Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.754
Filtrar
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38752981

RESUMO

Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.


Assuntos
Transtorno Depressivo Maior , Função Executiva , Imageamento por Ressonância Magnética , Imagem Multimodal , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Adolescente , Função Executiva/fisiologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Neuroimagem/métodos , Cognição/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Mapeamento Encefálico/métodos
2.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729664

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Assuntos
Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Descanso , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Conectoma , Resultado do Tratamento , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
3.
Int J Neuropsychopharmacol ; 27(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695786

RESUMO

BACKGROUND: Major depressive disorder (MDD) is commonly treated with selective serotonin reuptake inhibitors (SSRIs). SSRIs inhibit the serotonin transporter (5-HTT), but the downstream antidepressant mechanism of action of these drugs is poorly understood. The serotonin 1B (5-HT1B) receptor is functionally linked to 5-HTT and 5-HT1B receptor binding and 5-HT1B receptor mRNA is reduced in the raphe nuclei after SSRI administration in primates and rodents, respectively. The effect of SSRI treatment on 5-HT1B receptor binding in patients with MDD has not been examined previously. This positron emission tomography (PET) study aimed to quantify brain 5-HT1B receptor binding changes in vivo after SSRI treatment for MDD in relation to treatment effect. METHODS: Eight unmedicated patients with moderate to severe MDD underwent PET with the 5-HT1B receptor radioligand [11C]AZ10419369 before and after 3 to 4 weeks of treatment with the SSRI escitalopram 10 mg daily. Depression severity was assessed at time of PET and after 6 to 7 weeks of treatment with the Montgomery-Åsberg Depression Rating Scale. RESULTS: We observed a significant reduction in [11C]AZ10419369 binding in a dorsal brainstem (DBS) region containing the median and dorsal raphe nuclei after escitalopram treatment (P = .036). Change in DBS [11C]AZ10419369 binding correlated with Montgomery-Åsberg Depression Rating Scale reduction after 3-4 (r = 0.78, P = .021) and 6-7 (r = 0.94, P < .001) weeks' treatment. CONCLUSIONS: Our findings align with the previously reported reduction of 5-HT1B receptor binding in the raphe nuclei after SSRI administration and support future studies testing change in DBS 5-HT1B receptor binding as an SSRI treatment response marker.


Assuntos
Transtorno Depressivo Maior , Escitalopram , Tomografia por Emissão de Pósitrons , Receptor 5-HT1B de Serotonina , Inibidores Seletivos de Recaptação de Serotonina , Receptor 5-HT1B de Serotonina/metabolismo , Masculino , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Adulto , Feminino , Pessoa de Meia-Idade , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Escitalopram/farmacologia , Escitalopram/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Resultado do Tratamento , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Adulto Jovem , Citalopram/farmacologia , Benzopiranos , Morfolinas
4.
PLoS One ; 19(5): e0300449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776272

RESUMO

Environmental exposures during the perinatal period are known to have a long-term effect on adult physical and mental health. One such influential environmental exposure is the time of year of birth which affects the amount of daylight, nutrients, and viral load that an individual is exposed to within this key developmental period. Here, we investigate associations between season of birth (seasonality), four mental health traits (n = 137,588) and multi-modal neuroimaging measures (n = 33,212) within the UK Biobank. Summer births were associated with probable recurrent Major Depressive Disorder (ß = 0.026, pcorr = 0.028) and greater mean cortical thickness in temporal and occipital lobes (ß = 0.013 to 0.014, pcorr<0.05). Winter births were associated with greater white matter integrity globally, in the association fibers, thalamic radiations, and six individual tracts (ß = -0.013 to -0.022, pcorr<0.05). Results of sensitivity analyses adjusting for birth weight were similar, with an additional association between winter birth and white matter microstructure in the forceps minor and between summer births, greater cingulate thickness and amygdala volume. Further analyses revealed associations between probable depressive phenotypes and a range of neuroimaging measures but a paucity of interactions with seasonality. Our results suggest that seasonality of birth may affect later-life brain structure and play a role in lifetime recurrent Major Depressive Disorder. Due to the small effect sizes observed, and the lack of associations with other mental health traits, further research is required to validate birth season effects in the context of different latitudes, and by co-examining genetic and epigenetic measures to reveal informative biological pathways.


Assuntos
Bancos de Espécimes Biológicos , Saúde Mental , Neuroimagem , Estações do Ano , Humanos , Feminino , Masculino , Reino Unido/epidemiologia , Pessoa de Meia-Idade , Adulto , Parto , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/epidemiologia , Idoso , Estudos Epidemiológicos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Biobanco do Reino Unido
5.
J Psychiatry Neurosci ; 49(3): E145-E156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692692

RESUMO

BACKGROUND: Neuroimaging studies have revealed abnormal functional interaction during the processing of emotional faces in patients with major depressive disorder (MDD), thereby enhancing our comprehension of the pathophysiology of MDD. However, it is unclear whether there is abnormal directional interaction among face-processing systems in patients with MDD. METHODS: A group of patients with MDD and a healthy control group underwent a face-matching task during functional magnetic resonance imaging. Dynamic causal modelling (DCM) analysis was used to investigate effective connectivity between 7 regions in the face-processing systems. We used a Parametric Empirical Bayes model to compare effective connectivity between patients with MDD and controls. RESULTS: We included 48 patients and 44 healthy controls in our analyses. Both groups showed higher accuracy and faster reaction time in the shape-matching condition than in the face-matching condition. However, no significant behavioural or brain activation differences were found between the groups. Using DCM, we found that, compared with controls, patients with MDD showed decreased self-connection in the right dorsolateral prefrontal cortex (DLPFC), amygdala, and fusiform face area (FFA) across task conditions; increased intrinsic connectivity from the right amygdala to the bilateral DLPFC, right FFA, and left amygdala, suggesting an increased intrinsic connectivity centred in the amygdala in the right side of the face-processing systems; both increased and decreased positive intrinsic connectivity in the left side of the face-processing systems; and comparable task modulation effect on connectivity. LIMITATIONS: Our study did not include longitudinal neuroimaging data, and there was limited region of interest selection in the DCM analysis. CONCLUSION: Our findings provide evidence for a complex pattern of alterations in the face-processing systems in patients with MDD, potentially involving the right amygdala to a greater extent. The results confirm some previous findings and highlight the crucial role of the regions on both sides of face-processing systems in the pathophysiology of MDD.


Assuntos
Tonsila do Cerebelo , Transtorno Depressivo Maior , Reconhecimento Facial , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Masculino , Feminino , Adulto , Reconhecimento Facial/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Teorema de Bayes , Adulto Jovem , Mapeamento Encefálico , Expressão Facial , Pessoa de Meia-Idade , Tempo de Reação/fisiologia
6.
Biol Sex Differ ; 15(1): 42, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750598

RESUMO

BACKGROUND: Sex differences exist in the prevalence and clinical manifestation of several mental disorders, suggesting that sex-specific brain phenotypes may play key roles. Previous research used machine learning models to classify sex from imaging data of the whole brain and studied the association of class probabilities with mental health, potentially overlooking regional specific characteristics. METHODS: We here investigated if a regionally constrained model of brain volumetric imaging data may provide estimates that are more sensitive to mental health than whole brain-based estimates. Given its known role in emotional processing and mood disorders, we focused on the limbic system. Using two different cohorts of healthy subjects, the Human Connectome Project and the Queensland Twin IMaging, we investigated sex differences and heritability of brain volumes of limbic structures compared to non-limbic structures, and subsequently applied regionally constrained machine learning models trained solely on limbic or non-limbic features. To investigate the biological underpinnings of such models, we assessed the heritability of the obtained sex class probability estimates, and we investigated the association with major depression diagnosis in an independent clinical sample. All analyses were performed both with and without controlling for estimated total intracranial volume (eTIV). RESULTS: Limbic structures show greater sex differences and are more heritable compared to non-limbic structures in both analyses, with and without eTIV control. Consequently, machine learning models performed well at classifying sex based solely on limbic structures and achieved performance as high as those on non-limbic or whole brain data, despite the much smaller number of features in the limbic system. The resulting class probabilities were heritable, suggesting potentially meaningful underlying biological information. Applied to an independent population with major depressive disorder, we found that depression is associated with male-female class probabilities, with largest effects obtained using the limbic model. This association was significant for models not controlling for eTIV whereas in those controlling for eTIV the associations did not pass significance correction. CONCLUSIONS: Overall, our results highlight the potential utility of regionally constrained models of brain sex to better understand the link between sex differences in the brain and mental disorders.


Psychiatric disorders have different prevalence between sexes, with women being twice as likely to develop depression and anxiety across the lifespan. Previous studies have investigated sex differences in brain structure that might contribute to this prevalence but have mostly focused on a single-structure level, potentially overlooking the interplay between brain regions. Sex differences in structures responsible for emotional regulation (limbic system), affected in many psychiatric disorders, have been previously reported. Here, we apply a machine learning model to obtain an estimate of brain sex for each participant based on the volumes of multiple brain regions. Particularly, we compared the estimates obtained with a model based solely on limbic structures with those obtained with a non-limbic model (entire brain except limbic structures) and a whole brain model. To investigate the genetic determinants of the models, we assessed the heritability of the estimates between identical twins and fraternal twins. The estimates of all our models were heritable, suggesting a genetic component contributing to brain sex. Finally, to investigate the association with mental health, we compared brain sex estimates in healthy subjects and in a depressed population. We found an association between depression and brain sex in females for the limbic model, but not for the non-limbic model. No effect was found in males. Overall, our results highlight the potential utility of machine learning models of brain sex based on relevant structures to better understand the link between sex differences in the brain and mental disorders.


Assuntos
Sistema Límbico , Transtornos Mentais , Fenótipo , Caracteres Sexuais , Humanos , Sistema Límbico/diagnóstico por imagem , Feminino , Masculino , Transtornos Mentais/genética , Transtornos Mentais/diagnóstico por imagem , Adulto , Aprendizado de Máquina , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/diagnóstico por imagem , Adulto Jovem , Pessoa de Meia-Idade
7.
Sci Rep ; 14(1): 10622, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724691

RESUMO

Reduced hippocampal volume occurs in major depressive disorder (MDD), potentially due to elevated glucocorticoids from an overactivated hypothalamus-pituitary-adrenal (HPA) axis. To examine this in humans, hippocampal volume and hypothalamus (HPA axis) metabolism was quantified in participants with MDD before and after antidepressant treatment. 65 participants (n = 24 males, n = 41 females) with MDD were treated in a double-blind, randomized clinical trial of escitalopram. Participants received simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) before and after treatment. Linear mixed models examined the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism. Chi-squared tests and multivariable logistic regression examined the association between hippocampus/dentate gyrus volume change direction and hypothalamus activity change direction with treatment. Multiple linear regression compared these changes between remitter and non-remitter groups. Covariates included age, sex, and treatment type. No significant linear association was found between hippocampus/dentate gyrus volume and hypothalamus metabolism. 62% (38 of 61) of participants experienced a decrease in hypothalamus metabolism, 43% (27 of 63) of participants demonstrated an increase in hippocampus size (51% [32 of 63] for the dentate gyrus) following treatment. No significant association was found between change in hypothalamus activity and change in hippocampus/dentate gyrus volume, and this association did not vary by sex, medication, or remission status. As this multimodal study, in a cohort of participants on standardized treatment, did not find an association between hypothalamus metabolism and hippocampal volume, it supports a more complex pathway between hippocampus neurogenesis and hypothalamus metabolism changes in response to treatment.


Assuntos
Transtorno Depressivo Maior , Hipocampo , Hipotálamo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagem , Adulto , Hipocampo/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Pessoa de Meia-Idade , Método Duplo-Cego , Tomografia por Emissão de Pósitrons/métodos , Giro Denteado/metabolismo , Giro Denteado/diagnóstico por imagem , Giro Denteado/patologia , Citalopram/uso terapêutico , Sistema Hipotálamo-Hipofisário/metabolismo , Tamanho do Órgão
8.
J Affect Disord ; 356: 470-476, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608766

RESUMO

Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.


Assuntos
Transtorno Depressivo Maior , Exossomos , Imageamento por Ressonância Magnética , MicroRNAs , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Masculino , Feminino , MicroRNAs/genética , Adulto , Exossomos/metabolismo , Exossomos/genética , Estudos de Casos e Controles , Pessoa de Meia-Idade , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Tálamo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia
9.
J Affect Disord ; 357: 107-115, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636713

RESUMO

INTRODUCTION: Dopaminergic transmission impairment has been identified as one of the main neurobiological correlates of both depression and clinical symptoms commonly associated with its spectrum such as anhedonia and psychomotor retardation. OBJECTIVES: We examined the relationship between dopaminergic deficit in the striatum, as measured by 123I-FP-CIT SPECT imaging, and specific psychopathological dimensions in patients with major depressive disorder. METHODS: To our knowledge this is the first study with a sample of >120 subjects. After check for inclusion and exclusion criteria, 121 (67 females, 54 males) patients were chosen retrospectively from an extensive 1106 patients database of 123I-FP-CIT SPECT scans obtained at the Nuclear Medicine Unit of Fondazione Policlinico Universitario Agostino Gemelli IRCCS in Rome. These individuals had undergone striatal dopamine transporter (DAT) assessments based on the recommendation of their referring clinicians, who were either neurologists or psychiatrists. At the time of SPECT imaging, each participant underwent psychiatric and psychometric evaluations. We used the following psychometric scales: Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Snaith Hamilton Pleasure Scale, and Depression Retardation Rating Scale. RESULTS: We found a negative correlation between levels of depression (p = 0.007), anxiety (p = 0.035), anhedonia (p = 0.028) and psychomotor retardation (p = 0.014) and DAT availability in the left putamen. We further stratified the sample and found that DAT availability in the left putamen was lower in seriously depressed patients (p = 0.027) and in patients with significant psychomotor retardation (p = 0.048). CONCLUSION: To our knowledge this is the first study to have such a high number of sample. Our study reveals a pivotal role of dopaminergic dysfunction in patients with major depressive disorder. Elevated levels of depression, anxiety, anhedonia, and psychomotor retardation appear to be associated with reduced DAT availability specifically in the left putamen.


Assuntos
Transtorno Depressivo Maior , Proteínas da Membrana Plasmática de Transporte de Dopamina , Putamen , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Feminino , Masculino , Putamen/diagnóstico por imagem , Putamen/metabolismo , Adulto , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Tropanos , Estudos Retrospectivos , Anedonia/fisiologia , Dopamina/metabolismo , Idoso , Escalas de Graduação Psiquiátrica
10.
Eur Psychiatry ; 67(1): e33, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572583

RESUMO

BACKGROUND: Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes. METHODS: Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions. RESULTS: Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13. CONCLUSIONS: The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.


Assuntos
Tonsila do Cerebelo , Antidepressivos , Transtorno Depressivo Maior , Ketamina , Imageamento por Ressonância Magnética , Humanos , Ketamina/farmacologia , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Masculino , Feminino , Adulto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/administração & dosagem , Pessoa de Meia-Idade , Resultado do Tratamento
11.
Br J Psychiatry ; 224(5): 170-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602159

RESUMO

BACKGROUND: Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. AIMS: Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. METHOD: A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. RESULTS: Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. CONCLUSIONS: Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.


Assuntos
Transtorno Depressivo Maior , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Conectoma , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Estudos de Casos e Controles , Neuroimagem , Adulto Jovem , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Rede de Modo Padrão/fisiopatologia
12.
Sci Rep ; 14(1): 8940, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637536

RESUMO

An abnormality of structures and functions in the hippocampus may have a key role in the pathophysiology of major depressive disorder (MDD). However, it is unclear whether structure factors of the hippocampus effectively impact antidepressant responses by hippocampal functional activity in MDD patients. We collected longitudinal data from 36 MDD patients before and after a 3-month course of antidepressant pharmacotherapy. Additionally, we obtained baseline data from 43 healthy controls matched for sex and age. Using resting-state functional magnetic resonance imaging (rs-fMRI), we estimated the dynamic functional connectivity (dFC) of the hippocampal subregions using a sliding-window method. The gray matter volume was calculated using voxel-based morphometry (VBM). The results indicated that patients with MDD exhibited significantly lower dFC of the left rostral hippocampus (rHipp.L) with the right precentral gyrus, left superior temporal gyrus and left postcentral gyrus compared to healthy controls at baseline. In MDD patients, the dFC of the rHipp.L with right precentral gyrus at baseline was correlated with both the rHipp.L volume and HAMD remission rate, and also mediated the effects of the rHipp.L volume on antidepressant performance. Our findings suggested that the interaction between hippocampal structure and functional activity might affect antidepressant performance, which provided a novel insight into the hippocampus-related neurobiological mechanism of MDD.


Assuntos
Transtorno Depressivo Maior , Córtex Motor , Humanos , Substância Cinzenta/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo
13.
Neuroimage ; 292: 120594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569980

RESUMO

Converging evidence increasingly suggests that psychiatric disorders, such as major depressive disorder (MDD) and autism spectrum disorder (ASD), are not unitary diseases, but rather heterogeneous syndromes that involve diverse, co-occurring symptoms and divergent responses to treatment. This clinical heterogeneity has hindered the progress of precision diagnosis and treatment effectiveness in psychiatric disorders. In this study, we propose BPI-GNN, a new interpretable graph neural network (GNN) framework for analyzing functional magnetic resonance images (fMRI), by leveraging the famed prototype learning. In addition, we introduce a novel generation process of prototype subgraph to discover essential edges of distinct prototypes and employ total correlation (TC) to ensure the independence of distinct prototype subgraph patterns. BPI-GNN can effectively discriminate psychiatric patients and healthy controls (HC), and identify biological meaningful subtypes of psychiatric disorders. We evaluate the performance of BPI-GNN against 11 popular brain network classification methods on three psychiatric datasets and observe that our BPI-GNN always achieves the highest diagnosis accuracy. More importantly, we examine differences in clinical symptom profiles and gene expression profiles among identified subtypes and observe that our identified brain-based subtypes have the clinical relevance. It also discovers the subtype biomarkers that align with current neuro-scientific knowledge.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Adulto , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/classificação , Transtornos Mentais/diagnóstico , Feminino , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/classificação , Adulto Jovem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico
14.
BMC Psychiatry ; 24(1): 313, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658896

RESUMO

BACKGROUND: Distinguishing untreated major depressive disorder without medication (MDD) from schizophrenia with depressed mood (SZDM) poses a clinical challenge. This study aims to investigate differences in fractional amplitude of low-frequency fluctuations (fALFF) and cognition in untreated MDD and SZDM patients. METHODS: The study included 42 untreated MDD cases, 30 SZDM patients, and 46 healthy controls (HC). Cognitive assessment utilized the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted, and data were processed using fALFF in slow-4 and slow-5 bands. RESULTS: Significant fALFF changes were observed in four brain regions across MDD, SZDM, and HC groups for both slow-4 and slow-5 fALFF. Compared to SZDM, the MDD group showed increased slow-5 fALFF in the right gyrus rectus (RGR). Relative to HC, SZDM exhibited decreased slow-5 fALFF in the left gyrus rectus (LGR) and increased slow-5 fALFF in the right putamen. Changes in slow-5 fALFF in both RGR and LGR were negatively correlated with RBANS scores. No significant correlations were found between remaining fALFF (slow-4 and slow-5 bands) and RBANS scores in MDD or SZDM groups. CONCLUSIONS: Alterations in slow-5 fALFF in RGR may serve as potential biomarkers for distinguishing MDD from SZDM, providing preliminary insights into the neural mechanisms of cognitive function in schizophrenia.


Assuntos
Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Masculino , Feminino , Adulto , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/complicações , Cognição/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Testes Neuropsicológicos/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto Jovem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem
15.
Asian J Psychiatr ; 95: 104025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522164

RESUMO

This study aimed to investigate the neurobiological mechanisms by which microRNA 124 (miR-124) is involved in major depressive disorder (MDD). We enrolled 53 untreated MDD patients and 38 healthy control (HC) subjects who completed behavior assessments and resting-state functional MRI (rs-fMRI) scans. MiR-124 expression levels were detected in the peripheral blood of all participants. We determined that miR-124 levels could influence depressive symptoms via disrupted large-scale intrinsic intra- and internetwork connectivity, including the default mode network (DMN)-DMN, dorsal attention network (DAN)-salience network (SN), and DAN-cingulo-opercular network (CON). This study deepens our understanding of how miR-124 dysregulation contributes to depression.


Assuntos
Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , MicroRNAs , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Adulto , MicroRNAs/genética , Masculino , Feminino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Conectoma , Pessoa de Meia-Idade , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia
16.
Asian J Psychiatr ; 95: 103994, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547573

RESUMO

BACKGROUND: About 30% of patients diagnosed with major depressive disorder fail with the mainstream pharmacological treatment. Patients who do not achieve clinical remission of symptoms, even with two different antidepressants, are classified with treatment-resistant depression (TDR). This condition imposes an additional burden with increased Disability Adjusted Life Years. Therefore, complementary treatments, such as neuromodulation, are necessary. The transcranial focused ultrasound (tFUS) has emerged in the past few years as a reliable method for non-invasive neuromodulation in humans and may help treat TRD. This study aims to propose a research protocol for a non-inferiority randomized clinical trial of TDR with tFUS. METHODS: Patients with documented TRD will be screened upon entering the TRD outpatient clinic at UFMG (Brazil). One hundred patients without a clinical history of other psychiatric illness, anatomical abnormalities on magnetic resonance imaging (MRI), or treatment with electroconvulsive therapy will be invited to participate. Patients will be randomized (1:1) into two groups: 1) treatment with a previously established protocol of transcranial magnetic stimulation; and 2) treatment with a similar protocol using the stimulation. Besides regular consultations in the outpatient clinic, both groups will attend 7 protocolled spaced days of brain stimulation targeted at the left dorsolateral prefrontal cortex. They will also be submitted to 4 sessions of image studies (2 MRIs, 2 positron-emission tomography), 3 of neuropsychological assessments (at baseline, 1 week and 2 months after treatment), the Montgomery-Åsberg Depression Rating Scale to analyze the severity of depressive symptoms. DISCUSSION: This clinical trial intends to verify the safety and clinical efficacy of tFUS stimulation of the dorsolateral prefrontal cortex of patients with TRD, compared with a previously established neuromodulation method.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Córtex Pré-Frontal Dorsolateral , Humanos , Transtorno Depressivo Resistente a Tratamento/terapia , Córtex Pré-Frontal Dorsolateral/fisiologia , Adulto , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/diagnóstico por imagem , Avaliação de Resultados em Cuidados de Saúde , Pessoa de Meia-Idade , Estudos de Equivalência como Asunto , Resultado do Tratamento , Córtex Pré-Frontal/diagnóstico por imagem
17.
PLoS One ; 19(3): e0299625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547128

RESUMO

Major depressive disorder (MDD), a prevalent mental health issue, affects more than 8% of the US population, and almost 17% in the young group of 18-25 years old. Since Covid-19, its prevalence has become even more significant. However, the remission (being free of depression) rates of first-line antidepressant treatments on MDD are only about 30%. To improve treatment outcomes, researchers have built various predictive models for treatment responses and yet none of them have been adopted in clinical use. One reason is that most predictive models are based on data from subjective questionnaires, which are less reliable. Neuroimaging data are promising objective prognostic factors, but they are expensive to obtain and hence predictive models using neuroimaging data are limited and such studies were usually in small scale (N<100). In this paper, we proposed an advanced machine learning (ML) pipeline for small training dataset with large number of features. We implemented multiple imputation for missing data and repeated K-fold cross validation (CV) to robustly estimate predictive performances. Different feature selection methods and stacking methods using 6 general ML models including random forest, gradient boosting decision tree, XGBoost, penalized logistic regression, support vector machine (SVM), and neural network were examined to evaluate the model performances. All predictive models were compared using model performance metrics such as accuracy, balanced accuracy, area under ROC curve (AUC), sensitivity and specificity. Our proposed ML pipeline was applied to a training dataset and obtained an accuracy and AUC above 0.80. But such high performance failed while applying our ML pipeline using an external validation dataset from the EMBARC study which is a multi-center study. We further examined the possible reasons especially the site heterogeneity issue.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Humanos , Adolescente , Adulto Jovem , Adulto , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Área Sob a Curva , Benchmarking , COVID-19/diagnóstico por imagem , Neuroimagem
18.
Eur J Neurosci ; 59(10): 2766-2777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515219

RESUMO

Despite altered brain activities being associated with suicidal ideation (SI), the neural correlates of SI in major depressive disorder (MDD) have remained elusive. We enrolled 82 first-episode drug-naïve MDD patients including 41 with SI and 41 without SI, as well as 41 healthy controls (HCs). Resting-state functional and structural MRI data were collected. The measures of fractional amplitude of low-frequency fluctuation (fALFF) and grey matter volume (GMV) were calculated and compared. Compared with HCs, patients with SI exhibited increased fALFF values in the right rectus gyrus and left medial superior frontal gyrus, middle frontal gyrus and precuneus. Decreased GMV in the right parahippocampal gyrus, insula and middle occipital gyrus and increased GMV in the left superior frontal gyrus were detected in patients with SI. In addition, patients without SI demonstrated increased fALFF values in the right superior frontal gyrus and decreased fALFF values in the right postcentral gyrus. Decreased GMV in the left superior frontal gyrus, right medial superior frontal gyrus, opercular part of inferior frontal gyrus, postcentral gyrus, fusiform gyrus and increased left supplementary motor area, superior occipital gyrus, right anterior cingulate gyrus and superior temporal gyrus were revealed in patients with SI. Moreover, in comparison with patients without SI, increased fALFF values were identified in the left precuneus of patients with SI. However, no significant differences were found in GMV between patients with and without SI. These findings might be helpful for finding neuroimaging markers predicting individual suicide risk and detecting targeted brain regions for effective early interventions.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Ideação Suicida , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia
19.
Psychiatry Res Neuroimaging ; 340: 111792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484532

RESUMO

We investigated the neuroimaging changes and clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) combined with antidepressants in major depressive disorder (MDD) patients. We scanned 35 patients with MDD and 27 healthy controls (HC) with resting-state functional magnetic resonance imaging (fMRI) before and after treatment. We analyzed amplitude of low-frequency fluctuation (ALFF) and the correlation with clinical variables. The rate of significant efficacy after treatment was higher in the combination treatment group than in the antidepressant group, although not statistically significant. At baseline, ALFF increased in the left middle temporal, brain stem, and left cerebellum and decreased in the right anterior cingulate (ACC), right orbital frontal cortex (OFC), and right caudate. ALFF increased in the left fusiform and decreased in the right lingual gyrus, left middle occipital gyrus, and left superior occipital gyrus after antidepressants. ALFF increased in the right ACC, right OFC, and right rectus after combination treatment. ALFF changes in the right ACC/OFC were negatively correlated with HAMD changes. After treatment, abnormal activity in some brain regions normalized, but these regions differed between the two treatment groups. rTMS combined with antidepressants therapy may improve MDD symptoms by improving neuronal activity levels in the right ACC and right OFC.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Estimulação Magnética Transcraniana , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Antidepressivos/uso terapêutico
20.
Hum Brain Mapp ; 45(5): e26670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553866

RESUMO

Major depressive disorder (MDD) is a clinically heterogeneous disorder. Its mechanism is still unknown. Although the altered intersubject variability in functional connectivity (IVFC) within gray-matter has been reported in MDD, the alterations to IVFC within white-matter (WM-IVFC) remain unknown. Based on the resting-state functional MRI data of discovery (145 MDD patients and 119 healthy controls [HCs]) and validation cohorts (54 MDD patients, and 78 HCs), we compared the WM-IVFC between the two groups. We further assessed the meta-analytic cognitive functions related to the alterations. The discriminant WM-IVFC values were used to classify MDD patients and predict clinical symptoms in patients. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging association analyses were further conducted to investigate gene expression profiles associated with WM-IVFC alterations in MDD, followed by a set of gene functional characteristic analyses. We found extensive WM-IVFC alterations in MDD compared to HCs, which were associated with multiple behavioral domains, including sensorimotor processes and higher-order functions. The discriminant WM-IVFC could not only effectively distinguish MDD patients from HCs with an area under curve ranging from 0.889 to 0.901 across three classifiers, but significantly predict depression severity (r = 0.575, p = 0.002) and suicide risk (r = 0.384, p = 0.040) in patients. Furthermore, the variability-related genes were enriched for synapse, neuronal system, and ion channel, and predominantly expressed in excitatory and inhibitory neurons. Our results obtained good reproducibility in the validation cohort. These findings revealed intersubject functional variability changes of brain WM in MDD and its linkage with gene expression profiles, providing potential implications for understanding the high clinical heterogeneity of MDD.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transcriptoma , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA