Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.904
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727275

RESUMO

ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Sistema Nervoso Central , Neuroglia , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia
2.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695350

RESUMO

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , Lactococcus lactis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Osmorregulação , Ligação Proteica , Concentração Osmolar , Microscopia Crioeletrônica , Betaína/metabolismo , Imagem Individual de Molécula , Domínios Proteicos
3.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743629

RESUMO

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Assuntos
Citosol , Glutarredoxinas , Glutationa , Proteínas Ferro-Enxofre , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Mitocondriais/metabolismo
4.
PLoS One ; 19(5): e0302677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696463

RESUMO

The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-ß-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Anopheles , Antioxidantes , Proteínas de Choque Térmico HSP70 , Ocimum , Extratos Vegetais , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Estresse Fisiológico/efeitos dos fármacos
5.
Mol Genet Genomic Med ; 12(5): e2431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702946

RESUMO

BACKGROUND: Ichthyosis is a common keratotic skin disease with high clinical, etiological and genetic heterogeneity. There are four types of non-syndromic hereditary ichthyoses, among which autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of recessive Mendelian disorders. ARCI present with different phenotypes and ABCA12 pathogenic variants have been shown to cause complex ARCI phenotypes, including harlequin ichthyosis (HI), lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). METHODS: A sporadic male patient, clinically diagnosed with CIE, was enrolled in this study. Exome sequencing was combined with Sanger sequencing to confirm the diagnosis and identify the pathogenic variants. In silico predictions were made using multiple software programs, and the identified variants were interpreted using the ACMG guidelines. A review of all literature reported ABCA12 variants was performed to explore genotype-phenotype correlations. RESULTS: Compound heterozygous ABCA12 variants [c.5381+1G>A and c.5485G>C (p.Asp1829His)] (NM_173076) were identified. The two variants were not detected in the public database. c.5381+1G>A is predicted to affect ABCA12 mRNA splicing and Asp1829 is highly conserved among various species. In silico analysis suggested that these two variants were responsible for the phenotype of the patient. Genotype-phenotype correlation analysis showed that biallelic truncation variants and/or exon/amino acid deletions in ABCA12 are the most common causes of HI. Biallelic missense variants are most common in LI and CIE. CONCLUSIONS: The compound heterozygous ABCA12 variants caused the CIE phenotype observed in the patient. The spectrum of ABCA12 pathogenic variants were broaden. Genotype-phenotype correlation analysis provided detailed evidence which can be used in future prenatal diagnosis and can inform the need for genetic counselling for patients with ABCA12-related ARCIs.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Heterozigoto , Eritrodermia Ictiosiforme Congênita , Fenótipo , Humanos , Masculino , Transportadores de Cassetes de Ligação de ATP/genética , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/patologia , Mutação , Mutação de Sentido Incorreto , Estudos de Associação Genética , População do Leste Asiático
6.
J Toxicol Sci ; 49(5): 241-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692911

RESUMO

Methylmercury is an environmental polluting organometallic compound that exhibits neurotoxicity, as observed in Minamata disease patients. Methylmercury damages peripheral nerves in Minamata patients, causing more damage to sensory nerves than motor nerves. Peripheral nerves are composed of three cell types: dorsal root ganglion (DRG) cells, anterior horn cells (AHCs), and Schwann cells. In this study, we compared cultured these three cell types derived from the rat for susceptibility to methylmercury cytotoxicity, intracellular accumulation of mercury, expression of L-type amino acid transporter 1 (LAT1), which transports methylmercury into cells, and expression of multidrug resistance-associated protein 2 (MRP2), which transports methylmercury-glutathione conjugates into the extracellular space. Of the cells examined, we found that DRG cells were the most susceptible to methylmercury with markedly higher intracellular accumulation of mercury. The constitutive level of LAT1 was higher and that of MRP2 lower in DRG cells compared with those in AHC and Schwann cells. Additionally, decreased cell viability caused by methylmercury was significantly reduced by either the LAT1 inhibitor, JPH203, or siRNA-mediated knockdown of LAT1. On the other hand, an MRP2 inhibitor, MK571, significantly intensified the decrease in the cell viability caused by methylmercury. Our results provide a cellular basis for sensory neve predominant injury in the peripheral nerves of Minamata disease patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Sobrevivência Celular , Gânglios Espinais , Compostos de Metilmercúrio , Células de Schwann , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Nervos Periféricos/metabolismo , Nervos Periféricos/efeitos dos fármacos , Masculino , Ratos , Proteína 2 Associada à Farmacorresistência Múltipla
7.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38655715

RESUMO

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ferroptose , Lisossomos , Camundongos Knockout , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ferroptose/genética , Humanos , Lisossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Células HeLa , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos , Masculino
8.
Nat Microbiol ; 9(5): 1244-1255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649414

RESUMO

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Lipopolissacarídeos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Camundongos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Testes de Sensibilidade Microbiana , Humanos , Microscopia Crioeletrônica , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Modelos Animais de Doenças , Feminino , Transportadores de Cassetes de Ligação de ATP
9.
Alzheimers Dement ; 20(5): 3629-3648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556850

RESUMO

Alzheimer's disease (AD) is a growing problem worldwide. Since ABCA7's identification as a risk gene, it has been extensively researched for its role in the disease. We review its recently characterized structure and what the mechanistic insights teach us about its function. We furthermore provide an overview of identified ABCA7 mutations, their presence in different ancestries and protein domains and how they might cause AD. For ABCA7 PTC variants and a VNTR expansion, haploinsufficiency is proposed as the most likely mode-of-action, although splice events could further influence disease risk. Overall, the need to better understand expression of canonical ABCA7 and its isoforms in disease is indicated. Finally, ABCA7's potential functions in lipid metabolism, phagocytosis, amyloid deposition, and the interplay between these three, is described. To conclude, in this review, we provide a comprehensive overview and discussion about the current knowledge on ABCA7 in AD, and what research questions remain. HIGHLIGHTS: Alzheimer's risk-increasing variants in ABCA7 can be found in up to 7% of AD patients. We review the recently characterized protein structure of ABCA7. We present latest insights in genetics, expression patterns, and functions of ABCA7.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Transportadores de Cassetes de Ligação de ATP/genética , Predisposição Genética para Doença , Mutação , Animais
10.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607040

RESUMO

Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Oligonucleotídeos Antissenso , Humanos , Feminino , Criança , Doença de Stargardt/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Células HEK293 , Íntrons , Transportadores de Cassetes de Ligação de ATP/genética
11.
Sci Rep ; 14(1): 8994, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637678

RESUMO

Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. HlyB features three domains: an N-terminal C39 peptidase-like domain (CLD), a transmembrane domain (TMD) and a C-terminal nucleotide binding domain (NBD). Here, we created chimeric transporters by swapping one or more domains of HlyB with the respective domain(s) of RtxB, a HlyB homolog from Kingella kingae. We tested all chimeric transporters for their ability to secrete pro-HlyA when co-expressed with HlyD. The CLD proved to be most critical, as a substitution abolished secretion. Swapping only the TMD or NBD reduced the secretion efficiency, while a simultaneous exchange abolished secretion. These results indicate that the CLD is the most critical secretion determinant, while TMD and NBD might possess additional recognition or interaction sites. This mode of recognition represents a hierarchical and extreme unusual case of substrate recognition for ABC transporters and optimal secretion requires a tight interplay between all domains.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Domínios Proteicos , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo
12.
Microb Cell Fact ; 23(1): 115, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643109

RESUMO

BACKGROUND: The process of producing proteins in bacterial systems and secreting them through ATP-binding cassette (ABC) transporters is an area that has been actively researched and used due to its high protein production capacity and efficiency. However, some proteins are unable to pass through the ABC transporter after synthesis, a phenomenon we previously determined to be caused by an excessive positive charge in certain regions of their amino acid sequence. If such an excessive charge is removed, the secretion of any protein through ABC transporters becomes possible. RESULTS: In this study, we introduce 'linear charge density' as the criteria for possibility of protein secretion through ABC transporters and confirm that this criterion can be applied to various non-secretable proteins, such as SARS-CoV-2 spike proteins, botulinum toxin light chain, and human growth factors. Additionally, we develop a new algorithm, PySupercharge, that enables the secretion of proteins containing regions with high linear charge density. It selectively converts positively charged amino acids into negatively charged or neutral amino acids after linear charge density analysis to enable protein secretion through ABC transporters. CONCLUSIONS: PySupercharge, which also minimizes functional/structural stability loss of the pre-mutation proteins through the use of sequence conservation data, is currently being operated on an accessible web server. We verified the efficacy of PySupercharge-driven protein supercharging by secreting various previously non-secretable proteins commonly used in research, and so suggest this tool for use in future research requiring effective protein production.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Aminoácidos , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Sequência de Aminoácidos
13.
Proc Natl Acad Sci U S A ; 121(16): e2310693121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607934

RESUMO

Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Escherichia coli Uropatogênica , Humanos , Animais , Camundongos , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Virulência/genética , Escherichia coli Uropatogênica/genética , Proteínas de Membrana Transportadoras/genética , Virulência
14.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674104

RESUMO

ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Dobramento de Proteína , Transporte Proteico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Dobramento de Proteína/efeitos dos fármacos , Células HEK293 , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592451

RESUMO

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Assuntos
Herpesvirus Humano 8 , Linfoma não Hodgkin , Linfoma de Efusão Primária , Masculino , Animais , Camundongos , Humanos , Feminino , Linfoma de Efusão Primária/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP , Agressão , Modelos Animais de Doenças , Quinases Relacionadas a NIMA/genética
16.
Wiad Lek ; 77(2): 262-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592987

RESUMO

OBJECTIVE: Aim: The current study was designed to investigate the role of ABCG5 and ABCG5 in serum with normal and expected cardiac complaints with CVDs as individual early diagnostic tools. PATIENTS AND METHODS: Materials and Methods: Data was collected in paper form and recorded from 100 healthy personals and 100 personals suspected with CVS after take the case history and clinical signs in private clinical hospital and the serum was collected for measurements the activity of ABCG5 and ABCG5 by used ELISA reader and the results illustrated that activity of ABCG5 and ABCG5 in all aged groups. RESULTS: Results: Activity of ABCG5 and ABCG5 in all aged groups periods in patient person male and female significant decrease as compared with same age in same period of live, so that the researched depicted that can used the serum activity of ABCG5 and ABCG5 as a diagnostics tools for atherosclerotic cardiovascular disease. CONCLUSION: Conclusions: We identified areas of further exploration on cholesterol transport related with CVD risk and concluded that changes in the Adenosine Triphosphate Binding Cassette transporters mainly G5 and G8 early diagnostic tools for cardiovascular disease in Human. We correlated areas of farther disquisition on nutrient cholesterol and CVD threat, in the included trials, healthy grown-ups consumed high doses of dietary cholesterol.


Assuntos
Doenças Cardiovasculares , Lipoproteínas , Humanos , Masculino , Feminino , Idoso , Lipoproteínas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Doenças Cardiovasculares/diagnóstico , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo
17.
Exp Dermatol ; 33(4): e15072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576105

RESUMO

Autosomal recessive congenital ichthyoses (ARCI) is a genetically heterogeneous condition that can be caused by pathogenic variants in at least 12 genes, including ABCA12. ARCI mainly consists of congenital ichthyosiform erythroderma (CIE), lamellar ichthyosis (LI) and harlequin ichthyosis (HI). The objective was to determine previously unreported pathogenic variants in ABCA12 and to update genotype-phenotype correlations for patients with pathogenic ABCA12 variants. Pathogenic variants in ABCA12 were detected using Sanger sequencing or a combination of Sanger sequencing and whole-exome sequencing. To verify the pathogenicity of a previously unreported large deletion and intron variant, cDNA analysis was performed using total RNA extracted from hair roots. Genetic analyses were performed on the patients with CIE, LI, HI and non-congenital ichthyosis with unusual phenotypes (NIUP), and 11 previously unreported ABCA12 variants were identified. Sequencing of cDNA confirmed the aberrant splicing of the variant ABCA12 in the patients with the previously unreported large deletion and intron variant. Our findings expand the phenotype spectrum of ichthyosis patients with ABCA12 pathogenic variants. The present missense variants in ABCA12 are considered to be heterogenous in pathogenicity, and they lead to varying disease severities in patients with ARCI and non-congenital ichthyosis with unusual phenotypes (NIUP).


Assuntos
Eritrodermia Ictiosiforme Congênita , Ictiose Lamelar , Ictiose , Humanos , Ictiose Lamelar/genética , Ictiose Lamelar/patologia , DNA Complementar , Genes Recessivos , Mutação , Ictiose/genética , Eritrodermia Ictiosiforme Congênita/genética , Estudos de Associação Genética , Transportadores de Cassetes de Ligação de ATP/genética
18.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607912

RESUMO

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Pinças Ópticas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Lactococcus lactis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula , Estabilidade Proteica , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química
19.
Antimicrob Agents Chemother ; 68(5): e0136823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572959

RESUMO

Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antiprotozoários , Depsipeptídeos , Resistência a Medicamentos , Leishmania tropica , Simulação de Acoplamento Molecular , Fosforilcolina , Fosforilcolina/análogos & derivados , Leishmania tropica/efeitos dos fármacos , Leishmania tropica/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Depsipeptídeos/farmacologia , Antiprotozoários/farmacologia , Fosforilcolina/farmacologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores
20.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575158

RESUMO

BACKGROUND: Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS: We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS: We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS: The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.


Assuntos
Neoplasias Pulmonares , Proteína A Associada a Surfactante Pulmonar , Proteína C Associada a Surfactante Pulmonar , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Proteína C Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/genética , Adulto , Fator Nuclear 1 de Tireoide/genética , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Risco , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Heterozigoto , Proteínas Associadas a Surfactantes Pulmonares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA