Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Parasit Vectors ; 17(1): 267, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918848

RESUMO

BACKGROUND: Past findings demonstrate that arthropods can egest midgut microbiota into the host skin leading to dual colonization of the vertebrate host with pathogens and saliva microbiome. A knowledge gap exists on how the saliva microbiome interacts with the pathogen in the saliva. To fill this gap, we need to first define the microbial composition of mosquito saliva. METHODS: The current study aimed at analyzing and comparing the microbial profile of Aedes albopictus saliva and midgut as well as assessing the impact of Zika virus (ZIKV) infection on the midgut and saliva microbial composition. Colony-reared Ae. albopictus strains were either exposed to ZIKV infectious or noninfectious bloodmeal. At 14 ays postinfection, the 16S V3-V4 hypervariable rRNA region was amplified from midgut and saliva samples and sequenced on an Illumina MiSeq platform. The relative abundance and diversity of midgut and saliva microbial taxa were assessed. RESULTS: We observed a richer microbial community in the saliva compared with the midgut, yet some of the microbial taxa were common in the midgut and saliva. ZIKV infection did not impact the microbial diversity of midgut or saliva. Further, we identified Elizabethkingia spp. in the Ae. albopictus saliva. CONCLUSIONS: This study provides insights into the microbial community of the Ae. albopictus saliva as well as the influence of ZIKV infection on the microbial composition of its midgut and saliva. The identification of Elizabethkingia spp., an emerging pathogen of global health significance, in Ae. albopictus saliva is of medical importance. Future studies to assess the interactions between Ae. albopictus saliva microbiome and ZIKV could lead to novel strategies for developing transmission barrier tools.


Assuntos
Aedes , Microbiota , Mosquitos Vetores , Saliva , Zika virus , Animais , Saliva/microbiologia , Saliva/virologia , Aedes/microbiologia , Aedes/virologia , Zika virus/genética , Zika virus/isolamento & purificação , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Feminino , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia
2.
Sci Data ; 11(1): 587, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839790

RESUMO

Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.


Assuntos
Aedes , Análise de Célula Única , Animais , Aedes/genética , Aedes/citologia , Feminino , Análise de Sequência de RNA , Transcriptoma , Trato Gastrointestinal/virologia , Mosquitos Vetores/genética , Sistema Digestório/citologia
3.
Curr Opin Immunol ; 87: 102425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38763032

RESUMO

Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.


Assuntos
Trato Gastrointestinal , Interações Hospedeiro-Patógeno , Interferon lambda , Interferon Tipo I , Interferons , Humanos , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/metabolismo , Interferons/imunologia , Animais , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/virologia , Trato Gastrointestinal/microbiologia , Imunidade Inata , Microbioma Gastrointestinal/imunologia , Viroses/imunologia
4.
Virus Res ; 346: 199403, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776984

RESUMO

The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.


Assuntos
Fezes , Viroma , Humanos , África do Sul , Lactente , Estudos Longitudinais , Fezes/virologia , Recém-Nascido , Microbioma Gastrointestinal , Masculino , Feminino , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética , Metagenômica , Trato Gastrointestinal/virologia , Gastroenterite/virologia , Sapovirus/genética , Sapovirus/isolamento & purificação , Sapovirus/classificação , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/classificação , Picornaviridae/genética , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Caliciviridae/genética , Caliciviridae/isolamento & purificação , Caliciviridae/classificação , Metagenoma
6.
Sci Rep ; 14(1): 12294, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811648

RESUMO

Salmonella is a primary enteric pathogen related to the contamination of poultry and other food products in numerous foodborne outbreaks. The continuous emergence of multidrug-resistant bacteria has become a serious issue due to the overuse of antibiotics. Hence, lytic phages are considered alternative biocontrol agents against these bacterial superbugs. Here, two Salmonella phages-S4lw and D5lw-were subjected to genomic and biological characterization and further encapsulated to improve the stability under acidic conditions mimicking gastrointestinal conditions. The two lytic phages, S4lw and D5lw, taxonomically belong to new species under the Guernseyvirinae and Ackermannviridae families, respectively. Each phage showed antimicrobial activities against diverse Salmonella spp., such as S. Enteritidis and S. Typhimurium, achieving 1.7-3.4 log reduction after 2-6 h of treatment. The phage cocktail at a multiplicity of infection (MOI) of 100 or 1000 completely inhibited these Salmonella strains for at least 14 h at 25 °C. Additionally, the bead-encapsulated phage cocktail could withstand low pH and different simulated gut environments for at least 1 h. Overall, the newly isolated phages can potentially mitigate Salmonella spp. under the gastrointestinal environments through encapsulation and may be further applied via oral administration to resolve common antimicrobial resistance issues in the poultry production chain.


Assuntos
Fagos de Salmonella , Salmonella , Fagos de Salmonella/fisiologia , Salmonella/virologia , Animais , Genoma Viral , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Agentes de Controle Biológico , Concentração de Íons de Hidrogênio
7.
J Infect Dev Ctries ; 18(4): 501-503, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728635

RESUMO

We proposed that the pharynx, as a common organ of the respiratory and digestive tracts, may be a respiratory and digestive tract cross cryptic transmission pathway for 2019-nCoV infection from the nasal cavities to the pharynx and lung, then to nasal cavities by aerosol (respiratory route) to the pharynx and the gastrointestinal tract, then to the oral cavity by feces (fecal-oral route) and to pharynx, lungs, or gastrointestinal tract.


Assuntos
COVID-19 , Faringe , SARS-CoV-2 , Humanos , COVID-19/transmissão , Faringe/virologia , Infecção Hospitalar/transmissão , Trato Gastrointestinal/virologia , Fezes/virologia , Fezes/microbiologia , Infecções Respiratórias/transmissão , Infecções Respiratórias/virologia
8.
J Virol ; 96(17): e0097622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35938870

RESUMO

Humoral immune perturbations contribute to pathogenic outcomes in persons with HIV-1 infection (PWH). Gut barrier dysfunction in PWH is associated with microbial translocation and alterations in microbial communities (dysbiosis), and IgA, the most abundant immunoglobulin (Ig) isotype in the gut, is involved in gut homeostasis by interacting with the microbiome. We determined the impact of HIV-1 infection on the antibody repertoire in the gastrointestinal tract by comparing Ig gene utilization and somatic hypermutation (SHM) in colon biopsies from PWH (n = 19) versus age and sex-matched controls (n = 13). We correlated these Ig parameters with clinical, immunological, microbiome and virological data. Gene signatures of enhanced B cell activation were accompanied by skewed frequencies of multiple Ig Variable genes in PWH. PWH showed decreased frequencies of SHM in IgA and possibly IgG, with a substantial loss of highly mutated IgA sequences. The decline in IgA SHM in PWH correlated with gut CD4+ T cell loss and inversely correlated with mucosal inflammation and microbial translocation. Diminished gut IgA SHM in PWH was driven by transversion mutations at A or T deoxynucleotides, suggesting a defect not at the AID/APOBEC3 deamination step but at later stages of IgA SHM. These results expand our understanding of humoral immune perturbations in PWH that could have important implications in understanding mucosal immune defects in individuals with chronic HIV-1 infection. IMPORTANCE The gut is a major site of early HIV-1 replication and pathogenesis. Extensive CD4+ T cell depletion in this compartment results in a compromised epithelial barrier that facilitates the translocation of microbes into the underlying lamina propria and systemic circulation, resulting in chronic immune activation. To date, the consequences of microbial translocation on the mucosal humoral immune response (or vice versa) remains poorly integrated into the panoply of mucosal immune defects in PWH. We utilized next-generation sequencing approaches to profile the Ab repertoire and ascertain frequencies of somatic hypermutation in colon biopsies from antiretroviral therapy-naive PWH versus controls. Our findings identify perturbations in the Ab repertoire of PWH that could contribute to development or maintenance of dysbiosis. Moreover, IgA mutations significantly decreased in PWH and this was associated with adverse clinical outcomes. These data may provide insight into the mechanisms underlying impaired Ab-dependent gut homeostasis during chronic HIV-1 infection.


Assuntos
Trato Gastrointestinal , Infecções por HIV , Imunoglobulina A , Hipermutação Somática de Imunoglobulina , Disbiose , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1 , Humanos , Imunidade Humoral , Imunoglobulina A/genética
9.
Proc Natl Acad Sci U S A ; 119(27): e2116197119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35767643

RESUMO

The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.


Assuntos
Bactérias , Bacteriófagos , Trato Gastrointestinal , Mucosa , Animais , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Proteínas do Capsídeo/genética , Trato Gastrointestinal/virologia , Mucosa/virologia , Muco , Mutação , Simbiose
11.
Commun Biol ; 5(1): 225, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273335

RESUMO

Late 2020, SARS-CoV-2 Alpha variant emerged in United Kingdom and gradually replaced G614 strains initially involved in the global spread of the pandemic. In this study, we use a Syrian hamster model to compare a clinical strain of Alpha variant with an ancestral G614 strain. The Alpha variant succeed to infect animals and to induce a pathology that mimics COVID-19. However, both strains replicate to almost the same level and induced a comparable disease and immune response. A slight fitness advantage is noted for the G614 strain during competition and transmission experiments. These data do not corroborate the epidemiological situation observed during the first half of 2021 in humans nor reports that showed a more rapid replication of Alpha variant in human reconstituted bronchial epithelium. This study highlights the need to combine data from different laboratories using various animal models to decipher the biological properties of newly emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2/fisiologia , Animais , Anticorpos Neutralizantes/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Feminino , Trato Gastrointestinal/virologia , Genoma Viral , Pulmão/virologia , Líquido da Lavagem Nasal/virologia , SARS-CoV-2/genética , Replicação Viral
12.
Mol Med Rep ; 25(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35211765

RESUMO

In addition to the angiotensin­converting enzyme 2 (ACE2), a number of host cell entry mediators have been identified for severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), including transmembrane protease serine 4 (TMPRSS4). The authors have recently demonstrated the upregulation of TMPRSS4 in 11 different cancers, as well as its specific expression within the central nervous system using in silico tools. The present study aimed to expand the initial observations and, using immunohistochemistry, TMPRSS4 protein expression in the gastrointestinal (GI) tract and lungs was further mapped. Immunohistochemistry was performed on tissue arrays and lung tissues of patients with non­small cell lung cancer with concurrent coronavirus disease 2019 (COVID­19) infection using TMPRSS4 antibody. The results revealed that TMPRSS4 was abundantly expressed in the oesophagus, stomach, small intestine, jejunum, ileum, colon, liver and pancreas. Moreover, the extensive TMPRSS4 protein expression in the lungs of a deceased patient with COVID­19 with chronic obstructive pulmonary disease and bronchial carcinoma, as well in the adjacent normal tissue, was demonstrated for the first time, at least to the best of our knowledge. On the whole, the immunohistochemistry data of the present study suggest that TMPRSS4 may be implicated in the broader (pulmonary and extra­pulmonary) COVID­19 symptomatology; thus, it may be responsible for the tropism of this coronavirus both in the GI tract and lungs.


Assuntos
COVID-19/patologia , Trato Gastrointestinal/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/virologia , Trato Gastrointestinal/virologia , Humanos , Imuno-Histoquímica , Pulmão/virologia , Neoplasias Pulmonares/complicações , Masculino , Proteínas de Membrana/análise , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/análise , Internalização do Vírus
13.
Nat Commun ; 13(1): 965, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181661

RESUMO

Despite the accelerating number of uncultivated virus sequences discovered in metagenomics and their apparent importance for health and disease, the human gut virome and its interactions with bacteria in the gastrointestinal tract are not well understood. This is partly due to a paucity of whole-virome datasets and limitations in current approaches for identifying viral sequences in metagenomics data. Here, combining a deep-learning based metagenomics binning algorithm with paired metagenome and metavirome datasets, we develop Phages from Metagenomics Binning (PHAMB), an approach that allows the binning of thousands of viral genomes directly from bulk metagenomics data, while simultaneously enabling clustering of viral genomes into accurate taxonomic viral populations. When applied on the Human Microbiome Project 2 (HMP2) dataset, PHAMB recovered 6,077 high-quality genomes from 1,024 viral populations, and identified viral-microbial host interactions. PHAMB can be advantageously applied to existing and future metagenomes to illuminate viral ecological dynamics with other microbiome constituents.


Assuntos
Bacteriófagos/classificação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/virologia , Metagenoma/genética , Viroma/genética , Bacteriófagos/genética , Microbioma Gastrointestinal/fisiologia , Genoma Viral/genética , Humanos , Metagenômica , Viroma/fisiologia
14.
Diagn Pathol ; 17(1): 9, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027044

RESUMO

BACKGROUND: Cytomegalovirus (CMV) has been recognized as one of the frequently occurring opportunistic infections (OIs) reported in the patients having human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). In addition, it has been identified as the factor leading to gastrointestinal (GI) tract disorder among HIV/AIDS population. CMV exhibits broad cell tropism in different organs. This study evaluated the CMV cell tropism and clinicopathological characteristics of CMV infection in the different GI regions in HIV/AIDS cases. METHODS: Using nucleic acid in situ hybridization (ISH), CMV was detected in the gastrointestinal mucosal biopsy samples. The paraffin-embedded samples were stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC), respectively. RESULTS: A total of 32 HIV/AIDS patients were enrolled in this study. Fourteen of these patients underwent gastroscopy, while the remaining eighteen received colonoscopy. CMV-infected cells were observed at 46 GI sites. Among them, the colon was the region with the highest susceptibility to GI CMV infection (n = 12, 26.1%). The CMV giant cell inclusion bodies were detected in epithelial cells and mesenchymal cells, including histiocytes, smooth muscle cells, fibroblasts, and endothelial cells. In the duodenum, there were markedly more positive epithelial cells than mesenchymal cells (p = 0.033). In contrast, in the esophagus (p = 0.030), cardia (p = 0.003), rectum (p = 0.019), colon (p < 0.001), and cecum (p < 0.001), there were notably less positive epithelial cells than mesenchymal cells. The expression levels of PDGFRα and Nrp2 in the mesenchymal cells were higher than the epithelial cells in cardia, cecum, colon, sigmoid, and rectum, especially in the areas with ulcers. However, Nrp2 in the epithelial cells was higher than that in the duodenum. Moreover, the positive CMV DNA in peripheral blood was related to the CMV-positive cell count, as well as the ulceration in GI tract (p = 0.035 and 0.036, respectively). CONCLUSIONS: The colon has been identified as the GI site with the highest susceptibility to CMV infection. There are different CMV-infected cells in the different sites of the GI that relate to the expression level of PDGFRα and Nrp2. CMV DNA positive in the blood is related to the positive CMV cell count, as well as ulceration in the GI tract.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/diagnóstico , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/fisiologia , Gastroenteropatias/diagnóstico , Trato Gastrointestinal/virologia , Tropismo Viral , Infecções Oportunistas Relacionadas com a AIDS/metabolismo , Infecções Oportunistas Relacionadas com a AIDS/patologia , Infecções Oportunistas Relacionadas com a AIDS/virologia , Adulto , Biomarcadores/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Feminino , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Gastroenteropatias/virologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Masculino , Pessoa de Meia-Idade
15.
Nat Rev Microbiol ; 20(1): 49-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34373631

RESUMO

We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Bacteriófagos/fisiologia , Interações entre Hospedeiro e Microrganismos , Metagenoma , Microbiota , Bacteriófagos/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Humanos , Metagenômica , Oceanos e Mares , Solo
16.
J Virol ; 96(2): e0171521, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757837

RESUMO

Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETs); 2,185 of these DETs were transcribed from 1,568 genes that had AS events, indicating that 31.4% of alternatively spliced genes responded to RSV infection of the gut. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, experienced exon skipping, resulting in three transcript isoforms. These three isoforms differentially responded to RSV infection during development and in various organs. Injection of double-stranded RNAs targeting all or two isoforms indicated that three or at least two JNK2 isoforms facilitated RSV accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors. IMPORTANCE Alternative splicing (AS) is a regulatory mechanism that occurs after gene transcription. AS events can enrich protein diversity to promote the reactions of the organisms to various endogenous and exogenous stimulations. It is not known how insect vectors exploit AS events to cope with transmitted viruses. The present study used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.


Assuntos
Processamento Alternativo , Hemípteros/virologia , Insetos Vetores/virologia , Tenuivirus/fisiologia , Animais , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/virologia , Fusão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Oryza/virologia , Doenças das Plantas/virologia , Poliadenilação , Isoformas de Proteínas , Transcriptoma/genética
17.
Tissue Cell ; 74: 101679, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34801789

RESUMO

BACKGROUND: It is known that SARS-CoV-2 mostly infects the respiratory system causing pneumonia; although it can also affect the gastrointestinal tract (GIT), which covered with a bi-layer of mucus rich in glycosylated proteins that terminated by sialic acid. Therefore; this study aimed to evaluate serum total sialic acid (TSA) in moderate COVID-19 patients with and without GIT manifestations. METHODS: A total of 161 moderate COVID-19 patients without and with GIT manifestations and 50 controls were enrolled into our study. Serum electrolytes levels were measured by using colorimetric or turbidmetric commercial assay kits, while the level of serum TSA was measured by using a commercial ELISA kit. RESULTS: Our results showed that serum TSA level was highly significantly increased in moderate COVID-19 patients with GIT manifestations (81.43 ± 8.91) when compared with controls (61.24 ± 6.41) or even moderate COVID-19 patients without GIT manifestations (69.46 ± 7.03). ROC curve analysis showed that AUC for TSA is 0.84 with 76.2 % sensitivity and 73.7 % specificity in discrimination between moderate COVID-19 patients with and without GIT manifestations. Serum potassium and sodium levels were highly significantly decreased in moderate COVID-19 patients with GIT manifestations when compared with controls or even moderate COVID-19 patients without GIT manifestations; while serum calcium level was found to be significantly decreased in moderate COVID-19 patients with GIT manifestations when compared with controls. CONCLUSION: Finally, we can conclude that SA plays a crucial role in the pathogenesis of GIT complications associated with COVID-19 and could be a potential biomarker for the COVID-19 gastrointestinal complications.


Assuntos
COVID-19/patologia , Trato Gastrointestinal/patologia , Ácido N-Acetilneuramínico/sangue , Adulto , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Trato Gastrointestinal/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Muco/metabolismo , Muco/virologia , SARS-CoV-2
18.
J Med Virol ; 94(4): 1315-1329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34825708

RESUMO

In December 2019, novel severe acute respiratory syndrome coronavirus 2 (nSARS-CoV-2) virus outbreaks emerged from Wuhan, China, and spread all over the world, including India. Molecular diagnosis of Coronavirus Disease 2019 (COVID) 19 for densely and highly populated countries like India is time-consuming. A few reports have described the successful diagnosis of nSARS-CoV-2 virus from sewage and wastewater samples contaminated with fecal matter, suggesting the diagnosis of COVID 19 from the same to raise an alarm about the community transmission of virus for implementation of evacuation and lockdown strategies. So far, the association between the detection of virus and its concentration in stool samples with severity of the disease and the presence or absence of gastrointestinal symptoms have been rarely reported. We led the search utilizing multiple databases, specifically PubMed (Medline), EMBASE, and Google Scholar. We conducted a literature survey on gastrointestinal infection and the spread of this virus through fecal-oral transmission. Reports suggested that the existence and persistence of nSARS-CoV-2 in anal/rectal swabs and stool specimens for a longer period of time than in nasopharyngeal swabs provides a strong tenable outcome of gastrointestinal contamination and dissemination of this infection via potential fecal-oral transmission. This review may be helpful to conduct further studies to address the enteric involvement and excretion of nSARS-CoV-2 RNA in feces and control the community spread in both COVID-19 patients ahead of the onset of symptoms and in asymptomatic individuals through wastewater and sewage surveillance as an early indication of infection. The existence of the viral genome and active viral particle actively participate in genomic variations. Hence, we comprehended the enteric spread of different viruses amongst communities with special reference to nSARS-CoV-2.


Assuntos
COVID-19/virologia , Transmissão de Doença Infecciosa , Gastroenteropatias/virologia , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Fezes/virologia , Gastroenteropatias/epidemiologia , Gastroenteropatias/prevenção & controle , Trato Gastrointestinal/virologia , Humanos , Índia/epidemiologia , SARS-CoV-2/genética , Esgotos/virologia , Purificação da Água
19.
Microbiol Spectr ; 9(3): e0009021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935421

RESUMO

With the increasing prevalence of colorectal cancer (CRC), extending the present biomarkers for the diagnosis of colorectal cancer is crucial. Previous studies have highlighted the importance of bacteriophages in gastrointestinal diseases, suggesting the potential value of gut phageome in early CRC diagnostic. Here, based on 317 metagenomic samples of three discovery cohorts collected from China (Hong Kong), Austria, and Japan, five intestinal bacteriophages, including Fusobacterium nucleatum, Peptacetobacter hiranonis, and Parvimonas micra phages were identified as potential CRC biomarkers. The five CRC enriched bacteriophagic markers classified patients from controls with an area under the receiver-operating characteristics curve (AUC) of 0.8616 across different populations. Subsequently, we used a total of 80 samples from China (Hainan) and Italy for validation. The AUC of the validation cohort is 0.8197. Moreover, to further explore the specificity of the five intestinal bacteriophage biomarkers in a broader background, we performed a confirmatory meta-analysis using two inflammatory bowel disease cohorts, ulcerative colitis (UC) and Crohn's disease (CD). Excitingly, we observed that the five CRC-enriched phage markers also exhibited high discrimination in UC (AUC = 78.02%). Unfortunately, the five CRC-rich phage markers did not show high resolution in CD (AUC = 48.00%). The present research expands the potential of microbial biomarkers in CRC diagnosis by building a more accurate classification model based on the human gut phageome, providing a new perspective for CRC gut phagotherapy. IMPORTANCE Worldwide, by 2020, colorectal cancer has become the third most common cancer after lung and breast cancer. Phages are strictly host-specific, and this specificity makes them more accurate as biomarkers, but phage biomarkers for colorectal cancer have not been thoroughly explored. Therefore, it is crucial to extend the existing phage biomarkers for the diagnosis of colorectal cancer. Here, we innovatively constructed a relatively accurate prediction model, including: three discovery cohorts, two additional validation cohorts and two cross-disease cohorts. A total of five possible biomarkers of intestinal bacteriophages were obtained. They are Peptacetobacter hiranonis Phage, Fusobacterium nucleatum animalis 7_1 Phage, Fusobacterium nucleatum polymorphum Phage, Fusobacterium nucleatum animalis 4_8 Phage, and Parvimonas micra Phage. This study aims at identifying fine-scale species-strain level phage biomarkers for colorectal cancer diseases, so as to expand the existing CRC biomarkers and provide a new perspective for intestinal phagocytosis therapy of colorectal cancer.


Assuntos
Bacteriófagos/isolamento & purificação , Neoplasias Colorretais/virologia , Viroma , Áustria , Bacteriófagos/classificação , Bacteriófagos/genética , Biomarcadores Tumorais , China , Estudos de Coortes , Colite Ulcerativa/virologia , Doença de Crohn/virologia , Fezes/virologia , Trato Gastrointestinal/virologia , Humanos , Japão , Metagenoma
20.
Emerg Microbes Infect ; 10(1): 2173-2182, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34724885

RESUMO

The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, we compared African green monkeys infected intranasally with either the UK B.1.1.7 (Alpha) variant or its contemporary D614G progenitor. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases.


Assuntos
COVID-19/virologia , Chlorocebus aethiops/virologia , Sistema Respiratório/virologia , Replicação Viral , Eliminação de Partículas Virais , Administração Intranasal , Animais , COVID-19/epidemiologia , Trato Gastrointestinal/virologia , Especificidade de Hospedeiro , Polimorfismo de Nucleotídeo Único , RNA Viral/isolamento & purificação , Distribuição Aleatória , Reto/virologia , Reino Unido/epidemiologia , Células Vero , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA