Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Biochem Mol Toxicol ; 37(10): e23467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466109

RESUMO

Multidrug resistance (MDR) causes difficulties in the treatment of infections and cancer. Research and development studies have become increasingly important for the strategy of preventing MDR. There is a need for new multitarget drug research and advancement to reduce the development of drug resistance in drug-drug interactions and reduce cost and toxic effects. This study aimed to determine the effects of multi-target triazene compounds on antibacterial, antifungal, antiviral, cytotoxic, and larvicidal activities were investigated in vitro. A series of 12 novel of 1,3-diaryltriazene-substituted sulfadiazine (SDZ) derivatives were synthesized, and the obtained pure products characterized in detail by spectroscopic and analytic methods (FT-IR, 1 H-NMR, 13 C-NMR, and melting points). The antibacterial and antifungal activities of these derivatives (AH1-12) were determined by broth microdilution method. All derivatives have been evaluated in cell-based assays for cytotoxic and antiviral activities against Modified Vaccinia Virus Ankara. The larvicidal efficacy of these chemical compounds was also investigated by using Lucilia sericata (L. sericata) larvae. Twelve 1,3-diaryltriazene-substituted SDZ derivatives (AH1-12) were designed and developed as potent multitargeted compounds. Among them, the AH1 derivative showed the most antibacterial and antifungal activity. Besides, synthesized derivatives AH2, AH3, AH5, and AH7 showed higher antiviral activity than SDZ. All synthesized derivatives showed higher cytotoxic activity than SDZ. Also, they showed larvicidal activity at 72 h of the experiment. As a result, these compounds might be great leads for the development of next-generation multitargeted agents.


Assuntos
Antineoplásicos , Sulfadiazina , Antifúngicos/farmacologia , Triazenos/química , Triazenos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
2.
J Org Chem ; 87(24): 16882-16886, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36459616

RESUMO

1-Alkynyl triazenes are versatile reagents in synthetic organic chemistry, but the structural diversity of this compound class has so far been limited. Herein, we describe the synthesis of a terminal 1-alkynyl triazene. Subsequent functionalization allows the preparation of 1-alkynyl triazenes with a range of functional groups including esters, alcohols, cyanides, phosphonates, and amides. Furthermore, the terminal 1-alkynyl triazene can be used for the synthesis of di- and triynes and for the preparation of (hetero)aromatic triazenes in metal-catalyzed cyclization reactions.


Assuntos
Álcoois , Triazenos , Estrutura Molecular , Ciclização , Triazenos/química , Amidas/química
3.
Bioorg Med Chem Lett ; 59: 128570, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063631

RESUMO

Several diaryl triazene derivatives were synthesized and tested for their ability to inhibit cytochrome P450 1A1 and 1B1 as a potential means to prevent and treat cancer. These compounds are more planar than their conformational flexible aryl morpholino triazene counterparts that were previously shown to inhibit the above enzymes. As a result, the diaryl triazenes are more likely to exhibit increased binding to the enzyme active sites and inhibit these enzymes more strongly than the aryl morpholino triazenes. The data indicates that the diaryl triazenes inhibit cytochrome P450 1A1 and 1B1 one to two orders of magnitude more strongly than the aryl morpholino triazenes. Furthermore, compounds 8-10 strongly inhibited cytochrome P450 1B1 with IC50 values of 51 nM, 740 nM, and 590 nM respectively. Thus, diaryl triazenes should be further investigated as a potential chemopreventive agent.


Assuntos
Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1B1/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Morfolinos/farmacologia , Triazenos/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Morfolinos/síntese química , Morfolinos/química , Relação Estrutura-Atividade , Triazenos/síntese química , Triazenos/química
4.
Nat Chem Biol ; 17(12): 1305-1313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34725510

RESUMO

Triacsins are an intriguing class of specialized metabolites possessing a conserved N-hydroxytriazene moiety not found in any other known natural products. Triacsins are notable as potent acyl-CoA synthetase inhibitors in lipid metabolism, yet their biosynthesis has remained elusive. Through extensive mutagenesis and biochemical studies, we here report all enzymes required to construct and install the N-hydroxytriazene pharmacophore of triacsins. Two distinct ATP-dependent enzymes were revealed to catalyze the two consecutive N-N bond formation reactions, including a glycine-utilizing, hydrazine-forming enzyme (Tri28) and a nitrite-utilizing, N-nitrosating enzyme (Tri17). This study paves the way for future mechanistic interrogation and biocatalytic application of enzymes for N-N bond formation.


Assuntos
Coenzima A Ligases/metabolismo , Streptomyces aureofaciens/enzimologia , Streptomyces aureofaciens/genética , Triazenos/metabolismo , Biocatálise , Escherichia coli/genética , Glicina/química , Hidrazinas/química , Metabolismo dos Lipídeos , Lipídeos/química , Nitritos/química , Triazenos/química
5.
Sci Rep ; 11(1): 2541, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510223

RESUMO

In the present study, novel, 1,3-diaryltriazene-derived triazene compounds were synthesized and tested. Triazenes are versatile and belong to a group of alkylating agents with interesting physicochemical properties and proven biological activities. This study describes the synthesis, molecular and crystalline structure, biological activity evaluation, and antifungal and antimicrobial potentials of 1,3-bis(X-methoxy-Y-nitrophenyl)triazenes [X = 2 and 5; Y = 4 and 5]. The antimicrobial and antifungal activities of the compounds were tested by evaluating the sensitivity of bacteria (American Type Culture Collection, ATCC) and clinical isolates to their solutions using standardized microbiological assays, cytotoxicity evaluation, and ecotoxicity tests. The antimicrobial potentials of triazenes were determined according to their minimum inhibitory concentrations (MICs); these compounds were active against gram-positive and gram-negative bacteria, with low MIC values. The most surprising result was obtained for T3 having the effective MIC of 9.937 µg/mL and antifungal activity against Candida albicans ATCC 90028, C. parapsilosis ATCC 22019, and C. tropicallis IC. To the best of our knowledge, this study is the first to report promising activities of triazene compounds against yeast and filamentous fungi. The results showed the potential utility of triazenes as agents affecting selected resistant bacterial and fungal strains.


Assuntos
Triazenos/química , Triazenos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
6.
Chem Biol Drug Des ; 97(2): 237-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32772433

RESUMO

The efficient synthesis of molecular hybrids including a DNA-intercalating 9-anilinoacridine (9-AnA) core and a methyl triazene DNA-methylating moiety is described. Nucleophilic aromatic substitution (SN Ar) and electrophilic aromatic substitution (EAS) reactions using readily accessible starting materials provide a quick entry to novel bifunctional anticancer molecules. The chimeras were evaluated for their anticancer activity. Chimera 7b presented the highest antitumor activity at low micromolar IC50 values in antiproliferative assays performed with various cancer cell lines. In comparison, compound 7b outperformed DNA-intercalating drugs like amsacrine and AHMA. Mechanistic studies of chimera 7b suggest a dual mechanism of action: methylation of the DNA-repairing protein MGMT associated with the triazene structural portion and Topo II inhibition by intercalation of the acridine core.


Assuntos
Amsacrina/análogos & derivados , Antineoplásicos/síntese química , Triazenos/química , Amsacrina/química , Amsacrina/metabolismo , Amsacrina/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo , Triazenos/metabolismo , Triazenos/farmacologia
7.
Arch Pharm (Weinheim) ; 354(1): e2000243, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32984993

RESUMO

A novel series of sulfonamides, 4-(3-phenyltriaz-1-en-1-yl)-N-(4-methyl-2-pyrimidinyl)benzenesulfonamides (1-9), was designed and synthesized by the diazo reaction between sulfamerazine and substituted aromatic amines for the first time. Their chemical structures were characterized by 1 H nuclear magnetic resonance (NMR), 13 C NMR, and high-resolution mass spectra. The newly synthesized compounds were evaluated in terms of acetylcholineasterase (AChE) and human carbonic anhydrases (hCA) I and II isoenzymes inhibitory activities. According to the AChE inhibition results, the Ki values of the compounds 1-9 were in the range of 19.9 ± 1.5 to 96.5 ± 20.7 nM against AChE. Tacrine was used as the reference drug and its Ki value was 49.2 ± 2.7 nM against AChE. The Ki values of the compounds 1-9 were in the range of 10.2 ± 2.6 to 101.4 ± 27.8 nM against hCA I, whereas they were 18.3 ± 4.4 to 48.1 ± 4.5 nM against hCA II. Acetazolamide was used as a reference drug and its Ki values were 72.2 ± 5.4 and 52.2 ± 5.7 nM against hCA I and hCA II, respectively. The most active compounds, 1 (nonsubstituted) against AChE, 5 (4-ethoxy-substituted) against hCA I, and 8 (4-bromo-substituted) against hCA II, were chosen and docked at the binding sites of these enzymes to explain the inhibitory activities of the series. The newly synthesized compounds presented satisfactory pharmacokinetic properties via the estimation of ADME properties.


Assuntos
Inibidores da Colinesterase/farmacologia , Sulfamerazina/farmacologia , Triazenos/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Simulação por Computador , Humanos , Relação Estrutura-Atividade , Sulfamerazina/síntese química , Sulfamerazina/química , Triazenos/síntese química , Triazenos/química
8.
Mol Imaging Biol ; 23(1): 95-108, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32856224

RESUMO

PURPOSE: We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for the preparation of 68Ga- and 64Cu-based radiopharmaceuticals. Based on this platform, the chelator scaffold NOTI-TVA with three additional carboxylic acid groups for bioconjugation was synthesized and characterized. The primary aims of this proof-of-concept study were (1) to evaluate if trimeric radiotracers on the basis of the NOTI-TVA 6 scaffold can be developed, (2) to determine if the additional substituents for bioconjugation at the non-coordinating NH atoms of the imidazole residues of the building block NOTI influence the metal binding properties, and (3) what influence multiple targeting vectors have on the biological performance of the radiotracer. The cyclic RGDfK peptide that specifically binds to the αvß3 integrin receptor was selected as the biological model system. PROCEDURES: Two different synthetic routes for the preparation of NOTI-TVA 6 were explored. Three c(RGDfK) peptide residues were conjugated to the NOTI-TVA 6 building block by standard peptide chemistry providing the trimeric bioconjugate NOTI-TVA-c(RGDfK)3 9. Labeling of 9 with [64Cu]CuCl2 was performed manually at pH 8.2 at ambient temperature. Binding affinities of Cu-8, the Cu2+ complex of the previously described monomer NODIA-Me-c(RGDfK) 8, and the trimer Cu-9 to integrin αvß3 were determined in competitive cell binding experiments in the U-87MG cell line. The pharmacokinetics of both 64Cu-labeled conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were determined by small-animal PET imaging and ex vivo biodistribution studies in mice bearing U-87MG xenografts. RESULTS: Depending on the synthetic route, NOTI-TVA 6 was obtained with an overall yield up to 58 %. The bioconjugate 9 was prepared in 41 % yield. Both conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were radiolabeled quantitatively at ambient temperature in high molar activities of Am ~ 20 MBq nmol-1 in less than 5 min. Competitive inhibitory constants IC50 of c(RDGfK) 7, Cu-8, and Cu-9 were determined to be 159.5 ± 1.3 nM, 256.1 ± 2.1 nM, and 99.5 ± 1.1 nM, respectively. In small-animal experiments, both radiotracers specifically delineated αvß3 integrin-positive U-87MG tumors with low uptake in non-target organs and rapid blood clearance. The trimer [64Cu]Cu-9 showed a ~ 2.5-fold higher tumor uptake compared with the monomer [64Cu]Cu-8. CONCLUSIONS: Functionalization of NOTI at the non-coordinating NH atoms of the imidazole residues for bioconjugation was straightforward and allowed the preparation of a homotrimeric RGD conjugate. After optimization of the synthesis, required building blocks to make NOTI-TVA 6 are now available on multi-gram scale. Modifications at the imidazole groups had no measurable impact on metal binding properties in vitro and in vivo suggesting that the NOTI scaffold is a promising candidate for the development of 64Cu-labeled multimeric/multifunctional radiotracers.


Assuntos
Quelantes/farmacologia , Radioisótopos de Cobre/farmacologia , Peptídeos Cíclicos/farmacologia , Estudo de Prova de Conceito , Triazenos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia por Emissão de Pósitrons , Distribuição Tecidual/efeitos dos fármacos , Triazenos/síntese química , Triazenos/química
9.
Arch Pharm (Weinheim) ; 353(9): e2000102, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529657

RESUMO

In the present study, a series of eleven novel 1,3-diaryltriazene-substituted sulfathiazole moieties (ST1-11) was synthesized by the reaction of diazonium salt of sulfathiazole with substituted aromatic amines and their chemical structures were characterized by Fourier transform infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, and high-resolution mass spectroscopy methods. These synthesized novel derivatives were found to be effective inhibitor molecules for α-glycosidase (α-GLY), human carbonic anhydrase (hCA), and acetylcholinesterase (AChE), with KI values in the range of 426.84 ± 58.42-708.61 ± 122.67 nM for α-GLY, 450.37 ± 50.35-1,094.34 ± 111.37 nM for hCA I, 504.37 ± 57.22-1,205.36 ± 195.47 nM for hCA II, and 68.28 ± 10.26-193.74 ± 19.75 nM for AChE. Among the synthesized novel compounds, several lead compounds were investigated against the tested metabolic enzymes. More specifically, ST11 (4-[3-(perfluorophenyl)triaz-1-en-1-yl]-N-(thiazol-2-yl)benzenesulfonamide) showed a highly efficient inhibition profile against hCA I, hCA II, and AChE, with KI values of 450.37 ± 50.35, 504.37 ± 57.22, and 68.28 ± 10.26 nM, respectively. Due to its significant biological inhibitory potency, this derivative may be considered as an interesting lead compound against these enzymes.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Sulfatiazóis/farmacologia , Células CACO-2 , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Simulação por Computador , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Sulfatiazóis/síntese química , Sulfatiazóis/química , Triazenos/síntese química , Triazenos/química , Triazenos/farmacologia
11.
Bioorg Chem ; 96: 103642, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32062065

RESUMO

Herein, we report synthesis, characterization, anti-diabetic, anti-inflammatory and anti-oxidant activities of hydroxytriazenes derived from sulpha drugs, namely sulphanilamide, sulphadiazine, sulphapyridine and sulphamethazine. Before biological screening of the compounds, theoretical prediction using PASS was done which indicates probable activities ranging from Pa (probable activity) values 65-98% for anti-inflammatory activity. As per the predication, experimental validation of some of the predicted activities particularly anti-diabetic, anti-inflammatory and anti-oxidant was done. Anti-diabetic activities have been screened using two methods namely α-amylase and α-glucosidase inhibition method and IC50 values were ranging from 66 to 260 and 148 to 401 µg/mL, while for standard drug acarbose the values were 12 µg/mL and 70 µg/mL, respectively. Docking studies have also been done for antidiabetic target pancreatic alpha amylase. The molecular docking studies in α-amylase enzyme reveal that the middle phenyl ring of all the compounds mainly occupies in the small hydrophobic pocket formed by the Ala198, Trp58, Leu162, Leu165 and Ile235 residues and sulphonamide moiety establish H-bond interaction by two water molecules. Further, anti-inflammatory activity has been evaluated using carrageenan induced paw-edema method and results indicate excellent anti-inflammatory activity by hydroxytriazenes (71 to 97%) and standard drug diclofenac 94% after 4 h of treatment. Moreover, antioxidant effect of the compounds was tested using DPPH and ABTS methods. All the compounds displayed good results (24-488 µg/mL) against ABTS radical and many compounds are more active than ascorbic acid (69 µg/mL) while all other compounds showed moderate activity against DPPH radical (292-774 µg/mL) and ascorbic acid (29 µg/mL). Thus, the studies reveal potential of sulfa drug based hydroxytriazenes as candidates for antidiabetic, anti-inflammatory and antioxidant activities which have been experimentally validated.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Hipoglicemiantes/química , Triazenos/química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Técnicas de Química Sintética , Feminino , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Masculino , Simulação de Acoplamento Molecular , Ratos , Sulfadiazina/análogos & derivados , Sulfadiazina/síntese química , Sulfadiazina/farmacologia , Sulfanilamida/análogos & derivados , Sulfanilamida/síntese química , Sulfanilamida/farmacologia , Sulfapiridina/análogos & derivados , Sulfapiridina/síntese química , Sulfapiridina/farmacologia , Triazenos/síntese química , Triazenos/farmacologia
12.
Curr Top Med Chem ; 20(9): 713-719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31985378

RESUMO

BACKGROUND: Due to the rapid development of microbial resistance, finding new molecules became urgent to counteract this problem. OBJECTIVE: The objective of this work is to access 1,2,3-triazene-1,3-disubstituted, a class of molecule with high therapeutic potential. METHODS: Here we describe the access to 17 new triazene including six with an imidazole-1,2,3-triazene moiety and eleven with an alkyl-1,2,3-triazene moiety and their evaluation against five strains: two gram (-): Escherichia coli ATCC 25921 and Pseudomonas aeruginosa ATCC 27253; two gram (+) : Staphylococcus aureus ATCC 38213 and Enterococcus faecalis ATCC 29212; and one fungi: Candida albicans ATCC 24433. RESULTS: All strains were sensitive and the best MIC, 0.28 µM, is observed for 4c against Escherichia coli ATCC 25921. Compound 9, 3-isopropynyltriazene, appears to be the most interesting since it is active on the five evaluated strains with satisfactory MIC 0.32 µM against Escherichia coli and Pseudomonas aeruginosa and 0.64 µM against Enterococcus faecalis and Pseudomonas aeruginosa. CONCLUSION: Comparing the structure activity relationship, electron withdrawing groups appear to increase antimicrobial activity.


Assuntos
Anti-Infecciosos/química , Bibliotecas de Moléculas Pequenas/química , Triazenos/química , Candida albicans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Triazenos/farmacologia
13.
J Enzyme Inhib Med Chem ; 35(1): 325-329, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31813300

RESUMO

A series of compounds incorporating 3-(3-(2/3/4-substituted phenyl)triaz-1-en-1-yl) benzenesulfonamide moieties were synthesised and their chemical structure was confirmed by physico-chemical methods. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were evaluated against human isoforms hCA I and II. KI values of these sulphonamides were in the range of 21 ± 4-72 ± 2 nM towards hCA I and in the range of 16 ± 6-40 ± 2 nM against hCA II. The 4-fluoro substituted derivative might be considered as an interesting lead due to its effective inhibitory action against both hCA I and hCA II (KIs of 21 nM), a profile rarely seen among other sulphonamide CA inhibitors, making it of interest in systems where the activity of the two cytosolic isoforms is dysregulated.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica I/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/farmacologia , Triazenos/farmacologia , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Triazenos/química
14.
Development ; 146(22)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31772031

RESUMO

Lipid droplets (LDs), which are ubiquitous organelles consisting of a neutral lipid core coated with a phospholipid monolayer, play key roles in the regulation of cellular lipid metabolism. Although it is well known that mammalian oocytes and embryos contain LDs and that the amount of LDs varies among animal species, their physiological functions remain unclear. In this study, we have developed a method based on two-step centrifugation for efficient removal of almost all LDs from mouse MII oocytes (delipidation). We found that delipidated MII oocytes could be fertilized in vitro, and developed normally to the blastocyst stage even when the embryos were cultured in the absence of a fatty acid supply. LDs were newly synthesized and accumulated soon after delipidation, but chemical inhibition of long chain acyl-CoA synthetases (ACSLs) blocked this process, resulting in severe impairment of early embryonic development. Furthermore, we found that overabundance of LDs is detrimental to early embryonic development. Our findings demonstrate the importance of synthesis and maintenance of LDs, mediated in part by ACSL activity, during preimplantation embryonic development.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Oócitos/metabolismo , Animais , Coenzima A Ligases/metabolismo , Citoplasma/metabolismo , Ácidos Graxos/metabolismo , Feminino , Fertilização in vitro , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microscopia de Fluorescência , Oócitos/citologia , Injeções de Esperma Intracitoplásmicas , Triazenos/química
15.
Parasitol Res ; 118(11): 3159-3171, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486948

RESUMO

Cryptosporidiosis is a significant cause of gastroenteritis in both humans and livestock in developing countries. The only FDA-approved drug available against the same is nitazoxanide, with questionable efficacy in malnourished children and immunocompromised patients. Recent in vitro studies have indicated the viability of Triacsin C as a potential drug candidate, which targets the parasite's long-chain fatty acyl coenzyme A synthetase enzyme (LC-FACS), a critical component of the fatty acid metabolism pathway. We have used this molecule as a baseline to propose more potent versions thereof. We have applied a combined approach of substructure replacement, literature search, and database screening to come up with 514 analogs of Triacsin C. A virtual screening protocol was carried out which lead us to identify a potential hit compound. This was further subjected to a 100-ns molecular dynamics simulation in complex to determine its stability and binding characteristics. After which, the ADME/tox properties were predicted to assess its viability as a drug. The molecule R134 was identified as the best hit due to its highest average binding affinity, stability in complex when subjected to MD simulations, and reasonable predicted ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) properties comparable to those of the Triacsin C parent molecule. We have proposed R134 as a putative drug candidate against the Cryptosporidium parvum LC-FACS enzyme isoforms, following an in silico protocol. We hope the results will be helpful when planning future in vitro experiments for identifying drugs against Cryptosporidium.


Assuntos
Antiprotozoários/farmacologia , Coenzima A Ligases/antagonistas & inibidores , Cryptosporidium parvum/enzimologia , Cryptosporidium parvum/metabolismo , Descoberta de Drogas/métodos , Triazenos/farmacologia , Acil Coenzima A/metabolismo , Animais , Antiprotozoários/química , Criança , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Ácidos Graxos/metabolismo , Gastroenterite/parasitologia , Humanos , Simulação de Dinâmica Molecular , Isoformas de Proteínas , Triazenos/química
16.
ACS Comb Sci ; 21(8): 568-572, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31264846

RESUMO

A novel route for the synthesis of N-arylamides via the cleavage of aryltriazenes with alkyl or aryl nitriles is presented. We developed a variation of the Ritter reaction that allows the use of acetonitrile as solvent and reagent in reactions with solid-supported precursors. The reaction was optimized for the generation of N-aryl acetamides using a diverse range of immobilized building blocks including o-, m-, and p-substituted aryltriazenes. The cleavage via the Ritter-type conversion was combined with an on-bead cross-coupling reaction of halogen-substituted aryltriazenes with pyrazoles. Additionally, the synthesis of on-bead generated arylboronic ester-substituted triazenes was shown. The developed procedure was further expanded to use other commercially available nitriles, such as acrylonitrile, benzonitrile, and chlorinated alkyl nitriles as suitable reagents for a Ritter-type cleavage of the prepared triazene linkers.


Assuntos
Amidas/síntese química , Triazenos/química , Amidas/química , Técnicas de Química Combinatória , Estrutura Molecular
17.
Anal Sci ; 35(9): 979-985, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31080199

RESUMO

This paper presents a sensitive voltametric procedure for the determination of norfloxacin (NF) by a tetraoxocalix[2]arene[2]triazine (TOCT) covalently functionalized multi-walled carbon nanotubes (MWCNTs) modified electrode. The electrochemical sensing of NF was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Through a combination of the excellent selective recognition of TOCT and the outstanding electronic properties of MWCNTs, this electrochemical sensor shows excellent sensitivity and high selectivity for an electrochemical detection of NF. The stripping response is highly linear (R = 0.996) over the NF concentration range of 0.5 - 8.0 µM with the LOD of 0.1 µM. The fabricated sensors were successfully applied for quantitative detection of NF in pharmaceutical formulations and human urine samples. A high anti-interference ability to common interferences and satisfactory results were obtained. This is expected to play a huge potential in the real-time monitoring of NF in clinical applications.


Assuntos
Calixarenos/química , Nanotubos de Carbono/química , Norfloxacino/análise , Triazenos/química , Soluções Tampão , Calibragem , Composição de Medicamentos , Eletroquímica , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Moleculares , Conformação Molecular , Norfloxacino/química , Norfloxacino/urina
18.
Eur J Med Chem ; 172: 16-25, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30939350

RESUMO

Herein we report novel hybrid compounds based on valproic acid and DNA-alkylating triazene moieties, 1, with therapeutic potential for glioblastoma multiforme chemotherapy. We identified hybrid compounds 1d and 1e to be remarkably more potent against glioma and more efficient in decreasing invasive cell properties than temozolomide and endowed with chemical and plasma stability. In contrast to temozolomide, which undergoes hydrolysis to release an alkylating metabolite, the valproate hybrids showed a low potential to alkylate DNA. Key physicochemical properties align for optimal CNS penetration, highlighting the potential of these effective triazene based-hybrids for enhanced anticancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Triazenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazenos/síntese química , Triazenos/química , Células Tumorais Cultivadas
19.
Acta Biochim Pol ; 66(1): 39-46, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30869081

RESUMO

This paper attempts to find evidence of the previously proposed opinion that amyloids complex with Congo red molecules which preserve their supramolecular organization. As evidence of the overpowering tendency of Congo red molecules to self-assemble, we present an increasing acidity of molecules that follows increasing concentration of the dye, and a highly notable nonlinear increase in absorbance in the UV band (300-400 nm). This effect is analyzed in a model where the amyloid fibril is simulated by polyvinyl alcohol, providing a scaffold to stabilize a long Congo red micelle. Enormous absorbance in the UV band, coupled with the increasing association capabilities of individual Congo red molecules may cause the absorbance to extend even into the visible band. In addition, the UV and visual absorbance bands shift significantly, depending on conditions, and may either approach or recede from each other, leading to spectral changes which may be observed under polarized light. This commonly observed spectral variability appears to be associated with the strong capacity for electron delocalization in supramolecular Congo red complexed with amyloids.


Assuntos
Amiloide/química , Vermelho Congo/química , Azul de Bromofenol/química , Azul Evans/química , Triazenos/química
20.
Cell Physiol Biochem ; 52(3): 397-407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845379

RESUMO

BACKGROUND/AIMS: TNF-α-mediated pro-inflammatory phenotypic change in monocytes is known to be implicated in the pathogenesis of metabolic inflammation and insulin resistance. However, the mechanism by which TNF-α-induces inflammatory phenotypic shift in monocytes is poorly understood. Since long-chain acyl-CoA synthetase 1 (ACSL1) is associated with inflammatory monocytes/macrophages, we investigated the role of ACSL1 in the TNF-α-driven inflammatory phenotypic shift in the monocytes. METHODS: Monocytes (Human monocytic THP-1 cells) were stimulated with TNF-α. Inflammatory phenotypic markers (CD16, CD11b, CD11c and HLA-DR) expression was determined with real time RTPCR and flow cytometry. IL-1ß and MCP-1 were determined by ELISA. Signaling pathways were identified by using ACSL1 inhibitor, ACSL1 siRNA and NF-κB reporter monocytic cells. Phosphorylation of NF-κB was analyzed by western blotting and flow cytometry. RESULTS: Our data show that TNF-α induced significant increase in the expression of CD16, CD11b, CD11c and HLA-DR. Inhibition of ACSL1 activity in the cells with triacsin C significantly suppressed the expression of these inflammatory markers. Using ACSL-1 siRNA, we further demonstrate that TNF-α-induced inflammatory markers expression in monocytic cells requires ACSL1. In addition, IL-1b and MCP-1 production by TNF-α activated monocytic cells was significantly blocked by the inhibition of ACSL-1 activity. Interestingly, elevated NF-κB activity resulting from TNF-α stimulation was attenuated in ACSL1 deficient cells. CONCLUSION: Our findings provide an evidence that TNF-α-associated inflammatory polarization in monocytes is an ACSL1 dependent process, which indicates its central role in TNF-α-driven metabolic inflammation.


Assuntos
Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular , Quimiocina CCL2/análise , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1beta/análise , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Triazenos/química , Triazenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA