Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.782
Filtrar
1.
Sci Adv ; 10(19): eadl1230, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718109

RESUMO

The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Animais , Medula Espinal/fisiologia , Ratos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Estimulação Elétrica/métodos , Eletrodos Implantados
2.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736654

RESUMO

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Assuntos
Cloridrato de Fingolimode , Hidrogéis , Células-Tronco Neurais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/administração & dosagem , Células-Tronco Neurais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Modelos Animais de Doenças , Feminino , Medula Espinal/efeitos dos fármacos
3.
WMJ ; 123(2): 88-94, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718235

RESUMO

INTRODUCTION: Traumatic spinal cord injury (tSCI) is a devastating event that can cause permanent loss of function or disability. Time to surgical decompression of the spinal cord affects outcomes and is a critical principle in management of tSCI. One of the major determinants of time to decompression is transport time. To date, no study has compared the neurological outcomes of tSCI patients transported via ground/ambulance versus air/helicopter. OBJECTIVE: This retrospective cohort study sought to assess the association of the mode of transport on the neurological outcomes of tSCI patients. METHODS: Data from 46 ground transport and 29 air transport patients with tSCI requiring surgical decompression were collected. Outcomes were assessed by the change in American Spinal Injury Association Impairment Scale (AIS) grade from admission to discharge. Additionally, the utilization of air versus ground transport was assessed based on the distance from the admitting institution. RESULTS: Among the transport groups, there were no significant differences (PP < 0.05) in patient demographics. Helicopter transport patients demonstrated higher rates of AIS grade improvement (P = 0.004), especially among AIS grade A/grade B patients (P = 0.02; P = 0.02, respectively), compared to the ambulance transport group. Additionally, within the cohort of patients undergoing decompression within 0 to 12 hours, helicopter transport was associated with higher AIS grade improvement (P = 0.04) versus the ambulance transport group. Helicopter transport was used more frequently at distances greater than 80 miles from the admitting institution (P = 0.01). CONCLUSIONS: This study suggests that helicopter transport of tSCI patients requiring surgical decompression was associated with improved neurological outcomes compared to patients transported via ambulance.


Assuntos
Resgate Aéreo , Ambulâncias , Descompressão Cirúrgica , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Wisconsin/epidemiologia
4.
World Neurosurg ; 185: e99-e142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741332

RESUMO

OBJECTIVE: Neurotrauma is a significant cause of morbidity and mortality in Nigeria. We conducted this systematic review to generate nationally generalizable reference data for the country. METHODS: Four research databases and gray literature sources were electronically searched. Risk of bias was assessed using the Risk of Bias in Non-Randomized Studies of Interventions and Cochrane's risk of bias tools. Descriptive analysis, narrative synthesis, and statistical analysis (via paired t-tests and χ2 independence tests) were performed on relevant article metrics (α = 0.05). RESULTS: We identified a cohort of 45,763 patients from 254 articles. The overall risk of bias was moderate to high. Most articles employed retrospective cohort study designs (37.4%) and were published during the last 2 decades (81.89%). The cohort's average age was 32.5 years (standard deviation, 20.2) with a gender split of ∼3 males per female. Almost 90% of subjects were diagnosed with traumatic brain injury, with road traffic accidents (68.6%) being the greatest cause. Altered consciousness (48.4%) was the most commonly reported clinical feature. Computed tomography (53.5%) was the most commonly used imaging modality, with skull (25.7%) and vertebral fracture (14.1%) being the most common radiological findings for traumatic brain injury and traumatic spinal injury, respectively. Two-thirds of patients were treated nonoperatively. Outcomes were favorable in 63.7% of traumatic brain injury patients, but in only 20.9% of traumatic spinal injury patients. Pressure sores, infection, and motor deficits were the most commonly reported complications in the latter. CONCLUSIONS: This systematic review and pooled analysis demonstrate the significant burden of neurotrauma across Nigeria.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Nigéria/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Feminino , Masculino , Adulto , Acidentes de Trânsito/estatística & dados numéricos , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/terapia
5.
Cell Mol Neurobiol ; 44(1): 43, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703332

RESUMO

Cell transplantation is a promising treatment option for spinal cord injury (SCI). However, there is no consensus on the choice of carrier scaffolds to host the cells. This study aims to evaluate the efficacy of different material scaffold-mediated cell transplantation in treating SCI in rats. According to PRISMA's principle, Embase, PubMed, Web of Science, and Cochrane databases were searched, and relevant literature was referenced. Only original research on cell transplantation plus natural or synthetic scaffolds in SCI rats was included. Direct and indirect evidence for improving hind limb motor function was pooled through meta-analysis. A subgroup analysis of some factors that may affect the therapeutic effect was conducted to understand the results fully. In total, 25 studies met the inclusion criteria, in which 293 rats received sham surgery, 78 rats received synthetic material scaffolds, and 219 rats received natural materials scaffolds. The network meta-analysis demonstrated that although synthetic scaffolds were slightly inferior to natural scaffolds in terms of restoring motor function in cell transplantation of SCI rats, no statistical differences were observed between the two (MD: -0.35; 95% CI -2.6 to 1.9). Moreover, the subgroup analysis revealed that the type and number of cells may be important factors in therapeutic efficacy (P < 0.01). Natural scaffolds and synthetic scaffolds are equally effective in cell transplantation of SCI rats without significant differences. In the future, the findings need to be validated in multicenter, large-scale, randomized controlled trials in clinical practice. Trial registration: Registration ID CRD42024459674 (PROSPERO).


Assuntos
Transplante de Células , Traumatismos da Medula Espinal , Alicerces Teciduais , Animais , Traumatismos da Medula Espinal/terapia , Ratos , Alicerces Teciduais/química , Transplante de Células/métodos , Metanálise em Rede , Resultado do Tratamento , Recuperação de Função Fisiológica
6.
Cell Stem Cell ; 31(5): 585-586, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701752

RESUMO

Stem cell therapy has emerged as a promising area of scientific investigation, sparking considerable interest, especially in spinal cord injury (SCI). Sun et al.1 discover that the extracellular matrix (ECM) from the neonatal spinal cord transmits biochemical signals to endogenous axons, thus promoting axonal regeneration.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Animais , Recém-Nascido , Matriz Extracelular/metabolismo , Adulto , Regeneração Nervosa
7.
Sci Rep ; 14(1): 10194, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702398

RESUMO

Paired associative stimulation (PAS) consisting of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (known as high-PAS) induces plastic changes and improves motor performance in patients with incomplete spinal cord injury (SCI). Listening to music during PAS may potentially improve mood and arousal and facilitate PAS-induced neuroplasticity via auditory-motor coupling, but the effects have not been explored. This pilot study aimed to determine if the effect of high-PAS on motor-evoked potentials (MEPs) and subjective alertness can be augmented with music. Ten healthy subjects and nine SCI patients received three high-PAS sessions in randomized order (PAS only, PAS with music synchronized to TMS, PAS with self-selected music). MEPs were measured before (PRE), after (POST), 30 min (POST30), and 60 min (POST60) after stimulation. Alertness was evaluated with a questionnaire. In healthy subjects, MEPs increased at POST in all sessions and remained higher at POST60 in PAS with synchronized music compared with the other sessions. There was no difference in alertness. In SCI patients, MEPs increased at POST and POST30 in PAS only but not in other sessions, whereas alertness was higher in PAS with self-selected music. More research is needed to determine the potential clinical effects of using music during high-PAS.


Assuntos
Potencial Evocado Motor , Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Humanos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Masculino , Feminino , Adulto , Estimulação Magnética Transcraniana/métodos , Pessoa de Meia-Idade , Potencial Evocado Motor/fisiologia , Projetos Piloto , Música , Voluntários Saudáveis , Nível de Alerta/fisiologia , Musicoterapia/métodos
8.
Nat Med ; 30(5): 1276-1283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769431

RESUMO

Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .


Assuntos
Braço , Mãos , Quadriplegia , Traumatismos da Medula Espinal , Humanos , Quadriplegia/terapia , Quadriplegia/fisiopatologia , Masculino , Mãos/fisiopatologia , Feminino , Pessoa de Meia-Idade , Adulto , Braço/fisiopatologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Estimulação da Medula Espinal/métodos , Resultado do Tratamento , Qualidade de Vida , Estudos Prospectivos , Doença Crônica , Idoso , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/efeitos adversos
9.
Stem Cell Res Ther ; 15(1): 143, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764049

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS: SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS: For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION: Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.


Assuntos
Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , Neuralgia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Exossomos/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Ratos , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Locomoção , Esponja de Gelatina Absorvível , Cordão Umbilical/citologia
10.
Spinal Cord Ser Cases ; 10(1): 34, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714676

RESUMO

Professor Robert Lipschitz, MB, ChB, PhD(Med), FRCS(Edin) was a pioneer who established the Spinal Cord Injury Unit, at Chris Hani Baragwanath Hospital, Soweto, Johannesburg, South Africa. A brief description of his academic and clinical accomplishments is given.


Assuntos
Traumatismos da Medula Espinal , África do Sul , Traumatismos da Medula Espinal/história , Traumatismos da Medula Espinal/terapia , Humanos , História do Século XX , História do Século XXI
11.
BMJ Open ; 14(5): e080358, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749680

RESUMO

INTRODUCTION: Spinal cord injury (SCI) is a catastrophic event with devastating physical, social and occupational consequences for patients and their families. The number of patients with acute SCI in China continues to grow rapidly, but there have been no large prospective cohort studies of patients with acute SCI. This proposed study aims to establish a multicentre, extensive sample cohort of clinical data and biological samples of patients in China, which would aid the systematisation and standardisation of clinical research and treatment of acute SCI, thus reducing the heavy burden of acute SCI on patients and society. METHODS AND ANALYSIS: The Chinese Real-World Evidence for Acute Spinal Cord Injury (ChiRES) study is an observational, multicentre cohort study of patients with acute SCI admitted to the Qilu Hospital of Shandong University and other participating centres with prospective collection of their clinical data and biological samples. We aim to recruit 2097 patients in this study. Demographics, disease history, emergency intervention information, motor and sensory examinations, surgical information, medication information and rehabilitation evaluation will be recorded. This will facilitate the development of a prediction model for complications and prognosis of patients with acute SCI and an evaluation of the current management of acute SCI. Among these variables, detailed information on surgical treatment will also be used to assess procedures for acute SCI treatment. Outcome measurements, including the International Standard for Neurological Classification of Spinal Cord Injury examinations, the occurrence of complications and death, will be performed repeatedly during follow-up. We will analyse imaging data and blood samples to develop SCI imaging markers and biomarkers. ETHICS AND DISSEMINATION: This study protocol has been approved by the Medical Ethics Committee of the Qilu Hospital of Shandong University and all other participating centres. The findings will be disseminated in peer-reviewed journals and academic conferences.


Assuntos
Estudos Observacionais como Assunto , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Estudos Prospectivos , China , Projetos de Pesquisa , Estudos Multicêntricos como Assunto , Feminino , Adulto , Masculino , População do Leste Asiático
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 608-612, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38752249

RESUMO

Objective: To review the research progress of C 5 palsy (C 5P) after cervical surgery, providing new clinical intervention ideas for the C 5P patients. Methods: The relevant literature domestically and abroad was extensively consulted and the latest developments in the incidence, risk factors, manifestations and diagnosis, prevention, and intervention measures of C 5P were systematically expounded. Results: C 5P is characterized by weakness in the C 5 nerve innervation area after cervical decompression surgery, manifested as limited shoulder abduction and elbow flexion, with an incidence rate more than 5%, often caused by segmental spinal cord injury or mechanical injury to the nerve roots. For patients with risk factors, careful operation and preventive measures can reduce the incidence of C 5P. Most of the patients can recover with conservative treatment such as drug therapy and physical therapy, while those without significant improvement after 6 months of treatment may require surgical intervention such as foraminal decompression and nerve displacement. Conclusion: Currently, there has been some advancement in the etiology and intervention of C 5P. Nevertheless, further research is imperative to assess the timing of intervention and surgical protocol.


Assuntos
Vértebras Cervicais , Descompressão Cirúrgica , Complicações Pós-Operatórias , Humanos , Vértebras Cervicais/cirurgia , Descompressão Cirúrgica/métodos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/terapia , Fatores de Risco , Paralisia/etiologia , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/terapia , Raízes Nervosas Espinhais
13.
Zhonghua Yi Xue Za Zhi ; 104(13): 991-995, 2024 Apr 02.
Artigo em Chinês | MEDLINE | ID: mdl-38561294

RESUMO

The spinal cord trauma induced by production and accidents in the current society has the characteristics of complicated injuries and difficult treatment, which is an important cause of death and disability of the wounded. With the development of computer technology, artificial intelligence (AI) has been widely used in the field of trauma treatment. The application of AI to assist pre-hospital rescue personnel in rapid and accurate identification and emergency treatment of fatal concomitant injuries, the examination of spinal cord function, spinal stabilization, the transport and evacuation of wounded, and supportive treatment can improve the efficiency of spinal cord trauma treatment and reduce the rate of death and disability.


Assuntos
Serviços Médicos de Emergência , Traumatismos da Medula Espinal , Humanos , Inteligência Artificial , Traumatismos da Medula Espinal/terapia
14.
Urol Clin North Am ; 51(2): 277-284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609199

RESUMO

Individual and social factors are important for clinical decision-making in patients with neurogenic bladder secondary to spinal cord injury (SCI). These factors include the availability of caregivers, social infrastructure, and personal preferences, which all can drive bladder management decisions. These elements can be overlooked in clinical decision-making; therefore, there is a need to elicit and prioritize patient preferences and values into neurogenic bladder care to facilitate personalized bladder management choices. For the purposes of this article, we review the role of guideline-based care and shared decision-making in the SCI population with neurogenic lower urinary tract dysfunction.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Humanos , Bexiga Urinária , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/terapia , Preferência do Paciente , Tomada de Decisão Clínica , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia
15.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612590

RESUMO

Spinal cord injury (SCI) presents a complex challenge in neurorehabilitation, demanding innovative therapeutic strategies to facilitate functional recovery. This study investigates the effects of treadmill training on SCI recovery, emphasizing motor function enhancement, neural tissue preservation, and axonal growth. Our research, conducted on a rat model, demonstrates that controlled treadmill exercises significantly improve motor functions post-SCI, as evidenced by improved scores on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and enhanced electromyography readings. Notably, the training facilitates the preservation of spinal cord tissue, effectively reducing secondary damage and promoting the maintenance of neural fibers in the injured area. A key finding is the significant stimulation of axonal growth around the injury epicenter in trained rats, marked by increased growth-associated protein 43 (GAP43) expression. Despite these advancements, the study notes a limited impact of treadmill training on motoneuron adaptation and highlights minimal changes in the astrocyte and neuron-glial antigen 2 (NG2) response. This suggests that, while treadmill training is instrumental in functional improvements post-SCI, its influence on certain neural cell types and glial populations is constrained.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Animais , Ratos , Humanos , Neuroglia , Eletromiografia , Neurônios Motores , Traumatismos da Medula Espinal/terapia , Axônios
16.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607020

RESUMO

Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Humanos , NF-kappa B/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Janus Quinases/metabolismo , Gliose/complicações , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/terapia
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 480-486, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38632070

RESUMO

Objective: To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods: A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T 10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T 10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 µg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results: All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group ( P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group ( P<0.05); the bFGF group showed an increase compared to model group ( P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant ( P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1ß, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group ( P<0.05). The above indexes in bFGF group significantly improved when compared with model group ( P<0.05). Conclusion: bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Transcrição STAT3/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Traumatismos da Medula Espinal/terapia , Medula Espinal/metabolismo , Transdução de Sinais
18.
Nat Commun ; 15(1): 2201, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561341

RESUMO

Intrathecal delivery of autologous culture-expanded adipose tissue-derived mesenchymal stem cells (AD-MSC) could be utilized to treat traumatic spinal cord injury (SCI). This Phase I trial (ClinicalTrials.gov: NCT03308565) included 10 patients with American Spinal Injury Association Impairment Scale (AIS) grade A or B at the time of injury. The study's primary outcome was the safety profile, as captured by the nature and frequency of adverse events. Secondary outcomes included changes in sensory and motor scores, imaging, cerebrospinal fluid markers, and somatosensory evoked potentials. The manufacturing and delivery of the regimen were successful for all patients. The most commonly reported adverse events were headache and musculoskeletal pain, observed in 8 patients. No serious AEs were observed. At final follow-up, seven patients demonstrated improvement in AIS grade from the time of injection. In conclusion, the study met the primary endpoint, demonstrating that AD-MSC harvesting and administration were well-tolerated in patients with traumatic SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Traumatismos da Coluna Vertebral , Humanos , Transplante Autólogo/efeitos adversos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Coluna Vertebral/complicações , Resultado do Tratamento
19.
Biofabrication ; 16(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569491

RESUMO

Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.


Assuntos
Bioimpressão , Impressão Tridimensional , Traumatismos da Medula Espinal , Alicerces Teciduais , Traumatismos da Medula Espinal/terapia , Bioimpressão/métodos , Humanos , Animais , Alicerces Teciduais/química , Engenharia Tecidual , Materiais Biocompatíveis/química
20.
PLoS One ; 19(4): e0301430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578715

RESUMO

BACKGROUND: SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS: The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN: A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS: The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS: Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION: Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.


Assuntos
Hipotermia , Traumatismos da Medula Espinal , Humanos , Ratos , Masculino , Feminino , Animais , Traumatismos da Medula Espinal/terapia , Potenciais Somatossensoriais Evocados/fisiologia , Sistema Nervoso Central , Plasticidade Neuronal/fisiologia , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA