Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.227
Filtrar
1.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693753

RESUMO

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Assuntos
Antibacterianos , Nanopartículas , Óxido Nítrico , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Animais , Células RAW 264.7 , Nanopartículas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Imunoterapia/métodos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Trealose/química , Trealose/farmacologia
2.
J Phys Chem B ; 128(20): 4922-4930, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733344

RESUMO

The disaccharide trehalose is generally acknowledged as a superior stabilizer of proteins and other biomolecules in aqueous environments. Despite many theories aiming to explain this, the stabilization mechanism is still far from being fully understood. This study compares the stabilizing properties of trehalose with those of the structurally similar disaccharide sucrose. The stability has been evaluated for the two proteins, lysozyme and myoglobin, at both low and high temperatures by determining the glass transition temperature, Tg, and the denaturation temperature, Tden. The results show that the sucrose-containing samples exhibit higher Tden than the corresponding trehalose-containing samples, particularly at low water contents. The better stabilizing effect of sucrose at high temperatures may be explained by the fact that sucrose, to a greater extent, binds directly to the protein surface compared to trehalose. Both sugars show Tden elevation with an increasing sugar-to-protein ratio, which allows for a more complete sugar shell around the protein molecules. Finally, no synergistic effects were found by combining trehalose and sucrose. Conclusively, the exact mechanism of protein stabilization may vary with the temperature, as influenced by temperature-dependent interactions between the protein, sugar, and water. This variability can make trehalose to a superior stabilizer under some conditions and sucrose under others.


Assuntos
Varredura Diferencial de Calorimetria , Muramidase , Mioglobina , Sacarose , Trealose , Trealose/química , Sacarose/química , Muramidase/química , Muramidase/metabolismo , Mioglobina/química , Estabilidade Proteica , Animais , Temperatura
3.
Food Res Int ; 187: 114361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763645

RESUMO

This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.


Assuntos
Carpas , Crioprotetores , Difosfatos , Armazenamento de Alimentos , Congelamento , Proteínas Musculares , Oxirredução , Trealose , Animais , Trealose/química , Armazenamento de Alimentos/métodos , Difosfatos/química , Proteínas Musculares/química , Crioprotetores/química , Crioprotetores/farmacologia , Proteínas de Peixes/química , Conservação de Alimentos/métodos , Produtos Pesqueiros/análise , Miofibrilas/química
4.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599426

RESUMO

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Assuntos
Alginatos , Cápsulas , Digestão , Liofilização , Viabilidade Microbiana , Probióticos , Alginatos/química , Viabilidade Microbiana/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Trealose/química , Óleo de Soja/química , Óleo de Coco/química
5.
AAPS J ; 26(3): 40, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570383

RESUMO

In a lyophilized protein/disaccharide system, the ability of the disaccharide to form a homogeneous mixture with the protein and to slow the protein mobility dictates the stabilization potential of the formulation. Human serum albumin was lyophilized with sucrose or trehalose in histidine, phosphate, or citrate buffer. 1H T1 relaxation times were measured by solid-state NMR spectroscopy and were used to assess the homogeneity and mobility of the samples after zero, six, and twelve months at different temperatures. The mobility of the samples decreased after 6 and 12 months storage at elevated temperatures, consistent with structural relaxation of the amorphous disaccharide matrix. Formulations with sucrose had lower mobility and greater stability than formulations with trehalose.


Assuntos
Sacarose , Trealose , Humanos , Trealose/química , Temperatura , Albumina Sérica Humana , Estabilidade de Medicamentos , Dissacarídeos , Espectroscopia de Ressonância Magnética , Liofilização
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 368-375, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686419

RESUMO

The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.


Assuntos
Liofilização , Pericárdio , Polietilenoglicóis , Trealose , Animais , Pericárdio/química , Trealose/química , Trealose/farmacologia , Bovinos , Polietilenoglicóis/química , Glutaral/química , Varredura Diferencial de Calorimetria
7.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
8.
J Mater Chem B ; 12(14): 3445-3452, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502035

RESUMO

A novel family of precision-engineered gene vectors with well-defined structures built on trehalose and trehalose-based macrocycles (cyclotrehalans) comprising linear or cyclic polyamine heads have been synthesized through procedures that exploit click chemistry reactions. The strategy was conceived to enable systematic structural variations and, at the same time, ensuring that enantiomerically pure vectors are obtained. Notably, changes in the molecular architecture translated into topological differences at the nanoscale upon co-assembly with plasmid DNA, especially regarding the presence of regions with short- or long-range internal order as observed by TEM. In vitro and in vivo experiments further evidenced a significant impact on cell and organ transfection selectivity. Altogether, the results highlight the potential of trehalose-polyamine/pDNA nanocomplex monoformulations to achieve targeting transfection without the need for any additional cell- or organ-sorting component.


Assuntos
Poliaminas , Trealose , Trealose/química , Poliaminas/química , Transfecção , DNA/genética , DNA/química , Plasmídeos/genética
9.
Int J Pharm ; 656: 124059, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552753

RESUMO

Most of biopharmaceuticals, in their liquid form, are prone to instabilities during storage. In order to improve their stability, lyophilization is the most commonly used drying technique in the pharmaceutical industry. In addition, certain applications of biopharmaceutical products can be considered by oral administration and tablets are the most frequent solid pharmaceutical dosage form used for oral route. Thus, the tableting properties of freeze-dried products used as cryo and lyoprotectant could be a key element for future pharmaceutical developments and applications. In this study, we investigated the properties that might play a particular role in the specific compaction behavior of freeze-dried excipients. The tableting properties of freeze-dried trehalose, lactose and mannitol were investigated and compared to other forms of these excipients (spray-dried, commercial crystalline and commercial crystalline milled powders). The obtained results showed a specific behavior in terms of compressibility, tabletability and brittleness for the amorphous powders obtained after freeze-drying. The comparison with the other powders showed that this specific tableting behavior is linked to both the specific texture and the physical state (amorphization) of these freeze-dried powders.


Assuntos
Composição de Medicamentos , Excipientes , Liofilização , Lactose , Manitol , Pós , Comprimidos , Trealose , Excipientes/química , Manitol/química , Composição de Medicamentos/métodos , Trealose/química , Lactose/química , Pós/química , Secagem por Atomização , Química Farmacêutica/métodos
10.
ACS Infect Dis ; 10(4): 1391-1404, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38485491

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death worldwide by infectious disease. Treatment of Mtb infection requires a six-month course of multiple antibiotics, an extremely challenging regimen necessitated by Mtb's ability to form drug-tolerant persister cells. Mtb persister formation is dependent on the trehalose catalytic shift, a stress-responsive metabolic remodeling mechanism in which the disaccharide trehalose is liberated from cell surface glycolipids and repurposed as an internal carbon source to meet energy and redox demands. Here, using a biofilm-persister model, metabolomics, and cryo-electron microscopy (EM), we found that azidodeoxy- and aminodeoxy-d-trehalose analogues block the Mtb trehalose catalytic shift through inhibition of trehalose synthase TreS (Rv0126), which catalyzes the isomerization of trehalose to maltose. Out of a focused eight-member compound panel constructed by chemoenzymatic synthesis, the natural product 2-trehalosamine exhibited the highest potency and significantly potentiated first- and second-line TB drugs in broth culture and macrophage infection assays. We also report the first structure of TreS bound to a substrate analogue inhibitor, obtained via cryo-EM, which revealed conformational changes likely essential for catalysis and inhibitor binding that can potentially be exploited for future therapeutic development. Our results demonstrate that inhibition of the trehalose catalytic shift is a viable strategy to target Mtb persisters and advance trehalose analogues as tools and potential adjunctive therapeutics for investigating and targeting mycobacterial persistence.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Trealose/química , Trealose/metabolismo , Microscopia Crioeletrônica , Tuberculose/microbiologia , Catálise
11.
Food Chem ; 442: 138326, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219563

RESUMO

The residual dextran impurities in the upstream process significantly impact the crystallization of starch-based functional sugar and the related food properties. This study intends to reveal the mechanism of dextran's influence on trehalose crystallization, and build a relationship among the dextran in syrup and the physicochemical and functional properties of trehalose. Instead of incorporating into the crystal lattice, dextran changes the assembly rate of trehalose molecules on crystal surface. The different sensitivity and adsorption capacity of the crystal surface to the chain length of dextran determines the growth rate of crystal surfaces, resulting in different crystal morphology. The bulk trehalose crystals, which were obtained from syrups with short chain dextran, have excellent powder properties, including best flowability (35◦), highest crystal strength (2.7 N), lowest caking rate (62.22 %), and the most uniform mixing with other sweeteners (sucrose/xylitol) in food formulations, achieving more stable starch preservation.


Assuntos
Dextranos , Trealose , Cristalização , Trealose/química , Dextranos/química , Amido , Conservação de Alimentos
12.
Int J Pharm ; 652: 123803, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218506

RESUMO

This paper explores how vacuum foam-drying of a protein is influenced by formulation parameters by investigating the foam structure, physical properties of the foam, and the stability of the protein. Recombinant human bile salt-stimulated lipase was used as a model of a protein drug. The stability of the lipase was evaluated through activity measurements. Two disaccharides (sucrose and trehalose), strongly tending to an amorphous form, were used as matrix formers, and the physical properties were assessed through residual water content, glass transition temperature, and crystalline state. Moreover, some formulations included surfactants with different sizes and structures of the head group. The alkyl chain length was kept constant to only investigate the impact of the surfactant head group, in the presence of the lipase, on the foamability and surface coverage of the lipase. The study demonstrated that the lipase allowed for a dry, solid foam with a foam overrun of up to 2600 %. The wall thickness of the dry, solid foam was estimated to be 20-50 µm. Clear differences between sucrose and trehalose as matrix former were identified. The lipase showed no tendency to lose activity because of the drying and rehydration, despite a proportion of the lipase covering the surfaces of the dry material.


Assuntos
Sacarose , Trealose , Humanos , Liofilização , Trealose/química , Vácuo , Estabilidade de Medicamentos , Sacarose/química , Tensoativos/química , Lipase
13.
Int J Biol Macromol ; 260(Pt 1): 129448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228204

RESUMO

The acquisition of high quality lyophilized IgY products, characterized by an aesthetically pleasing visage, heightened stability, and a marked preservation of activity, constitutes an indispensable pursuit in augmenting the safety and pragmatic utility of IgY. Within this context, an exploration was undertaken to investigate an innovative modality encompassing microwave freeze-drying (MFD) as a preparatory methodology of IgY. Morphological assessments revealed that both cryogenic freezing and subsequent MFD procedures resulted in aggregation of IgY, with the deleterious influence posed by the MFD phase transcending that of the freezing phase. The composite protective agent comprised of trehalose and mannitol engendered a safeguarding effect on the structural integrity of IgY, thereby attenuating reducing aggregation between IgY during the freeze-drying process. Enzyme-linked immunosorbent assay (ELISA) outcomes demonstrated a discernible correlation between IgY aggregation and a notable reduction in its binding affinity towards the pertinent antigen. Comparative analysis vis-à-vis the control sample delineated that when the trehalose-to-mannitol ratio was upheld at 1:3, a two-fold outcome was achieved: a mitigation of the collapse susceptibility within the final product as well as a deterrence of IgY agglomeration, concomitant with an elevated preservation rate of active antibodies (78.57 %).


Assuntos
Imunoglobulinas , Manitol , Trealose , Congelamento , Trealose/farmacologia , Trealose/química , Manitol/química , Liofilização/métodos
14.
Eur J Pharm Biopharm ; 194: 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029940

RESUMO

Molecular mobility in form of alpha and beta relaxations is considered crucial for characterization of amorphous lyophilizates and reflected in the transition temperatures Tgα and Tgß. Based on an overview of applied methods to study beta relaxations, Dynamic Mechanical analysis was used to measure Tgα and Tgß in amorphous freeze-dried samples. Lysozyme and trehalose as well as their mixtures in varying ratios were investigated. Three different residual moisture levels, ranging from roughly 0.5-7 % (w/w), were prepared via equilibration of the freeze-dried samples. Known plasticising effects of water on Tgα were confirmed, also via differential scanning calorimetry. In addition and contrary to expectations, an influence of water on the Tgß also was observed. On the other hand, an increasing amount of trehalose lowered Tgα but increased Tgß showing that Tgα and Tgß are not paired. The findings were interpreted with regard to their underlying molecular mechanisms and a correlation with the known influences of water and trehalose on stability. The results provide encouraging hints for future stability studies of freeze-dried protein formulations, which are urgently needed, not least for reasons of sustainability.


Assuntos
Muramidase , Trealose , Muramidase/química , Trealose/química , Água , Liofilização/métodos , Temperatura de Transição , Varredura Diferencial de Calorimetria
15.
Eur J Pharm Sci ; 192: 106625, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918545

RESUMO

Saccharides are a popular group of stabilizers in liquid, frozen and freeze dried protein formulations. The current work reviewed the stabilization mechanisms of three groups of saccharides: (i) Disaccharides, specifically sucrose and trehalose; (ii) cyclodextrins (CDs), a class of cyclic oligosaccharides; and (iii) dextrans, a class of polysaccharides. Compared to sucrose, trehalose exhibits a more pronounced preferential exclusion effect in liquid protein formulations, due to its stronger interaction with water molecules. However, trehalose obtains higher phase separation and crystallization propensity in frozen solutions, resulting in the loss of its stabilization function. In lyophilized formulations, sucrose has a higher crystallization propensity. Besides, its glass matrix is less homogeneous than that of trehalose, thus undermining its lyoprotectant function. Nevertheless, the hygroscopic nature of trehalose may result in high water absorption upon storage. Among all the CDs, the ß form is believed to have stronger interactions with proteins than the α- and γ-CDs. However, the stabilization effect, brought about by CD-protein interactions, is case-by-case - in some examples, such interactions can promote protein destabilization. The stabilization effect of hydroxypropyl-ß-cyclodextrin (HPßCD) has been extensively studied. Due to its amphiphilic nature, it can act as a surface-active agent in preventing interfacial stresses. Besides, it is a dual functional excipient in freeze dried formulations, acting as an amorphous bulking agent and lyoprotectant. Finally, dextrans, when combined with sucrose or trehalose, can be used to produce stable freeze dried protein formulations. A strong stabilization effect can be realized by low molecular weight dextrans. However, the terminal glucose in dextrans yields protein glycation, which warrants extra caution during formulation development.


Assuntos
Ciclodextrinas , Trealose , Trealose/química , Sacarose/química , Ciclodextrinas/química , Dextranos/química , Excipientes/química , Água/química , Liofilização
16.
Biochimie ; 220: 48-57, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38128775

RESUMO

The study of the relationship between the activity and stability of enzymes under crowding conditions in the presence of osmolytes is important for understanding the functioning of a living cell. The effect of osmolytes (trehalose and betaine) on the secondary and tertiary structure and activity of muscle glycogen phosphorylase b (Phb) under crowding conditions created by PEG 2000 and PEG 20000 was investigated using dynamic light scattering, differential scanning calorimetry, circular dichroism spectroscopy, fluorimetry and enzymatic activity assay. At 25 °C PEGs increased Phb activity, but PEG 20000 to a greater extent. Wherein, PEG 20000 significantly destabilized its tertiary and secondary structure, in contrast to PEG 2000. Trehalose removed the effects of PEGs on Phb, while betaine significantly reduced the activating effect of PEG 20000 without affecting the action of PEG 2000. Under heat stress at 48 °C, the protective effect of osmolytes under crowding conditions was more pronounced than at room temperature, and the Phb activity in the presence of osmolytes was higher in these conditions than in diluted solutions. These results provide important insights into the complex mechanism, by which osmolytes affect the structure and activity of Phb under crowding conditions.


Assuntos
Glicogênio Fosforilase Muscular , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio Fosforilase Muscular/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Trealose/farmacologia , Trealose/metabolismo , Trealose/química , Betaína/química , Betaína/farmacologia , Animais , Estrutura Secundária de Proteína
17.
Food Chem ; 440: 138236, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142552

RESUMO

To investigate the influence of sugar structure on the quality of peach chips produced using osmotic dehydration (OD) in combination with instant controlled pressure drop (DIC) drying, erythritol, glucose, maltose, and trehalose were selected as osmotic agents. The properties of the osmotic solutions, as well as the macro- and micro-texture, water distribution, and thermal stability of peach chips were investigated. Results showed that OD pretreatments inhibited the formation of large cavity structures. The highest hardness (101.34 N) and the lowest hydrophobicity (0°) were obtained in erythritol-OD samples. Trehalose-OD samples with the most homogeneous pore structure exhibited the highest crispness (1.05 mm) and the highest glass transition temperature (52.06 °C). Various absorption peaks of peach chips pretreated with different OD methods, characterized by Raman spectroscopy, suggested changes in composition and functional groups due to the diffusion of sugars into the cells of peach tissues, which also contributed to the higher Tg.


Assuntos
Prunus persica , Água , Trealose/química , Prunus persica/química , Dessecação/métodos , Osmose , Eritritol
18.
Chem Commun (Camb) ; 59(94): 14001-14004, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37941405

RESUMO

A novel copolymer containing zwitterionic and methylsulfinyl structures was developed, which enhanced cryoprotective efficacy by enabling intracellular cytoplasmic permeation without relying on mediated endocytosis and diffused out of the cells within approximately 30 min, making it more advantageous than polymeric nanoparticles for the transport of membrane-impermeable cryoprotectants such as trehalose.


Assuntos
Criopreservação , Polímeros , Sobrevivência Celular , Crioprotetores/química , Células Cultivadas , Trealose/química
19.
Int J Pharm ; 648: 123598, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956724

RESUMO

Freeze-drying of biopharmaceutical products is the method of choice in order to improve their stability and storage conditions. Such freeze-dried products are usually intended for parenteral route administration. However, many biopharmaceutical materials administered by parenteral route are used to treat local diseases particularly in the gastro-intestinal tract. Therefore, many studies concentrate nowadays their effort on developing alternative dosage forms to deliver biopharmaceutical molecules by the oral route. Tablets are the most popular solid pharmaceutical dosage form used for oral administration since they present many advantages, but poor informations are available on the possibility of tableting freeze-dried powders. In this study, we evaluate the compaction behavior of freeze-dried trehalose powder since trehalose is one of the most used cryo and lyoprotectant for the lyophilisation of biopharmaceutical entities. Results show that freeze-dried trehalose powder can be tableted while remaining amorphous and the obtained compacts present very specific properties in terms of compressibility, tabletability, brittleness and viscoelasticity compared to the crystalline trehalose and compared to classical pharmaceutical excipients.


Assuntos
Produtos Biológicos , Trealose , Trealose/química , Química Farmacêutica/métodos , Pós/química , Estabilidade de Medicamentos , Liofilização
20.
Mol Pharm ; 20(11): 5682-5689, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782000

RESUMO

Protein-based drugs are becoming increasingly important, but there are challenges associated with their formulation (for example, formulating stable inhalable aerosols while maintaining the proper long-term stability of the protein). Determining the morphology of multicomponent, protein-based drug formulations is particularly challenging. Here, we use dynamic nuclear polarization (DNP) solid-state NMR spectroscopy to determine the hierarchy of components within spray-dried particles containing protein, trehalose, leucine, and trileucine. DNP NMR was applied to these formulations to assess the localization of the components within the particles. We found a consistent scheme, where trehalose and the protein are co-located within the same phase in the core of the particles and leucine and trileucine are distributed in separate phases at the surface of the particles. The description of the hierarchy of the organic components determined by DNP NMR enables the rationalization of the performance of the formulation.


Assuntos
Excipientes , Trealose , Leucina/química , Trealose/química , Excipientes/química , Aerossóis/química , Espectroscopia de Ressonância Magnética , Pós/química , Administração por Inalação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA