Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839991

RESUMO

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Assuntos
Cardiolipinas , Translocases Mitocondriais de ADP e ATP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Sítios de Ligação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Humanos , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/química , Fosforilação Oxidativa , Translocador 1 do Nucleotídeo Adenina/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Mutação , Mutação de Sentido Incorreto
2.
EMBO Rep ; 24(8): e57127, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278158

RESUMO

The mitochondrial ADP/ATP carrier (SLC25A4), also called the adenine nucleotide translocase, imports ADP into the mitochondrial matrix and exports ATP, which are key steps in oxidative phosphorylation. Historically, the carrier was thought to form a homodimer and to operate by a sequential kinetic mechanism, which involves the formation of a ternary complex with the two exchanged substrates bound simultaneously. However, recent structural and functional data have demonstrated that the mitochondrial ADP/ATP carrier works as a monomer and has a single substrate binding site, which cannot be reconciled with a sequential kinetic mechanism. Here, we study the kinetic properties of the human mitochondrial ADP/ATP carrier by using proteoliposomes and transport robotics. We show that the Km/Vmax ratio is constant for all of the measured internal concentrations. Thus, in contrast to earlier claims, we conclude that the carrier operates with a ping-pong kinetic mechanism in which substrate exchange across the membrane occurs consecutively rather than simultaneously. These data unite the kinetic and structural models, showing that the carrier operates with an alternating access mechanism.


Assuntos
Mitocôndrias , Translocases Mitocondriais de ADP e ATP , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Cinética , Translocador 1 do Nucleotídeo Adenina/metabolismo
3.
Arch Toxicol ; 97(7): 1927-1941, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37154957

RESUMO

Mitochondrial dysfunction is pivotal in drug-induced acute kidney injury (AKI), but the underlying mechanisms remain largely unknown. Transport proteins embedded in the mitochondrial inner membrane form a significant class of potential drug off-targets. So far, most transporter-drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC). Since it remains unknown to what extent AAC contributes to drug-induced mitochondrial dysfunction in AKI, we here aimed to better understand the functional role of AAC in the energy metabolism of human renal proximal tubular cells. To this end, CRISPR/Cas9 technology was applied to generate AAC3-/- human conditionally immortalized renal proximal tubule epithelial cells. This AAC3-/- cell model was characterized with respect to mitochondrial function and morphology. To explore whether this model could provide first insights into (mitochondrial) adverse drug effects with suspicion towards AAC-mediated mechanisms, wild-type and knockout cells were exposed to established AAC inhibitors, after which cellular metabolic activity and mitochondrial respiratory capacity were measured. Two AAC3-/- clones showed a significant reduction in ADP import and ATP export rates and mitochondrial mass, without influencing overall morphology. AAC3-/- clones exhibited reduced ATP production, oxygen consumption rates and metabolic spare capacity was particularly affected, mainly in conditions with galactose as carbon source. Chemical AAC inhibition was stronger compared to genetic inhibition in AAC3-/-, suggesting functional compensation by remaining AAC isoforms in our knockout model. In conclusion, our results indicate that ciPTEC-OAT1 cells have a predominantly oxidative phenotype that was not additionally activated by switching energy source. Genetic inhibition of AAC3 particularly impacted mitochondrial spare capacity, without affecting mitochondrial morphology, suggesting an important role for AAC in maintaining the metabolic spare respiration.


Assuntos
Injúria Renal Aguda , Translocases Mitocondriais de ADP e ATP , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Células Epiteliais/metabolismo , Injúria Renal Aguda/metabolismo
4.
Chem Biol Drug Des ; 101(4): 865-872, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527173

RESUMO

Two natural products, bongkrekic acid and carboxyatractyloside, are known to specifically inhibit the mitochondrial ADP/ATP carrier from its matrix side and cytosolic side, respectively, in concentration ranges of 10-6  M. In the present study, we investigated the manner of action of a synthetic bongkrekic acid derivative, KH-17, lacking three methyl groups, one methoxy group, and five internal double bonds, on the mitochondrial ADP/ATP carrier. At slightly acidic pH, KH-17 inhibited mitochondrial [3 H]ADP uptake, but its inhibitory action was about 10 times weaker than that of its parental compound, bongkrekic acid. The main site of action of KH-17 was confirmed as the matrix side of the ADP/ATP carrier by experiments using submitochondrial particles, which have an inside-out orientation of the inner mitochondrial membrane. However, when we added KH-17 to mitochondria at neutral pH, it had a weak inhibitory effect on [3 H]ADP uptake, and its inhibitory strength was similar to that of bongkrekic acid. These results indicated that KH-17 weakly inhibits the ADP/ATP carrier not only from the matrix side but also from the cytosolic side. To ascertain whether this interpretation was correct, we examined the effects of KH-17 and carboxyatractyloside on mitochondrial [3 H]ADP uptake at two [3 H]ADP concentrations. We found that both KH-17 and carboxyatractyloside showed a stronger inhibitory effect at the lower [3 H]ADP concentration. Therefore, we concluded that the bongkrekic acid derivative, KH-17, weakly inhibits the mitochondrial ADP/ATP carrier from both sides of the inner mitochondrial membrane. These results suggested that the elimination of three methyl groups, one methoxy group, and five internal double bonds present in bongkrekic acid altered its manner of action towards the mitochondrial ADP/ATP carrier. Our data will help to improve our understanding of the interaction between bongkrekic acid and the mitochondrial ADP/ATP carrier.


Assuntos
Translocases Mitocondriais de ADP e ATP , Membranas Mitocondriais , Difosfato de Adenosina , Trifosfato de Adenosina , Ácido Bongcréquico/farmacologia , Mitocôndrias , Translocases Mitocondriais de ADP e ATP/química
5.
Nat Commun ; 13(1): 3585, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739110

RESUMO

Mitochondrial ADP/ATP carriers import ADP into the mitochondrial matrix and export ATP to the cytosol to fuel cellular processes. Structures of the inhibited cytoplasmic- and matrix-open states have confirmed an alternating access transport mechanism, but the molecular details of substrate binding remain unresolved. Here, we evaluate the role of the solvent-exposed residues of the translocation pathway in the process of substrate binding. We identify the main binding site, comprising three positively charged and a set of aliphatic and aromatic residues, which bind ADP and ATP in both states. Additionally, there are two pairs of asparagine/arginine residues on opposite sides of this site that are involved in substrate binding in a state-dependent manner. Thus, the substrates are directed through a series of binding poses, inducing the conformational changes of the carrier that lead to their translocation. The properties of this site explain the electrogenic and reversible nature of adenine nucleotide transport.


Assuntos
Mitocôndrias , Translocases Mitocondriais de ADP e ATP , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo
6.
J Lipid Res ; 63(6): 100227, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569528

RESUMO

Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive. Here we compared all-atom molecular dynamics simulations on bovine AAC1 in lipid bilayers with and without CLs. Our results show that on the current microsecond simulation time scale: 1) CL binding does not significantly affect overall stability of the carrier or structural symmetry at the matrix-gate level; 2) pocket volumes of the carrier and interactions involved in the matrix-gate network become more heterogeneous in parallel simulations with membranes containing CLs; 3) CL binding consistently strengthens backbone hydrogen bonds within helix H2 near the matrix side; and 4) CLs play a consistent stabilizing role on the domain 1-2 interface through binding with the R30:R71:R151 stacking structure and fixing the M2 loop in a defined conformation. CL is necessary for the formation of this stacking structure, and this structure in turn forms a very stable CL binding site. Such a delicate equilibrium suggests the strictly conserved R30:R71:R151stacking structure of AACs could function as a switch under regulation of CLs. Taken together, these results shed new light on the CL-mediated modulation of AAC function.


Assuntos
Cardiolipinas , Translocases Mitocondriais de ADP e ATP , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiolipinas/química , Bovinos , Citosol/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo
7.
J Chem Inf Model ; 62(10): 2550-2560, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35442654

RESUMO

We have designed a protocol combining constant-pH molecular dynamics (CpHMD) simulations with an umbrella sampling (US) scheme (US-CpHMD) to study the mechanism of ADP/ATP transport (import and export) by their inner mitochondrial membrane carrier protein [ADP/ATP carrier (AAC)]. The US scheme helped overcome the limitations of sampling the slow kinetics involved in these substrates' transport, while CpHMD simulations provided an unprecedented realism by correctly capturing the associated protonation changes. The import of anionic substrates along the mitochondrial membrane has a strong energetic disadvantage due to a smaller substrate concentration and an unfavorable membrane potential. These limitations may have created an evolutionary pressure on AAC to develop specific features benefiting the import of ADP. In our work, the potential of mean force profiles showed a clear selectivity in the import of ADP compared to ATP, while in the export, no selectivity was observed. We also observed that AAC sequestered both substrates at longer distances in the import compared to the export process. Furthermore, only in the import process do we observe transient protonation of both substrates when going through the AAC cavity, which is an important advantage to counteract the unfavorable mitochondrial membrane potential. Finally, we observed a substrate-induced disruption of the matrix salt-bridge network, which can promote the conformational transition (from the C- to M-state) required to complete the import process. This work unraveled several important structural features where the complex electrostatic interactions were pivotal to interpreting the protein function and illustrated the potential of applying the US-CpHMD protocol to other transport processes involving membrane proteins.


Assuntos
Mitocôndrias , Simulação de Dinâmica Molecular , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo
8.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164338

RESUMO

The mitochondrial ADP/ATP carrier (AAC) exports ATP and imports ADP through alternating between cytosol-open (c-) and matrix-open (m-) states. The salt bridge networks near the matrix side (m-gate) and cytosol side (c-gate) are thought to be crucial for state transitions, yet our knowledge on these networks is still limited. In the current work, we focus on more conserved m-gate network in the c-state AAC. All-atom molecular dynamics (MD) simulations on a variety of mutants and the CATR-AAC complex have revealed that: (1) without involvement of other positive residues, the charged residues from the three Px[DE]xx[KR] motifs only are prone to form symmetrical inter-helical network; (2) R235 plays a determinant role for the asymmetry in m-gate network of AAC; (3) R235 significantly strengthens the interactions between H3 and H5; (4) R79 exhibits more significant impact on m-gate than R279; (5) CATR promotes symmetry in m-gate mainly through separating R234 from D231 and fixing R79; (6) vulnerability of the H2-H3 interface near matrix side could be functionally important. Our results provide new insights into the highly conserved yet variable m-gate network in the big mitochondrial carrier family.


Assuntos
Atractilosídeo/análogos & derivados , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Mutação , Motivos de Aminoácidos , Atractilosídeo/química , Atractilosídeo/farmacologia , Sítios de Ligação , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
9.
EMBO Mol Med ; 13(12): e14072, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755470

RESUMO

Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.


Assuntos
Translocador 1 do Nucleotídeo Adenina/química , Cisplatino , Infecções por Vírus Epstein-Barr , Cisplatino/metabolismo , Cisplatino/farmacologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/metabolismo , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Membranas Mitocondriais/metabolismo
10.
J Comput Aided Mol Des ; 35(9): 987-1007, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34406552

RESUMO

The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Tiamina Pirofosfato/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
11.
Annu Rev Biochem ; 90: 535-558, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33556281

RESUMO

Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Agrecanas/química , Agrecanas/genética , Agrecanas/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Transporte Biológico , Cálcio/metabolismo , Cardiolipinas/metabolismo , Sequência Conservada , Citoplasma/metabolismo , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Mutação , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biochim Biophys Acta Biomembr ; 1863(1): 183466, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871114

RESUMO

The ADP/ATP carrier (AAC) transports matrix ATP and cytosolic ADP across the inner mitochondrial membrane (IMM). It is well known that cardiolipin (CL) plays an important role in regulating the function of AAC, yet the underlying mechanism still remains elusive. AAC is composed of three homologous domains, and three specific CL binding sites are located at the domain-domain interfaces near the matrix side. Here we report an in-depth investigation on the dynamic properties of the bound CL within the three specific sites through all-atom molecular dynamics simulations of up to 13 µs in total. Our results highlight the importance of the basic and polar residues in CL binding. The basic residues from the linker helix and/or the [Y/W/F][K/R]G motif enable the bound CL to form an intra-domain binding mode, and the canonical inter-domain binding mode only forms when these basic residues are occupied by an additional phospholipid. Of special significance, differences in the basic and polar residues lead to remarkable asymmetry among the three specific CL binding sites. We found that the bound CL at the interface of domains 2 and 3 predominantly adopts inter-domain binding mode, while CLs at the other two sites have much more intra-domain populations. This is consistent with the asymmetric crystal structure of the matrix state (m-state) AAC which implies an asymmetric transport mechanism. The dynamic equilibrium between the inter-domain and intra-domain binding modes observed in our simulations could be highly important for the bound CLs to adapt to the movements during state transitions.


Assuntos
Cardiolipinas/química , Translocases Mitocondriais de ADP e ATP/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sordariales/química , Animais , Sítios de Ligação , Bovinos , Humanos
13.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255957

RESUMO

Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.


Assuntos
Cryptosporidium parvum/metabolismo , Cisteína/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Nucleotídeos/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Sequência de Aminoácidos , Atractilosídeo/análogos & derivados , Atractilosídeo/química , Ácido Bongcréquico/química , Lactococcus lactis/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Filogenia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Sci Adv ; 6(35): eabb0780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923632

RESUMO

The phospholipid cardiolipin has pleiotropic structural and functional roles that are collectively essential for mitochondrial biology. Yet, the molecular details of how this lipid supports the structure and function of proteins and protein complexes are poorly understood. To address this property of cardiolipin, we use the mitochondrial adenosine 5'-diphosphate/adenosine 5'-triphosphate carrier (Aac) as a model. Here, we have determined that cardiolipin is critical for both the tertiary and quaternary assembly of the major yeast Aac isoform Aac2 as well as its conformation. Notably, these cardiolipin-provided structural roles are separable. In addition, we show that multiple copies of Aac2 engage in shared complexes that are largely dependent on the presence of assembled respiratory complexes III and IV or respiratory supercomplexes. Intriguingly, the assembly state of Aac2 is sensitive to its transport-related conformation. Together, these results expand our understanding of the numerous structural roles provided by cardiolipin for mitochondrial membrane proteins.


Assuntos
Translocases Mitocondriais de ADP e ATP , Saccharomyces cerevisiae , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cardiolipinas/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
Biochem Soc Trans ; 48(4): 1419-1432, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32725219

RESUMO

For more than 40 years, the oligomeric state of members of the mitochondrial carrier family (SLC25) has been the subject of debate. Initially, the consensus was that they were dimeric, based on the application of a large number of different techniques. However, the structures of the mitochondrial ADP/ATP carrier, a member of the family, clearly demonstrated that its structural fold is monomeric, lacking a conserved dimerisation interface. A re-evaluation of previously published data, with the advantage of hindsight, concluded that technical errors were at the basis of the earlier dimer claims. Here, we revisit this topic, as new claims for the existence of dimers of the bovine ADP/ATP carrier have emerged using native mass spectrometry of mitochondrial membrane vesicles. However, the measured mass does not agree with previously published values, and a large number of post-translational modifications are proposed to account for the difference. Contrarily, these modifications are not observed in electron density maps of the bovine carrier. If they were present, they would interfere with the structure and function of the carrier, including inhibitor and substrate binding. Furthermore, the reported mass does not account for three tightly bound cardiolipin molecules, which are consistently observed in other studies and are important stabilising factors for the transport mechanism. The monomeric carrier has all of the required properties for a functional transporter and undergoes large conformational changes that are incompatible with a stable dimerisation interface. Thus, our view that the native mitochondrial ADP/ATP carrier exists and functions as a monomer remains unaltered.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Animais , Biopolímeros/metabolismo , Bovinos , Detergentes/química , Translocases Mitocondriais de ADP e ATP/química , Membranas Mitocondriais/metabolismo , Conformação Proteica
16.
J Invertebr Pathol ; 171: 107337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32035083

RESUMO

Microsporidia Nosema bombycis and Vairimorpha ceranae cause destructive epizootics of honey bees and silkworms. Insufficient efficiency of the antibiotic fumagillin against V. ceranae, its toxicity and the absence of effective methods of N. bombycis treatment demand the discovery of novel strategies to suppress infections of domesticated insects. RNA interference is one such novel treatment strategy. Another one implies that the intracellular development of microsporidia may be suppressed by single-chain antibodies (scFv fragments) against functionally important parasite proteins. Important components of microsporidian metabolism are non-mitochondrial, plastidic-bacterial ATP/ADP carriers. These membrane transporters import host-derived ATP and provide the capacity to pathogens for energy parasitism. Here, we analyzed membrane topology of four V. ceranae and three N. bombycis ATP/ADP transporters to construct two fusion proteins carrying their outer hydrophilic loops contacting with infected host cell cytoplasm. Interestingly, full-size genes of N. bombycis transporters may be derived from the Asian swallowtail Papilio xuthus genome sequencing project. Synthesis of the artificial genes was followed by overexpression of recombinant proteins in E. coli as insoluble inclusion bodies. The gene fragments encoding the loops of individual transporters were also effectively expressed in bacteria. The chimeric antigens may be used to construct immune libraries or select microsporidia-suppressing scFv fragments from synthetic, semisynthetic, naïve and immune antibody libraries. A further expression of such antibodies in insect cells may increase their resistance to microsporidial infections.


Assuntos
Proteínas Fúngicas/genética , Expressão Gênica , Microsporídios/genética , Nosema/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Microsporídios/química , Microsporídios/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Nosema/química , Nosema/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
17.
Trends Biochem Sci ; 45(3): 244-258, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31787485

RESUMO

Members of the mitochondrial carrier family (SLC25) provide the transport steps for amino acids, carboxylic acids, fatty acids, cofactors, inorganic ions, and nucleotides across the mitochondrial inner membrane and are crucial for many cellular processes. Here, we use new insights into the transport mechanism of the mitochondrial ADP/ATP carrier to examine the structure and function of other mitochondrial carriers. They all have a single substrate-binding site and two gates, which are present on either side of the membrane and involve salt-bridge networks. Transport is likely to occur by a common mechanism, in which the coordinated movement of six structural elements leads to the alternating opening and closing of the matrix or cytoplasmic side of the carriers.


Assuntos
Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Animais , Transporte Biológico , Citoplasma/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo
18.
Mitochondrion ; 47: 94-102, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31129042

RESUMO

The ADP/ATP carrier (AAC) is a transporter responsible for the equal molar exchange of cytosolic ADP and ATP synthesized within mitochondrial matrix across the mitochondrial membrane. Its primary structure consists of three homologous repeats, and each repeat contains a conserved motif that is shared by all members of the mitochondrial carrier family (MCF). Although these MCF motif residues cluster together in the crystal structure of AAC, detailed analyses on the interactions among the motif residues are still limited. In the present study, all-atom molecular dynamics (MD) simulations of up to 10 µs have been carried out on AAC, and interactions and structural dynamics of the MCF motif residues have been specifically investigated. Our simulations have revealed: i) a very asymmetrical electrostatic network at the bottom of the pocket of apo AAC, ii) the asymmetrical interactions between the Pro kink region and the [YWF][KR] G motif in three repeats, iii) the role of the conserved Arg residues in stabilizing the C-ends of the odd-numbered helices, iv) the structural change of the [YWF][KR] G motif and its potential involvement in substrate translocation process. Our results highlight the asymmetry of the MCF residues in the three repeats, which might contribute to the ability of the carriers to transport the asymmetrical substrates. Our observations provide microscopic basis for further research on the translocation mechanism of mitochondrial carriers.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Translocases Mitocondriais de ADP e ATP/química , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Translocases Mitocondriais de ADP e ATP/genética
19.
Curr Opin Struct Biol ; 57: 135-144, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039524

RESUMO

The mitochondrial ADP/ATP carrier, also called adenine nucleotide translocase, accomplishes one of the most important transport activities in eukaryotic cells, importing ADP into the mitochondrial matrix for ATP synthesis, and exporting ATP to fuel cellular activities. In the transport cycle, the carrier changes between a cytoplasmic and matrix state, in which the central substrate binding site is alternately accessible to these compartments. A structure of a cytoplasmic state was known, but recently, a structure of a matrix-state in complex with bongkrekic acid was solved. Comparison of the two states explains the function of highly conserved sequence features and reveals that the transport mechanism is unique, involving the coordinated movement of six dynamic elements around a central translocation pathway.


Assuntos
Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Transporte Biológico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio
20.
Cell Biochem Biophys ; 76(4): 445-450, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159781

RESUMO

Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.


Assuntos
Cálcio/farmacologia , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Citocromos c/metabolismo , Rim/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Translocases Mitocondriais de ADP e ATP/química , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA