Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39408806

RESUMO

Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders. To explore its pathophysiology, we investigated the association between neonatal allergic exposure and behavioral changes. Adult female C57BL/6J mice were immunized with adjuvant (aluminum hydroxide) or ovalbumin emulsified with adjuvant. After immunization, the mice were mated, and offspring were born at full term. The postnatal dams and infants were then simultaneously exposed to an allergen (ovalbumin) or vehicle via inhalation. After weaning, behavioral testing and histopathological analyses were conducted on male offspring. Compared with the vehicle-exposed offspring, the ovalbumin-exposed offspring had decreased sociability and increased repetitive behavior, thus representing an ASD-like phenotype in mice. Moreover, histopathological analyses revealed that the ovalbumin-exposed mice had increased astroglial, microglial, and eosinophilic infiltration in the olfactory bulb, as well as increased eosinophils in the nasal mucosa. The ovalbumin-exposed mice also had decreased dendritic spine density and a lower proportion of mature spines, suggesting the impairment of stimulus-induced synaptogenesis. In conclusion, postnatal allergic exposure induced an ASD-like phenotype, as well as allergic rhinitis, which was followed by glial inflammation in the olfactory bulb parenchyma.


Assuntos
Transtorno do Espectro Autista , Camundongos Endogâmicos C57BL , Bulbo Olfatório , Ovalbumina , Animais , Camundongos , Bulbo Olfatório/patologia , Feminino , Ovalbumina/imunologia , Masculino , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/imunologia , Neuroglia/patologia , Neuroglia/imunologia , Modelos Animais de Doenças , Hipersensibilidade/patologia , Hipersensibilidade/etiologia , Hipersensibilidade/imunologia , Inflamação/patologia , Animais Recém-Nascidos , Comportamento Animal , Rinite Alérgica/patologia , Rinite Alérgica/etiologia , Rinite Alérgica/imunologia , Rinite Alérgica/induzido quimicamente
2.
Front Immunol ; 15: 1447385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308859

RESUMO

Introduction: Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental Q8 conditions characterized by deficits in social interaction/communication and restrictive/repetitive behaviors. Recent studies highlight the role of immune system dysfunction and inflammation in ASD pathophysiology. Indeed, elevated levels of pro-inflammatory cytokines were described in the brain and peripheral blood of ASD individuals. Despite this, how this pro-inflammatory profile evolves with aging and whether it may be associated with behavioral deficits is unknown. In this work, we explored the impact of aging on motor behavior and inflammation using Shank3b mutant mice, a model for syndromic ASD. Methods: Using RT-qPCR and flow cytometry, we examined the expression of key pro-inflammatory molecules in the cerebellum, bone marrow, spleen, and peripheral blood, comparing adult and old Shank3b +/+, Shank3b +/-, and Shank3b -/- mice. Results and discussion: Our findings revealed genotype- and age-related differences in inflammation and motor behavior, with Shank3b-/- mice exhibiting accelerated aging and motor impairments. Correlations between pro-inflammatory molecules and behavioral deficits suggest that a link may be present between systemic inflammation and ASD-related behaviors, underscoring the potential role of age-related inflammation ("inflammaging") in exacerbating ASD symptoms.


Assuntos
Envelhecimento , Transtorno do Espectro Autista , Modelos Animais de Doenças , Inflamação , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Proteínas do Tecido Nervoso/genética , Camundongos , Envelhecimento/imunologia , Envelhecimento/genética , Inflamação/imunologia , Inflamação/genética , Proteínas dos Microfilamentos/genética , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Citocinas/metabolismo , Comportamento Animal
3.
Autism Res ; 17(10): 1974-1993, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39315457

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.


Assuntos
Transtorno do Espectro Autista , Autoanticorpos , Linfócitos B , Humanos , Autoanticorpos/sangue , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/sangue , Masculino , Feminino , Catar , Pré-Escolar , Linfócitos B/imunologia , Criança , Árabes/estatística & dados numéricos
4.
Brain Behav Immun ; 122: 339-344, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163910

RESUMO

In studies investigating the etiology and pathophysiology of autism spectrum disorder (ASD), immune dysregulation is commonly observed, with elevated levels of inflammatory cytokines frequently found in gestational tissues. However, studies investigating the relationship between early immune dysregulation within the umbilical cord blood (CB) compartment and neurodevelopmental outcomes remains limited. In this exploratory study, we utilized data from the prospective Markers for Autism Risk in Babies - Learning Early Signs (MARBLES) study to examine cytokine levels in the plasma fraction of CB in infants later diagnosed with ASD (n = 38) compared to infants typically developing (TD) at age 3 years (n = 103), using multiplex cytokine assays. Our findings reveal altered levels of several inflammatory cytokines in children later diagnosed with ASD, including increased granulocyte colony-stimulating factor (G-CSF) and decreased interleukin-1α (IL-1α), IL-1ß, and IL-4 in CB. Furthermore, we identified several associations between behaviors and levels of cytokines, chemokines and growth factors. IL-1α, IL-17A, interferon γ-induced protein 10 (IP-10), and epidermal growth factor (EGF) were associated with worse scores on Autism Diagnostic Observation Schedule (ADOS) and the Mullen Scales of Early Learning (MSEL) assessments. In summary, our study demonstrates dysregulated levels of inflammatory cytokine mediators in the CB of children later diagnosed with ASD and that inflammatory mediators were associated with ASD severity, comorbid behaviors, and neurodevelopmental measures. These findings have important implications for the possible predictive value of early cytokine measures in neurodevelopmental outcomes and subsequent behavioral manifestations.


Assuntos
Transtorno do Espectro Autista , Citocinas , Sangue Fetal , Humanos , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/imunologia , Sangue Fetal/metabolismo , Feminino , Masculino , Citocinas/sangue , Pré-Escolar , Estudos Prospectivos , Lactente , Interleucina-1alfa/sangue , Fator Estimulador de Colônias de Granulócitos/sangue , Interleucina-1beta/sangue , Interleucina-4/sangue , Interleucina-17/sangue , Fator de Crescimento Epidérmico/sangue
5.
Nutrients ; 16(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125263

RESUMO

Children diagnosed with autism spectrum disorder (ASD) are at an increased risk of experiencing gastrointestinal (GI) discomfort, which has been linked to dysfunctions in the microbiome-gut-brain axis. The bidirectional communication between gut and brain plays a crucial role in the overall health of individuals, and alterations in the gut microbiome can contribute to immune activation and gut-brain dysfunction in ASD. Despite the limited and controversial results of pre-/probiotic applications in ASD, this review comprehensively maps the association between ASD clinical symptoms and specific bacterial taxa and evaluates the efficacy of pre-/probiotics in modulating microbiota composition, reducing inflammatory biomarkers, alleviating difficulties in GI distress, sleep problems, core and other ASD-associated symptoms, as well as relieving parental concerns, separately, in individuals with ASD. Beyond simply targeting core ASD symptoms, this review highlights the potential of pre-/probiotic supplementations as a strategy to modulate gut homeostasis and immune response, and to delineate the potential mechanisms by which its direct or mediating effects can alleviate gut-brain dysfunction and poor nutritional status in ASD management. Further well-designed randomized controlled trials are needed to strengthen the existing evidence and establish optimal protocols for the use of pre-/probiotics in the context of ASD.


Assuntos
Transtorno do Espectro Autista , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Prebióticos , Probióticos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/microbiologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Prebióticos/administração & dosagem , Eixo Encéfalo-Intestino/fisiologia , Criança
6.
BMC Psychiatry ; 24(1): 477, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937836

RESUMO

BACKGROUND: Observational studies have indicated a correlation between immunological inflammation and the risk of autism spectrum disorder (ASD). However, the causal relationship between immunological inflammation and ASD remains uncertain. METHODS: Immunity-wide data sources were retrieved from the GWAS catalog. Genetic summary data on ASD were retrieved from two independent GWAS. We performed two independent bi-directional, two-sample Mendelian randomization (MR) analyses and a meta-analysis based on the two independent MR estimates to assess the causal relationship between ASD and immune cell signatures. RESULTS: We have discovered 26 potential correlations between genetic predisposition in the immunophenotypes and ASD. The meta-analysis of the two inverse variance weighted (IVW)-produced estimates provided further evidence supporting the potential causal relationship between immunophenotypes and ASD. Based on the findings of the reverse MR analysis, it was determined that there are two potential negative causal relationships between ASD and immunophenotypes. However, the meta-analysis of the two IVW-derived MR estimates indicated that immunophenotypes were not significantly influenced by ASD (OR = 0.87, 95% CI = 0.73 -1.03, P = 0.09; OR = 0.91, 95% CI = 0.81-1.01, P = 0.08). CONCLUSIONS: This study expanded immune cell subtypes that were potentially causally associated with ASD risk as well as identified ASD-specific immune cell subtypes. The discovery has the potential to lead to earlier detection and more effective treatment techniques.


Assuntos
Transtorno do Espectro Autista , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Predisposição Genética para Doença/genética , Imunofenotipagem , Inflamação/genética , Inflamação/imunologia
7.
Front Immunol ; 15: 1347139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726016

RESUMO

Background: Autism spectrum disorder (ASD) is a disease characterized by social disorder. Recently, the population affected by ASD has gradually increased around the world. There are great difficulties in diagnosis and treatment at present. Methods: The ASD datasets were obtained from the Gene Expression Omnibus database and the immune-relevant genes were downloaded from a previously published compilation. Subsequently, we used WGCNA to screen the modules related to the ASD and immune. We also choose the best combination and screen out the core genes from Consensus Machine Learning Driven Signatures (CMLS). Subsequently, we evaluated the genetic correlation between immune cells and ASD used GNOVA. And pleiotropic regions identified by PLACO and CPASSOC between ASD and immune cells. FUMA was used to identify pleiotropic regions, and expression trait loci (EQTL) analysis was used to determine their expression in different tissues and cells. Finally, we use qPCR to detect the gene expression level of the core gene. Results: We found a close relationship between neutrophils and ASD, and subsequently, CMLS identified a total of 47 potential candidate genes. Secondly, GNOVA showed a significant genetic correlation between neutrophils and ASD, and PLACO and CPASSOC identified a total of 14 pleiotropic regions. We annotated the 14 regions mentioned above and identified a total of 6 potential candidate genes. Through EQTL, we found that the CFLAR gene has a specific expression pattern in neutrophils, suggesting that it may serve as a potential biomarker for ASD and is closely related to its pathogenesis. Conclusions: In conclusion, our study yields unprecedented insights into the molecular and genetic heterogeneity of ASD through a comprehensive bioinformatics analysis. These valuable findings hold significant implications for tailoring personalized ASD therapies.


Assuntos
Transtorno do Espectro Autista , Biologia Computacional , Predisposição Genética para Doença , Locos de Características Quantitativas , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Aprendizado de Máquina , Bases de Dados Genéticas , Imunogenética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transcriptoma
8.
Front Immunol ; 15: 1370276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742104

RESUMO

Background: Extensive observational studies have reported an association between inflammatory factors and autism spectrum disorder (ASD), but their causal relationships remain unclear. This study aims to offer deeper insight into causal relationships between circulating inflammatory factors and ASD. Methods: Two-sample bidirectional Mendelian randomization (MR) analysis method was used in this study. The genetic variation of 91 circulating inflammatory factors was obtained from the genome-wide association study (GWAS) database of European ancestry. The germline GWAS summary data for ASD were also obtained (18,381 ASD cases and 27,969 controls). Single nucleotide polymorphisms robustly associated with the 91 inflammatory factors were used as instrumental variables. The random-effects inverse-variance weighted method was used as the primary analysis, and the Bonferroni correction for multiple comparisons was applied. Sensitivity tests were carried out to assess the validity of the causal relationship. Results: The forward MR analysis results suggest that levels of sulfotransferase 1A1, natural killer cell receptor 2B4, T-cell surface glycoprotein CD5, Fms-related tyrosine kinase 3 ligand, and tumor necrosis factor-related apoptosis-inducing ligand are positively associated with the occurrence of ASD, while levels of interleukin-7, interleukin-2 receptor subunit beta, and interleukin-2 are inversely associated with the occurrence of ASD. In addition, matrix metalloproteinase-10, caspase 8, tumor necrosis factor-related activation-induced cytokine, and C-C motif chemokine 19 were considered downstream consequences of ASD. Conclusion: This MR study identified additional inflammatory factors in patients with ASD relative to previous studies, and raised a possibility of ASD-caused immune abnormalities. These identified inflammatory factors may be potential biomarkers of immunologic dysfunction in ASD.


Assuntos
Transtorno do Espectro Autista , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/imunologia , Predisposição Genética para Doença , População Branca/genética , Biomarcadores/sangue , Inflamação/genética , Inflamação/sangue , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Masculino , Feminino , Citocinas/sangue , Citocinas/genética , Europa (Continente)
9.
J Nutr Biochem ; 129: 109638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583499

RESUMO

Maternal infection during pregnancy is an important cause of autism spectrum disorder (ASD) in offspring, and inflammatory infiltration caused by maternal immune activation (MIA) can cause neurodevelopmental disorders in the fetus. Medicine food homologous (MFH) refers to a traditional Chinese medicine (TCM) concept, which effectively combines food functions and medicinal effects. However, no previous study has screened, predicted, and validated the potential targets of MFH herbs for treating ASD. Therefore, in this study, we used comprehensive bioinformatics methods to screen and analyze MFH herbs and drug targets on a large scale, and identified resveratrol and Thoc5 as the best small molecular ingredient and drug target, respectively, for the treatment of MIA-induced ASD. Additionally, the results of in vitro experiments revealed that resveratrol increased the expression of Thoc5 and effectively inhibited lipopolysaccharide-induced inflammatory factor production by BV2 cells. Moreover, in vivo, resveratrol increased the expression of Thoc5 and effectively inhibited placental and fetal brain inflammation in MIA pregnancy mice, and improved ASD-like behaviors in offspring.


Assuntos
Transtorno do Espectro Autista , Proteínas Nucleares , Efeitos Tardios da Exposição Pré-Natal , Resveratrol , Animais , Feminino , Masculino , Camundongos , Gravidez , Transtorno do Espectro Autista/imunologia , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/imunologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Resveratrol/farmacologia , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo
10.
Am J Med Genet A ; 194(8): e63627, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38613168

RESUMO

Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.


Assuntos
Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas c-cbl , Humanos , Proteínas Proto-Oncogênicas c-cbl/genética , Mutação em Linhagem Germinativa/genética , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/sangue , Predisposição Genética para Doença , Pré-Escolar , Criança , Animais , Fenótipo , Células COS , Trombocitopenia/genética , Trombocitopenia/patologia
11.
Acta Pharmacol Sin ; 45(8): 1591-1603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589690

RESUMO

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.


Assuntos
Transtorno do Espectro Autista , Comportamento Animal , Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Prebióticos , Ácido Valproico , Animais , Transtorno do Espectro Autista/imunologia , Prebióticos/administração & dosagem , Feminino , Gravidez , Camundongos , Ácido Valproico/administração & dosagem , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Fenótipo , Oligossacarídeos/administração & dosagem , Oligossacarídeos/farmacologia
12.
J Med Genet ; 61(7): 677-688, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38443156

RESUMO

BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.


Assuntos
Transtorno do Espectro Autista , Autoantígenos , Epigênese Genética , Proteínas Nucleares , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Mutação , Linhagem , Transdução de Sinais/genética , Autoantígenos/genética , Proteínas Nucleares/genética
13.
Brain Behav Immun ; 105: 67-81, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803480

RESUMO

The epidemiological association between bacterial or viral maternal infections during pregnancy and increased risk for developing psychiatric disorders in offspring is well documented. Numerous rodent and non-human primate studies of viral- or, to a lesser extent, bacterial-induced maternal immune activation (MIA) have documented a series of neurological alterations that may contribute to understanding the pathophysiology of schizophrenia and autism spectrum disorders. Long-term neuronal and behavioral alterations are now ascribed to the effect of maternal proinflammatory cytokines rather than the infection itself. However, detailed electrophysiological alterations in brain areas relevant to psychiatric disorders, such as the dorsal hippocampus, are lacking in response to bacterial-induced MIA. This study determined if electrophysiological and morphological alterations converge in CA1 pyramidal cells (CA1 PC) from the dorsal hippocampus in bacterial-induced MIA offspring. A series of changes in the functional expression of K+ and Na+ ion channels altered the passive and active membrane properties and triggered hyperexcitability of CA1 PC. Contributing to the hyperexcitability, the somatic A-type potassium current (IA) was decreased in MIA CA1 PC. Likewise, the spontaneous glutamatergic and GABAergic inputs were dysregulated and biased toward increased excitation, thereby reshaping the excitation-inhibition balance. Consistent with these findings, the dendritic branching complexity of MIA CA1 PC was reduced. Together, these morphophysiological alterations modify CA1 PC computational capabilities and contribute to explaining cellular alterations that may underlie the cognitive symptoms of MIA-associated psychiatric disorders.


Assuntos
Imunidade , Neurônios , Canais de Potássio , Animais , Transtorno do Espectro Autista/imunologia , Região CA1 Hipocampal/citologia , Regulação para Baixo , Feminino , Neurônios/metabolismo , Canais de Potássio/metabolismo , Gravidez , Células Piramidais/imunologia , Esquizofrenia/imunologia
14.
Neuroimmunomodulation ; 29(4): 391-401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35272296

RESUMO

INTRODUCTION: The prenatal/perinatal exposure to infections may trigger neurodevelopmental alterations that lead to neuropsychiatric disorders such as autism spectrum disorder (ASD). Previous evidence points to long-term behavioral consequences, such as autistic-like behaviors in rodents induced by lipopolysaccharide (LPS) pre- and postnatal (PN) exposure during critical neurodevelopmental periods. Additionally, sex influences the prevalence and symptoms of ASD. Despite this, the mechanisms underlying this influence are poorly understood. We aim to study sex influences in behavioral and neurotrophic/inflammatory alterations triggered by LPS neonatal exposure in juvenile mice at an approximate age of ASD diagnosis in humans. METHODS: Swiss male and female mice on PN days 5 and 7 received a single daily injection of 500 µg/kg LPS from Escherichia coli or sterile saline (control group). We conducted behavioral determinations of locomotor activity, repetitive behavior, anxiety-like behavior, social interaction, and working memory in animals on PN25 (equivalent to 3-5 years old of the human). To determine BDNF levels in the prefrontal cortex and hippocampus, we used animals on PN8 (equivalent to a human term infant) and PN25. In addition, we evaluated iba-1 (microglia marker), TNFα, and parvalbumin expression on PN25. RESULTS: Male juvenile mice presented repetitive behavior, anxiety, and working memory deficits. Females showed social impairment and working memory deficits. In the neurochemical analysis, we detected lower BDNF levels in brain areas of female mice that were more evident in juvenile mice. Only LPS-challenged females presented a marked hippocampal expression of the microglial activation marker, iba-1, and increased TNFα levels, accompanied by a lower parvalbumin expression. DISCUSSION/CONCLUSION: Male and female mice presented distinct behavioral alterations. However, LPS-challenged juvenile females showed the most prominent neurobiological alterations related to autism, such as increased microglial activation and parvalbumin impairment. Since these sex-sensitive alterations seem to be age-dependent, a better understanding of changes induced by the exposure to specific risk factors throughout life represents essential targets for developing strategies for autism prevention and precision therapy.


Assuntos
Transtorno do Espectro Autista , Comportamento Animal , Animais , Feminino , Masculino , Camundongos , Gravidez , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Transtornos da Memória/imunologia , Transtornos da Memória/fisiopatologia , Parvalbuminas/biossíntese , Fator de Necrose Tumoral alfa , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/fisiopatologia , Microglia/imunologia , Fatores Sexuais , Fatores Etários
15.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055151

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by the early onset of communication and behavioral problems. ASD is highly heritable; however, environmental factors also play a considerable role in this disorder. A significant part of both syndromic and idiopathic autism cases could be attributed to disorders caused by mammalian target of rapamycin (mTOR)-dependent translation deregulation. This narrative review analyzes both bioinformatic and experimental evidence that connects mTOR signaling to the maternal autoantibody-related (MAR) autism spectrum and autoimmune neuropsychiatric disorders simultaneously. In addition, we reconstruct a network presenting the interactions between the mTOR signaling and eight MAR ASD genes coding for ASD-specific maternal autoantibody target proteins. The research discussed in this review demonstrates novel perspectives and validates the need for a subtyping of ASD on the grounds of pathogenic mechanisms. The utter necessity of designing ELISA-based test panels to identify all antibodies related to autism-like behavior is also considered.


Assuntos
Transtorno do Espectro Autista/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Serina-Treonina Quinases TOR/metabolismo , Transtorno do Espectro Autista/classificação , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/metabolismo , Autoanticorpos/metabolismo , Criança , Biologia Computacional/métodos , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/classificação , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais
16.
Mol Immunol ; 141: 297-304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915269

RESUMO

B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.


Assuntos
Anti-Inflamatórios/imunologia , Transtorno do Espectro Autista/imunologia , Transtorno Autístico/imunologia , Linfócitos B/imunologia , Citocinas/imunologia , Inflamação/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Imunidade/imunologia , Masculino , Monócitos/imunologia , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
17.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34879222

RESUMO

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
18.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768946

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disease that is characterized by a deficit in social interactions and communication, as well as repetitive and restrictive behaviors. Increasing lines of evidence suggest an important role for immune dysregulation and/or inflammation in the development of ASD. Recently, a relationship between inflammation, oxidative stress, and mitochondrial dysfunction has been reported in the brain tissue of individuals with ASD. Some recent studies have also reported oxidative stress and mitochondrial abnormalities in animal models of maternal immune activation (MIA). This review is focused on the hypothesis that MIA induces microglial activation, oxidative stress, and mitochondrial dysfunction, a deleterious trio in the brain that can lead to neuroinflammation and neurodevelopmental pathologies in offspring. Infection during pregnancy activates the mother's immune system to release proinflammatory cytokines, such as IL-6, TNF-α, and others. Furthermore, these cytokines can directly cross the placenta and enter the fetal circulation, or activate resident immune cells, resulting in an increased production of proinflammatory cytokines, including IL-6. Proinflammatory cytokines that cross the blood-brain barrier (BBB) may initiate a neuroinflammation cascade, starting with the activation of the microglia. Inflammatory processes induce oxidative stress and mitochondrial dysfunction that, in turn, may exacerbate oxidative stress in a self-perpetuating vicious cycle that can lead to downstream abnormalities in brain development and behavior.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/terapia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/imunologia , Troca Materno-Fetal/imunologia , Microglia/imunologia , Mitocôndrias/imunologia , Modelos Imunológicos , Neuroimunomodulação , Estresse Oxidativo/imunologia , Gravidez
19.
PLoS Comput Biol ; 17(11): e1009160, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788279

RESUMO

Gene expression analysis is becoming increasingly utilized in neuro-immunology research, and there is a growing need for non-programming scientists to be able to analyze their own genomic data. MGEnrichment is a web application developed both to disseminate to the community our curated database of microglia-relevant gene lists, and to allow non-programming scientists to easily conduct statistical enrichment analysis on their gene expression data. Users can upload their own gene IDs to assess the relevance of their expression data against gene lists from other studies. We include example datasets of differentially expressed genes (DEGs) from human postmortem brain samples from Autism Spectrum Disorder (ASD) and matched controls. We demonstrate how MGEnrichment can be used to expand the interpretations of these DEG lists in terms of regulation of microglial gene expression and provide novel insights into how ASD DEGs may be implicated specifically in microglial development, microbiome responses and relationships to other neuropsychiatric disorders. This tool will be particularly useful for those working in microglia, autism spectrum disorders, and neuro-immune activation research. MGEnrichment is available at https://ciernialab.shinyapps.io/MGEnrichmentApp/ and further online documentation and datasets can be found at https://github.com/ciernialab/MGEnrichmentApp. The app is released under the GNU GPLv3 open source license.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Microglia/metabolismo , Software , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Internet , Camundongos , Microglia/imunologia , Modelos Genéticos , Neuroimunomodulação
20.
Front Immunol ; 12: 741518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675929

RESUMO

Intrauterine inflammation impacts prenatal neurodevelopment and is linked to adverse neurobehavioral outcomes ranging from cerebral palsy to autism spectrum disorder. However, the mechanism by which a prenatal exposure to intrauterine inflammation contributes to life-long neurobehavioral consequences is unknown. To address this gap in knowledge, this study investigates how inflammation transverses across multiple anatomic compartments from the maternal reproductive tract to the fetal brain and what specific cell types in the fetal brain may cause long-term neuronal injury. Utilizing a well-established mouse model, we found that mid-gestation intrauterine inflammation resulted in a lasting neutrophil influx to the decidua in the absence of maternal systemic inflammation. Fetal immunologic changes were observed at 72-hours post-intrauterine inflammation, including elevated neutrophils and macrophages in the fetal liver, and increased granulocytes and activated microglia in the fetal brain. Through unbiased clustering, a population of Gr-1+ γ/δ T cells was identified as the earliest immune cell shift in the fetal brain of fetuses exposed to intrauterine inflammation and determined to be producing high levels of IFNγ when compared to γ/δ T cells in other compartments. In a case-control study of term infants, IFNγ was found to be elevated in the cord blood of term infants exposed to intrauterine inflammation compared to those without this exposure. Collectively, these data identify a novel cellular immune mechanism for fetal brain injury in the setting of intrauterine inflammation.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Decídua/imunologia , Inflamação/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Linfócitos T/imunologia , Útero/imunologia , Animais , Transtorno do Espectro Autista/imunologia , Células Cultivadas , Paralisia Cerebral/imunologia , Modelos Animais de Doenças , Feminino , Feto , Humanos , Lactente , Interferon gama/metabolismo , Camundongos , Gravidez , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA