT). Of note is chromosome 8q24 amplification that has been documented in many epithelial-derived carcinomas. On this amplified region is the potent oncogene, c-myc. Not only does MYC overexpression activate targets that promote cell proliferation, it also activates transcription factors that drive EMT, including ZEB1. Further reinforcing EMT, overexpressed MYC also represses tumor suppressors involved in promoting the epithelial phenotype, including MIZ1. We predict that as carcinomas progress, chromosome 8q24 is amplified leading to high MYC levels that leads to ZEB1 expression and MIZ1 repression driving cells through EMT. To interrogate this clinically, limited cohorts of human epithelial-derived carcinomas were examined for MYC/ZEB1/MIZ1 expression patterns across increasing carcinoma grades. Interestingly, the predicted temporal patterns were only observed in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinomas. Yet MIZ1 proved to be an excellent marker to assess carcinoma progression across types. We expanded the HCC cohort and determined that c-myc amplification was restricted to grade III/IV HCC that also exhibited increased MYC and ZEB1 nuclear expression whereas cytosolic MIZ1 expression was lost and only nuclear expression retained. These same resections were obtained from only individuals who had histories of alcohol consumption that were also diagnosed with cirrhosis, metastasis and had viral hepatitis suggesting etiology-specific mechanisms of cancer progression. Finally, analysis performed in Hep3B cells determined that alterations in MYC expression promoted the predicted changes in ZEB1 and MIZ1 expression and/or distributions and in markers for EMT further suggesting a relationship among these three transcription factors in HCC and their correlation to driving EMT.
Assuntos
Carcinoma Hepatocelular , Cromossomos Humanos Par 8 , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Cromossomos Humanos Par 8/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transição Epitelial-Mesenquimal/genética , Amplificação de Genes , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Masculino , FemininoRESUMO
Epigenetic reprogramming plays a critical role in cancer progression of cancer, and N6-methyladenosine (m6A) is the most common RNA modification in eukaryotes. The purpose of this study was to explore the related modification mode of m6A regulator construction and evaluate the invasion and migration of thyroid cancer. Our results showed that m6A levels were significantly increased in papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) samples, which may have been induced by the down-regulation of demethylase fat mass and obesity-associated gene (FTO). Moreover, FTO inhibited PTC and ATC invasion and metastasis through the epithelial-to-mesenchymal transition (EMT) pathway in vivo and in vitro. Mechanistically, an m6A-mRNA epitranscriptomic microarray showed that Cadherin 12 (CDH12) is the key target gene mediated by FTO in an m6A-dependent manner. CDH12 promotes invasion and metastasis through the EMT pathway in thyroid cancer, both in vivo and in vitro. Furthermore, we found that insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an important m6A reading protein, that regulates the stability of CDH12 mRNA and mediates EMT progression, thereby promoting the invasion and metastasis of PTC and ATC. Thus, FTO, IGF2BP2 and CDH12 may be effective therapeutic targets for PTC and ATC with significant invasion or distant metastasis. Schematic summary of FTO-IGF2BP2 axis in modulation of CDH12 mRNA m6A and upregulation of CDH12 expression in the invasion and metastasis of thyroid carcinoma.
Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Caderinas , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Proteínas de Ligação a RNA , Neoplasias da Glândula Tireoide , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Camundongos , Camundongos Nus , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Camundongos Endogâmicos BALB C , Masculino , FemininoRESUMO
Recent studies indicate that CISD3 is crucial in mitochondrial function and tumorigenesis. Using various databases, we systematically analyzed its expression, prognostic value, and immune activity. Our findings show CISD3 is mainly expressed in tumor cells across cancers, with higher mRNA but lower protein levels, degraded post-translationally via the lysosomal pathway. In certain cancers, CISD3 expression is positively correlated with tumor-infiltrating immune cells. Prognostic analysis suggests dual roles as both protective and risk factors, notably an independent prognostic predictor in renal cell carcinoma (RCC). CISD3 copy number variations are linked to homologous recombination defects and tumor-specific neoantigens, negatively correlated with methylation levels. Pathway analysis reveals CISD3 involvement in oncogenic processes, such as proliferation inhibition and epithelial-mesenchymal transition. Protein interactions underline its role in mitochondrial metabolism and redox balance. Experiments confirm low CISD3 expression in cancers, with overexpression reducing proliferation, migration, invasion, and tumor growth in mice. Mechanistic studies indicate CISD3 overexpression disrupts mitochondrial function, increases ROS levels, decreases GSH/GSSG ratios and mitochondrial membrane potential, inhibiting antioxidant activity and promoting cell damage and ferroptosis, thus impeding cancer progression. This study highlights CISD3's potential as a prognostic biomarker and therapeutic target.
Assuntos
Biomarcadores Tumorais , Humanos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Animais , Prognóstico , Camundongos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Mitocôndrias/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Variações do Número de Cópias de DNA , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
In lung disease, persistence of KRT8-expressing aberrant basaloid cells in the alveolar epithelium is associated with impaired tissue regeneration and pathological tissue remodeling. We analyzed single cell RNA sequencing datasets of human interstitial lung disease and found the profibrotic Interleukin-11 (IL11) cytokine to be highly and specifically expressed in aberrant KRT8+ basaloid cells. IL11 is similarly expressed by KRT8+ alveolar epithelial cells lining fibrotic lesions in a mouse model of interstitial lung disease. Stimulation of alveolar epithelial cells with IL11 causes epithelial-to-mesenchymal transition and promotes a KRT8-high state, which stalls the beneficial differentiation of alveolar type 2 (AT2)-to-AT1 cells. Inhibition of IL11-signaling in AT2 cells in vivo prevents the accumulation of KRT8+ cells, enhances AT1 cell differentiation and blocks fibrogenesis, which is replicated by anti-IL11 therapy. These data show that IL11 inhibits reparative AT2-to-AT1 differentiation in the damaged lung to limit endogenous alveolar regeneration, resulting in fibrotic lung disease.
Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Interleucina-11 , Regeneração , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Interleucina-11/metabolismo , Interleucina-11/genética , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Regeneração/genética , Transdução de SinaisRESUMO
Colon adenocarcinoma (COAD) is a prevalent gastrointestinal malignant disease with a high mortality rate, and identification of novel prognostic biomarkers and therapeutic targets is urgently needed. Although NDUFA4L2 has high expressions in various tumors and affects tumor progression, its role in COAD remains unclear. The role of NDUFA4L2 in COAD was analyzed utilizing datasets available from public databases including The Cancer Genome Atlas, The Genotype-Tissue Expression (GTEx), Gene Expression Omnibus, Alabama Cancer Database (UALCAN), and The Human Protein Atlas databases. The prognostic value of NDUFA4L2 was determined using Kaplan-Meier analysis and Cox regression analysis. To investigate the possible mechanism underlying the role of NDUFA4L2 in COAD, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were employed. The correlation between NDUFA4L2 expression and immune cell infiltration levels was examined through single-sample gene set enrichment analysis (ssGSEA). The NDUFA4L2 expression levels in COAD patients and cell lines were validated through immunohistochemistry, immunofluorescence, qRT-PCR, and Western blot. Wound healing assay was also performed to evaluate the effect of NDUFA4L2 on COAD metastasis. Furthermore, the NDUFA4L2 mediated competing endogenous RNA (ceRNA) regulatory network was predicted and constructed through a variety of databases. The comprehensive pan-cancer analysis showed that NDUFA4L2 possesses diagnostic and prognostic value in many cancers, especially in COAD. GO-KEGG and GSEA analyses indicated that NDUFA4L2 was associated with multiple biological functions including epithelial-mesenchymal transition and adaptation to hypoxia. The ssGSEA analysis showed that NDUFA4L2 expression was associated with immune infiltration. In vitro experiments confirmed upregulation of NDUFA4L2 in COAD tissues and cell lines, and NDUFA4L2 overexpression significantly promoted migration of COAD cells. In addition, the C9orf139 /miR-194-3p axis was speculated as the possible upstream regulators of NDUFA4L2 in COAD. This study demonstrated that NDUFA4L2 upregulation was correlated with tumor progression, relapsed prognosis and aggressive migration of COAD, suggesting that NDUFA4L2 can act as an effective prognostic biomarker and a promising therapeutic target for COAD treatment.