Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Ethnopharmacol ; 328: 117956, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY: This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS: 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1ß, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iß, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS: GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1ß, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1ß. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS: GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Th17 , Ocludina/metabolismo , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos CBA , Colite/tratamento farmacológico , Citocinas/metabolismo , Trinitrobenzenos/metabolismo , Trinitrobenzenos/farmacologia , Trinitrobenzenos/uso terapêutico , Anti-Inflamatórios/farmacologia , Peso Corporal , Caspases/metabolismo , Modelos Animais de Doenças , Colo
2.
Front Immunol ; 13: 1020902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275703

RESUMO

Background: Previous studies implicated matrix metalloproteinases (MMPs), such as MMP-7, in inflammatory bowel diseases (IBD) by showing increased activity during inflammation of the gut. However, the pathophysiological roles of MMP-7 have not been clearly elucidated. Methods: The expression of MMP-7 was assessed in colonic biopsies of patients with ulcerative colitis (UC), in rodents with experimental colitis, and in cell-based assays with cytokines. Wild-type and MMP-7-null mice treated with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid were used for determining the pro-inflammatory function(s) of MMP-7 in vivo. Results: MMP-7 was highly expressed in patients with UC and in rodents with experimental colitis. IL-1ß, IL-4, IL-13, TNFα, or lipopolysaccharide enhanced MMP-7 expression in human colonic epithelial cells, rat colonic smooth muscle cells, and THP-1-derived macrophages. Active MMP-7 degraded tight junction protein Claudin-7 in epithelial cells, cleaved recombinant Claudin-7 in cell-free system, and increased Caco-2 monolayer permeability. Immunostaining of colon biopsies revealed up-regulation of MMP-7 and reduction of Claudin-7 in UC patients. Compared to wild-type mice, Mmp7 -/- mice had significantly less inflammation in the colon upon DSS insult. DSS-induced alterations in junction proteins were mitigated in Mmp7 -/- mice, suggesting that MMP-7 disrupts the intestinal barrier. MMP-7 antibody significantly ameliorated colonic inflammation and Claudin-7 reduction in 2 different rodent models of colitis. Summary: MMP-7 impairs intestinal epithelial barrier by cleavage of Claudin-7, and thus aggravating inflammation. These studies uncovered Claudin-7 as a novel substrate of MMP-7 in the intestinal epithelium and reinforced MMP-7 as a potential therapeutic target for IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Ratos , Animais , Proteínas de Junções Íntimas/metabolismo , Sulfato de Dextrana/toxicidade , Metaloproteinase 7 da Matriz/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-13/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Lipopolissacarídeos/efeitos adversos , Interleucina-4/metabolismo , Colite/patologia , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/patologia , Inflamação/metabolismo , Camundongos Knockout , Citocinas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Trinitrobenzenos/metabolismo , Trinitrobenzenos/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Ácidos Sulfônicos/metabolismo
3.
J Oleo Sci ; 69(2): 115-122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32023578

RESUMO

A new difunctional Zn(II) coordination polymer (CP) with the chemical formula of [Zn(TBTA) (L)1.5]n (1) has been synthesized hydrothermally from tetrabromoterephthalic acid (H2TBTA) and 4,4'-bis(imidazole-1-yl)-biphenyl (L) ligands. Furthermore, due to its strong intense emission and open N donor sites, complex 1 could be used as a light-emitting sensor to determine 2,4,6-trinitrophenol (TNP) which has high selectivity and sensitivity. Furthermore, the anti-bacterial effect of the compound against P. gingivalis in vitro was evaluated by measuring the P. gingivalis growth curves after compound treatment. And the RT-PCR assay was performed to detect the relative expression of ragA and ragB, which are important for the P. gingivalis growth. The potential anti-infectious mechanism was further studied by using molecular docking technique.


Assuntos
Doenças Periodontais/tratamento farmacológico , Porphyromonas gingivalis/crescimento & desenvolvimento , Trinitrobenzenos/química , Trinitrobenzenos/uso terapêutico , Compostos de Zinco/química , Compostos de Zinco/uso terapêutico , Depressão Química , Humanos , Ligantes , Doenças Periodontais/microbiologia , Polímeros , Trinitrobenzenos/farmacologia , Compostos de Zinco/farmacologia
4.
J Immunol ; 158(5): 2425-34, 1997 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9036993

RESUMO

Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.


Assuntos
Proteínas de Transporte/uso terapêutico , Dermatite por Toxicodendron/imunologia , Regulação para Baixo/imunologia , Haptenos/uso terapêutico , Antígenos de Histocompatibilidade Classe II/metabolismo , Trinitrobenzenos/uso terapêutico , Administração Tópica , Animais , Proteínas de Transporte/síntese química , Proteínas de Transporte/química , Catecóis/administração & dosagem , Catecóis/síntese química , Catecóis/química , Dermatite por Toxicodendron/prevenção & controle , Haptenos/imunologia , Tolerância Imunológica/efeitos dos fármacos , Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Peptídeos/fisiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Pele/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Trinitrobenzenos/imunologia
5.
J Immunol ; 133(1): 509-14, 1984 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-6233375

RESUMO

Preinduction of potent hapten-reactive helper T cell activity and subsequent immunization with hapten-coupled syngeneic tumor cells result in enhanced induction of tumor-specific immunity through T-T cell collaboration between anti-hapten helper T cells and tumor-specific effector T cells. On the basis of this augmenting mechanism, a tumor-specific immunotherapy protocol was established in which a growing tumor regresses by utilizing a potent trinitrophenyl (TNP)-helper T cell activity. C3H/He mice were allowed to generate the amplified (more potent) TNP-helper T cell activity by skin painting with trinitrochlorobenzene (TNCB) after pretreatment with cyclophosphamide. Five weeks later, the mice were inoculated intradermally with syngeneic transplantable X5563 tumor cells. When TNCB was injected into X5563 tumor mass, an appreciable number of growing tumors, in the only group of C3H/He mice in which the amplified TNP-helper T cell activity had been generated were observed to regress (regressor mice). These regressor mice were shown to have acquired tumor-specific T cell-mediated immunity. Such immunity was more potent than that acquired in mice whose tumor was simply removed by surgical resection. These results indicate that in situ TNP haptenation of the tumor cells in TNP-primed mice can induce the enhanced tumor-specific immunity leading to the regression of a growing tumor. Most importantly, the present study further investigates the applicability of this TNP immunotherapy protocol to an autochthonous tumor system. The results demonstrate that an appreciable percent of growing methylcholanthrene-induced autochthonous tumors regressed by the above TNP immunotherapy protocol. Thus, the present model provides an effective maneuver for tumor-specific immunotherapy in syngeneic transplantable as well as autochthonous tumor systems.


Assuntos
Imunoterapia , Neoplasias Experimentais/terapia , Nitrobenzenos/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia , Trinitrobenzenos/uso terapêutico , Animais , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Feminino , Fibrossarcoma/imunologia , Fibrossarcoma/terapia , Haptenos , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/terapia , Ativação Linfocitária , Metilcolantreno , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/imunologia , Plasmocitoma/imunologia , Plasmocitoma/terapia , Trinitrobenzenos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA