Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Horm Behav ; 162: 105548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636205

RESUMO

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Assuntos
Ansiedade , Hipotireoidismo Congênito , Transportador 2 de Aminoácido Excitatório , Hipocampo , Ratos Wistar , Animais , Masculino , Hipocampo/metabolismo , Ansiedade/metabolismo , Ansiedade/etiologia , Ratos , Feminino , Hipotireoidismo Congênito/metabolismo , Gravidez , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Hormônios Tireóideos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Comportamento Animal/fisiologia , Propiltiouracila , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514191

RESUMO

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder characterized by intrusive obsessive thoughts and compulsive behaviors. Multiple studies have shown the association of polymorphisms in the SLC1A1 gene with OCD. The most common of these OCD-associated polymorphisms increases the expression of the encoded protein, excitatory amino acid transporter 3 (EAAT3), a neuronal glutamate transporter. Previous work has shown that increased EAAT3 expression results in OCD-relevant behavioral phenotypes in rodent models. In this study, we created a novel mouse model with targeted, reversible overexpression of Slc1a1 in forebrain neurons. The mice do not have a baseline difference in repetitive behavior but show increased hyperlocomotion following a low dose of amphetamine (3 mg/kg) and increased stereotypy following a high dose of amphetamine (8 mg/kg). We next characterized the effect of amphetamine on striatal cFos response and found that amphetamine increased cFos throughout the striatum in both control and Slc1a1-overexpressing (OE) mice, but Slc1a1-OE mice had increased cFos expression in the ventral striatum relative to controls. We used an unbiased machine classifier to robustly characterize the behavioral response to different doses of amphetamine and found a unique response to amphetamine in Slc1a1-OE mice, relative to controls. Lastly, we found that the differences in striatal cFos expression in Slc1a1-OE mice were driven by cFos expression specifically in D1 neurons, as Slc1a1-OE mice had increased cFos in D1 ventral medial striatal neurons, implicating this region in the exaggerated behavioral response to amphetamine in Slc1a1-OE mice.


Assuntos
Anfetamina , Transportador 3 de Aminoácido Excitatório , Transtorno Obsessivo-Compulsivo , Animais , Camundongos , Anfetamina/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transtorno Obsessivo-Compulsivo/induzido quimicamente , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo
3.
Cell Rep ; 42(8): 112945, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37542723

RESUMO

Solid tumors have developed robust ferroptosis resistance. The mechanism underlying ferroptosis resistance regulation in solid tumors, however, remains elusive. Here, we report that the hypoxic tumor microenvironment potently promotes ferroptosis resistance in solid tumors in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner. In combination with HIF-2α, which promotes tumor ferroptosis under hypoxia, HIF-1α is the main driver of hypoxia-induced ferroptosis resistance. Mechanistically, HIF-1α-induced lactate contributes to ferroptosis resistance in a pH-dependent manner that is parallel to the classical SLC7A11 and FSP1 systems. In addition, HIF-1α also enhances transcription of SLC1A1, an important glutamate transporter, and promotes cystine uptake to promote ferroptosis resistance. In support of the role of hypoxia in ferroptosis resistance, silencing HIF-1α sensitizes mouse solid tumors to ferroptosis inducers. In conclusion, our results reveal a mechanism by which hypoxia drives ferroptosis resistance and identify the combination of hypoxia alleviation and ferroptosis induction as a promising therapeutic strategy for solid tumors.


Assuntos
Transportador 3 de Aminoácido Excitatório , Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Animais , Camundongos , Hipóxia Celular , Linhagem Celular Tumoral , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ácido Láctico , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral , Transportador 3 de Aminoácido Excitatório/genética
4.
Neurochem Int ; 160: 105418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36096294

RESUMO

Repeated amphetamine treatment results in locomotor sensitization, a phenomenon that may relate to the development of psychosis and addiction. Evidence suggests that interactions between dopaminergic and glutamatergic systems are involved in amphetamine sensitization. We previously demonstrated that the neuronal excitatory amino acid transporter (Slc1a1/EAAT3) produces bidirectional, expression-dependent effects on the response to acute amphetamine. Here, using mice with decreased or increased expression of EAAT3, we found that chronic alterations in EAAT3 expression do not significantly impact amphetamine-induced locomotor sensitization. Compensation by other glutamate transporters cannot be ruled out in this important neuroadaptive phenomenon.


Assuntos
Anfetamina , Transportador 3 de Aminoácido Excitatório , Anfetamina/farmacologia , Animais , Dopamina , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Neurônios/metabolismo
5.
Nat Commun ; 13(1): 4714, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953475

RESUMO

Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.


Assuntos
Transportador 2 de Aminoácido Excitatório/química , Ácido Glutâmico , Animais , Sítios de Ligação , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Neuroglia/metabolismo
6.
Mol Psychiatry ; 27(3): 1515-1526, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058566

RESUMO

Obsessive-compulsive disorder (OCD) is a disabling condition that often begins in childhood. Genetic studies in OCD have pointed to SLC1A1, which encodes the neuronal glutamate transporter EAAT3, with evidence suggesting that increased expression contributes to risk. In mice, midbrain Slc1a1 expression supports repetitive behavior in response to dopaminergic agonists, aligning with neuroimaging and pharmacologic challenge studies that have implicated the dopaminergic system in OCD. These findings suggest that Slc1a1 may contribute to compulsive behavior through altered dopaminergic transmission; however, this theory has not been mechanistically tested. To examine the developmental impact of Slc1a1 overexpression on compulsive-like behaviors, we, therefore, generated a novel mouse model to perform targeted, reversible overexpression of Slc1a1 in dopaminergic neurons. Mice with life-long overexpression of Slc1a1 showed a significant increase in amphetamine (AMPH)-induced stereotypy and hyperlocomotion. Single-unit recordings demonstrated that Slc1a1 overexpression was associated with increased firing of dopaminergic neurons. Furthermore, dLight1.1 fiber photometry showed that these behavioral abnormalities were associated with increased dorsal striatum dopamine release. In contrast, no impact of overexpression was observed on anxiety-like behaviors or SKF-38393-induced grooming. Importantly, overexpression solely in adulthood failed to recapitulate these behavioral phenotypes, suggesting that overexpression during development is necessary to generate AMPH-induced phenotypes. However, doxycycline-induced reversal of Slc1a1/EAAT3 overexpression in adulthood normalized both the increased dopaminergic firing and AMPH-induced responses. These data indicate that the pathologic effects of Slc1a1/EAAT3 overexpression on dopaminergic neurotransmission and AMPH-induced stereotyped behavior are developmentally mediated, and support normalization of EAAT3 activity as a potential treatment target for basal ganglia-mediated repetitive behaviors.


Assuntos
Transportador 3 de Aminoácido Excitatório , Transtorno Obsessivo-Compulsivo , Animais , Comportamento Compulsivo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Comportamento Estereotipado
7.
Brain Res ; 1771: 147660, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529964

RESUMO

Since we found that inhibition of cyclooxygenase-2 (COX-2) with concomitant application of a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist (MTEP) down-regulates mGluR7 in the hippocampus (HC) and changes behavior of mice, our team decided to investigate the mechanism responsible for the observed changes. The amino acid glutamate (Glu) is a major excitatory neurotransmitter in the brain. Glu uptake is regulated by excitatory amino acid transporters (EAAT). There are five transporters with documented expression in neurons and glia in the central nervous system (CNS). EAATs, maintain the correct transmission of the Glu signal and prevent its toxic accumulation by removing Glu from the synapse. It has been documented that the toxic level of Glu is one of the main causes of mental and cognitive abnormalities. Given the above mechanisms involved in the functioning of the Glu synapse, we hypothesized modification of Glu uptake, involving EAATs as the cause of the observed changes. This study investigated the level of selected EAATs in the HC after chronic treatment with mGluR5 antagonist MTEP, NS398, and their combination using Western blot. Concomitant MTEP treatment with NS398 or a single administration of the above causes changes in LTP and modulation of EAAT levels in mouse HC. As EAATs are cellular markers of oxidative stress mechanisms, the E. coli lipopolysaccharide (LPS) challenge was performed. The modified Barnes maze test (MBM) revealed alterations in the mouse spatial learning abilities. This study reports an interaction between the mGluR5 and COX-2 in the HC, with EAAT1 and EAAT3 involvement.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/biossíntese , Hipocampo/metabolismo , Estresse Oxidativo , Receptores de Ácido Caínico/fisiologia , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/genética , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ácido Caínico/antagonistas & inibidores , Aprendizagem Espacial/efeitos dos fármacos
8.
Int J Mol Sci ; 22(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065042

RESUMO

Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3-18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Glutationa/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Encéfalo/efeitos dos fármacos , Gerenciamento Clínico , Suscetibilidade a Doenças , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Glutationa/farmacologia , Glutationa/uso terapêutico , Humanos , Redes e Vias Metabólicas , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
9.
Commun Biol ; 4(1): 751, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140623

RESUMO

It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s-1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


Assuntos
Ácido Aspártico/metabolismo , Transporte Biológico/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Sódio/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Proteolipídeos/metabolismo , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
10.
Commun Biol ; 4(1): 182, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568779

RESUMO

Glutathione (GSH) is an important antioxidant that plays a critical role in neuroprotection. GSH depletion in neurons induces oxidative stress and thereby promotes neuronal damage, which in turn is regarded as a hallmark of the early stage of neurodegenerative diseases. The neuronal GSH level is mainly regulated by cysteine transporter EAAC1 and its inhibitor, GTRAP3-18. In this study, we found that the GTRAP3-18 level was increased by up-regulation of the microRNA miR-96-5p, which was found to decrease EAAC1 levels in our previous study. Since the 3'-UTR region of GTRAP3-18 lacks the consensus sequence for miR-96-5p, an unidentified protein should be responsible for the intermediate regulation of GTRAP3-18 expression by miR-96-5p. Here, we discovered that RNA-binding protein NOVA1 functions as an intermediate protein for GTRAP3-18 expression via miR-96-5p. Moreover, we show that intra-arterial injection of a miR-96-5p-inhibiting nucleic acid to living mice by a drug delivery system using microbubbles and ultrasound decreased the level of GTRAP3-18 via NOVA1 and increased the levels of EAAC1 and GSH in the dentate gyrus of the hippocampus. These findings suggest that the delivery of a miR-96-5p inhibitor to the brain would efficiently increase the neuroprotective activity by increasing GSH levels via EAAC1, GTRAP3-18 and NOVA1.


Assuntos
Giro Denteado/efeitos dos fármacos , Glutationa/metabolismo , MicroRNAs/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Giro Denteado/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Injeções Intra-Arteriais , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Microbolhas , Antígeno Neuro-Oncológico Ventral , Fármacos Neuroprotetores/administração & dosagem , Proteínas de Ligação a RNA/genética , Ultrassom , Regulação para Cima
11.
Biomed Res Int ; 2020: 1204605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566650

RESUMO

BACKGROUND: This study is aimed at identifying unknown clinically relevant genes involved in colorectal cancer using bioinformatics analysis. METHODS: Original microarray datasets GSE107499 (ulcerative colitis), GSE8671 (colorectal adenoma), and GSE32323 (colorectal cancer) were downloaded from the Gene Expression Omnibus. Common differentially expressed genes were filtered from the three datasets above. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, followed by construction of a protein-protein interaction network to identify hub genes. Kaplan-Meier survival analysis and TIMER database analysis were used to screen the genes related to the prognosis and tumour-infiltrating immune cells of colorectal cancer. Receiver operating characteristic curves were used to assess whether the genes could be used as markers for the diagnosis of ulcerative colitis, colorectal adenoma, and colorectal cancer. RESULTS: A total of 237 differentially expressed genes common to the three datasets were identified, of which 60 were upregulated, 125 were downregulated, and 52 genes that were inconsistently up- and downregulated. Common differentially expressed genes were mainly enriched in the cellular component of extracellular exosome and integral component of membrane categories. Eight hub genes, i.e., CXCL3, CXCL8, CEACAM7, CNTN3, SLC1A1, SLC16A9, SLC4A4, and TIMP1, were related to the prognosis and tumour-infiltrating immune cells of colorectal cancer, and these genes have diagnostic value for ulcerative colitis, colorectal adenoma, and colorectal cancer. CONCLUSION: Three novel genes, CNTN3, SLC1A1, and SLC16A9 were shown to have diagnostic value with respect to the occurrence of colorectal cancer and should be verified in future studies.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Contactinas , Transportador 3 de Aminoácido Excitatório , Transportadores de Ácidos Monocarboxílicos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Biologia Computacional , Contactinas/análise , Contactinas/genética , Contactinas/metabolismo , Transportador 3 de Aminoácido Excitatório/análise , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Transportadores de Ácidos Monocarboxílicos/análise , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interação de Proteínas , Curva ROC , Transcriptoma/genética
12.
Exp Clin Psychopharmacol ; 28(6): 617-621, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31985241

RESUMO

The glutamate transporter gene SLC1A1 has been shown to have an association with obsessive-compulsive disorder (OCD), and serotonin reuptake inhibitor (SRI) treatment response. One polymorphism (rs3056) in SLC1A1 has been associated with altered brain volumes in OCD. We investigated the association of this polymorphism with OCD and its relationship with various clinical parameters, including age of onset, disease severity, insight, factor analyzed symptom dimensions of OCD, and SRI treatment response. Three hundred seventy seven OCD patients (DSM-IV) aged between 18 to 60 years were recruited from a specialty OCD clinic. To study the association with SRI treatment response, we analyzed full responders (≥35% reduction in the Yale Brown Obsessive Compulsive Scale [YBOCS] and the Clinical Global Impression-Improvement [CGI-I] score of 1 or 2) to any SRI (n = 187) and nonresponders (<25% reduction in the YBOCS and the CGI-I score >4) to adequate trials of at least two SRIs for a duration of 12 weeks (n = 91). Healthy controls (n = 333) were recruited and evaluated using the Mini-International Neuropsychiatric Interview-Plus (MINI-Plus). All subjects were from southern India, and were genotyped for the SLC1A1 polymorphism (rs3056). Genotype frequencies did not deviate significantly from the Hardy-Weinberg equilibrium. Case-control association analysis revealed that the "GG" genotype was significantly more frequent in OCD cases than the controls (p = .04). No association was found with the age of onset, symptom severity, insight, and symptom dimensions. No significant association was found between genotype/allele frequencies with treatment response. To conclude, although there was a significant association between the SLC1A1 rs3056 polymorphism and OCD, there were no significant associations with other clinical parameters or treatment response. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Assuntos
Transportador 3 de Aminoácido Excitatório/genética , Transtorno Obsessivo-Compulsivo/genética , Polimorfismo Genético , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Escalas de Graduação Psiquiátrica , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Adulto Jovem
13.
ACS Sens ; 4(9): 2358-2366, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31393114

RESUMO

Glutamate is the main excitatory neurotransmitter in the mammalian central nervous system. Excitatory amino acid transporters (EAATs) are a family of transmembrane transporters responsible for glutamate uptake into cells, and their malfunction is related to a variety of diseases, including neurodegenerative diseases and stroke. Screening for and developing inhibitors of EAATs as well as related transporters is a significant field of study for biomedical and pharmaceutical applications. Rapid, high-throughput methods are critical for the study of glutamate transporters, and fluorescent methods are appealing for this purpose as compared to more traditional electrophysiological methods. In this study, we present a method for studying glutamate transporters and inhibitors by utilizing a mutated version of a yellow fluorescent protein (YFP) highly sensitive to quenching by anions (mClY). We applied this YFP variant to fluorescent imaging of anion flux in HEK293 cells caused by transiently expressed excitatory amino acid carrier 1 (EAAC1) and excitatory amino acid transporter 2 (EAAT2) and its inhibition by competitive blockers. This method enables rapid identification of inhibitors and, potentially, activators of EAAT function, which is critical for glutamate transport research.


Assuntos
Ácido Glutâmico/metabolismo , Halogênios/metabolismo , Imagem Óptica/métodos , Proteínas de Bactérias/genética , Transporte Biológico , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Fatores de Tempo
14.
Food Funct ; 10(9): 5333-5338, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389458

RESUMO

This study investigates, for the first time, the ability of punicalagin to modulate intestinal glutamate uptake by upregulation of the expression of one of its transporters present on the enterocyte membrane. The use of an Ussing chamber revealed an increase in glutamate transport in differentiated Caco-2 cells after punicalagin treatment for 24 h. This cell line constitutively expresses two glutamate transporters: EAAT1 and EAAT3. In response to punicalagin, the expression of EAAT3 was increased, at both mRNA and protein levels, but not that of EAAT1. Transfection with EAAT3-targeting siRNA specifically altered basal and induced EAAT3 gene expression, decreasing the positive effect of punicalagin on glutamate uptake. These data confirmed the involvement of EAAT3 in increasing glutamate uptake by enterocytes after punicalagin treatment.


Assuntos
Transportador 3 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Taninos Hidrolisáveis/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos
15.
J Biol Chem ; 294(32): 12180-12190, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235523

RESUMO

Plasma membrane-associated glutamate transporters play a key role in signaling by the major excitatory neurotransmitter glutamate. Uphill glutamate uptake into cells is energetically driven by coupling to co-transport of three Na+ ions. In exchange, one K+ ion is counter-transported. Currently accepted transport mechanisms assume that Na+ and K+ effects are exclusive, resulting from competition of these cations at the binding level. Here, we used electrophysiological analysis to test the effects of K+ and Na+ on neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1; the rat homologue of human excitatory amino acid transporter 3 (EAAT3)). Unexpectedly, extracellular K+ application to EAAC1 induced anion current, but only in the presence of Na+ This result could be explained with a K+/Na+ co-binding state in which the two cations simultaneously bind to the transporter. We obtained further evidence for this co-binding state, and its anion conductance, by analyzing transient currents when Na+ was exchanged for K+ and effects of the [K+]/[Na+] ratio on glutamate affinity. Interestingly, we observed the K+/Na+ co-binding state not only in EAAC1 but also in the subtypes EAAT1 and -2, which, unlike EAAC1, conducted anions in response to K+ only. We incorporated these experimental findings in a revised transport mechanism, including the K+/Na+ co-binding state and the ability of K+ to activate anion current. Overall, these results suggest that differentiation between Na+ and K+ does not occur at the binding level but is conferred by coupling of cation binding to conformational changes. These findings have implications also for other exchangers.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Ligação Competitiva , Cátions/química , Transportador 3 de Aminoácido Excitatório/química , Transportador 3 de Aminoácido Excitatório/genética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Técnicas de Patch-Clamp , Potássio/química , Ligação Proteica , Sódio/química
16.
Mol Med Rep ; 20(2): 915-930, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173206

RESUMO

Osteosarcoma is the most common type of malignant bone cancer, which often affects teenagers and young adults. The present study aimed to screen for critical genes and microRNAs (miRNAs/miRs) involved in osteosarcoma. A total of four microarray datasets (accession numbers GSE32981, GSE21257, GSE14827 and GSE14359) were downloaded from the Gene Expression Omnibus database. Following data preprocessing, module analysis was performed to identify the stable modules using the weighted gene co­expression network analysis (WGCNA) package. The differentially expressed genes (DEGs) between metastatic samples and non­metastatic samples were screened, followed by gene co­expression network construction, and Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Subsequently, prognosis­associated genes were screened and a miRNA­target gene regulatory network was constructed. Finally, the data for critical genes were validated. WGCNA analysis identified six modules; blue and yellow modules were significantly positively associated with osteosarcoma metastasis. A total of 1,613 DEGs were screened between primary tissue samples and metastatic samples. Following comparison of the genes in the two (blue and yellow) modules, a total of 166 DEGs were identified (metastatic samples vs. non­metastatic samples). Functional enrichment analysis demonstrated that these DEGs were mainly involved in 'defense response', 'p53 signaling pathway' and 'lysosome'. By utilizing the clinical information in GSE21257, 10 critical genes associated with osteosarcoma prognosis were obtained, including CTP synthase 2 (CTPS2), tumor protein p53 inducible protein 3 (TP53I3) and solute carrier family 1 member 1 (SLC1A1). In addition, hsa­miR­422a and hsa­miR­194 were highlighted in the miRNA­target gene network. Finally, matrix metallopeptidase 3 (MMP3) and vascular endothelial growth factor B (VEGFB) were predicted as critical genes in osteosarcoma metastasis. CTPS2, TP53I3 and SLC1A1 may serve major roles in osteosarcoma development, and hsa­miR­422a, hsa­miR­194, MMP3 and VEGFB may be associated with osteosarcoma metastasis.


Assuntos
Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Bases de Dados Genéticas , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sobrevida , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo
17.
Turk J Med Sci ; 49(2): 531-537, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30862152

RESUMO

Background/aim: This study aimed to comparatively analyze the expression levels of the SLC1A1 gene in renal specimens from tumors and adjacent healthy kidney tissues of patients with clear cell renal cell carcinoma (ccRCC). Materials and methods: Nineteen patients diagnosed with ccRCC were included in the study. The expression levels of the SLC1A1 and GAPDH genes were measured in tumor and formalin-fixed paraffin-embedded (FFPE) tissue specimens from the adjacent healthy kidney of each subject. Via the GEPIA database, the distribution of SLC1A1 gene expressions in ccRCC and healthy kidney tissues was obtained. The relative expression of SLC1A1 was evaluated for the association with the clinical parameters of the patients. Results: The expression of the SLC1A1 gene was significantly higher in males than females (P = 0.029). Also, there were statistically significant associations between stages II­IV and Fuhrman grades 2­4 with respect to SLC1A1 gene expression (P < 0.001 for both). Moreover, low levels of red blood cell and hemoglobin counts were significantly associated with the SLC1A1 expression (P < 0.001 and P = 0.005, respectively). The expression of the SLC1A1 gene in tumor tissues increased approximately 3 times compared with normal kidney tissues (P < 0.05). According to the GEPIA database, SLC1A1 gene expression is significantly higher in ccRCC patients than healthy persons (P = 0.01). Conclusion: The change in the expression of SLC1A1 may be crucial for ccRCC pathophysiology.


Assuntos
Carcinoma de Células Renais/genética , Transportador 3 de Aminoácido Excitatório/genética , Neoplasias Renais/genética , Adulto , Análise de Variância , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade
18.
Cell Rep ; 26(10): 2792-2804.e6, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840898

RESUMO

VPS10P domain receptors emerge as central regulators of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a role for the family member SorCS2 in protection of neurons from oxidative stress and epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that sustains cell surface expression of the neuronal amino acid transporter EAAT3 to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Lack of SorCS2 causes depletion of EAAT3 from the plasma membrane and impairs neuronal cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide a possible explanation for upregulation of this receptor seen in surviving neurons of the human epileptic brain.


Assuntos
Epilepsia/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Epilepsia/metabolismo , Epilepsia/patologia , Transportador 3 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/genética , Feminino , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Receptores de Superfície Celular/genética
19.
Neuropsychopharmacology ; 44(6): 1163-1173, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30622300

RESUMO

Obsessive-compulsive disorder (OCD) is a severe, chronic neuropsychiatric disorder with a strong genetic component. The SLC1A1 gene encoding the neuronal glutamate transporter EAAT3 has been proposed as a candidate gene for this disorder. Gene variants affecting SLC1A1 expression in human brain tissue have been associated with OCD. Several mouse models fully or partially lacking EAAT3 have shown no alterations in baseline anxiety-like or repetitive behaviors. We generated a transgenic mouse model (EAAT3glo) to achieve conditional, Cre-dependent EAAT3 overexpression and evaluated the overall impact of increased EAAT3 expression at behavioral and synaptic levels. Mice with EAAT3 overexpression driven by CaMKIIα-promoter (EAAT3glo/CMKII) displayed increased anxiety-like and repetitive behaviors that were both restored by chronic, but not acute, treatment with fluoxetine or clomipramine. EAAT3glo/CMKII mice also displayed greater spontaneous recovery of conditioned fear. Electrophysiological and biochemical analyses at corticostriatal synapses of EAAT3glo/CMKII mice revealed changes in NMDA receptor subunit composition and altered NMDA-dependent synaptic plasticity. By recapitulating relevant behavioral, neurophysiological, and psychopharmacological aspects, our results provide support for the glutamatergic hypothesis of OCD, particularly for the increased EAAT3 function, and provide a valuable animal model that may open novel therapeutic approaches to treat this devastating disorder.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Neostriado/metabolismo , Plasticidade Neuronal/fisiologia , Transtorno Obsessivo-Compulsivo/metabolismo , Animais , Linhagem Celular , Clomipramina/farmacologia , Modelos Animais de Doenças , Transportador 3 de Aminoácido Excitatório/genética , Fluoxetina/farmacologia , Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Neuroblastoma , Técnicas de Patch-Clamp , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
20.
J Clin Neurosci ; 62: 53-59, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30661718

RESUMO

The etiology of obsessive-compulsive disorder (OCD) is largely unknown, but family, twin, neuroimaging, and pharmacological studies suggest that glutamatergic system plays a significant role on its underlying pathophysiology. We performed an association analysis of six Single Nucleotide Polymorphisms (SNPs) within SLC1A1 gene (rs12682807, rs2075627, rs3780412, rs301443, rs301430, rs301434) in a group of 199 patients and 200 healthy controls. Symptom profiles were evaluated using the Florida Obsessive-Compulsive Inventory (FOCI) and the Obsessive-Compulsive Inventory-Revised (OCI-R). SNPs were analyzed by Taqman® methodology (Thermo Fisher, Brazil). The genotype distributions were in Hardy-Weinberg equilibrium. The A-A-G (rs301434-rs3780412-rs301443) haplotype was twice as common in OCD as in controls (P = 0.02). We also found significant differences between male patients and controls for rs301443 in a dominant model (P = 0.04) and a protective effect of GG genotype of rs2072657 in women (P = 0.02). Regarding clinical characteristics, the G-A (rs301434-rs3780412) haplotype was almost twice more common in patients with vs. without hoarding (P = 0.04). Further analyses showed significant associations between hoarding and rs301434 (P = 0.04) and rs3780412 (P = 0.04) in women, both in a dominant model. A dominant effect was also observed on ordering dimension for rs301434 (P = 0.01, in women) and rs301443 (P = 0.04). Finally, the rs2072657 showed a recessive effect on neutralization (P = 0.04) and checking (P = 0.03, in men). These preliminary results demonstrated that the SLC1A1 may contribute to some extent the susceptibility to OCD and its symptoms. However, additional studies are still needed.


Assuntos
Transportador 3 de Aminoácido Excitatório/genética , Predisposição Genética para Doença/genética , Transtorno Obsessivo-Compulsivo/genética , Adulto , Brasil , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA