Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.030
Filtrar
1.
Mem Inst Oswaldo Cruz ; 119: e230223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716979

RESUMO

BACKGROUND: Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES: In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS: Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS: The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS: Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.


Assuntos
Proteínas de Fluorescência Verde , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Proteínas de Fluorescência Verde/genética , Tripanossomicidas/farmacologia , Nitroimidazóis/farmacologia , Testes de Sensibilidade Parasitária , Animais , Concentração Inibidora 50 , Avaliação Pré-Clínica de Medicamentos , Sobrevivência Celular/efeitos dos fármacos
2.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731562

RESUMO

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Assuntos
Antiprotozoários , Compostos de Boro , Leishmania major , Simulação de Acoplamento Molecular , Trypanosoma brucei brucei , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Leishmania major/efeitos dos fármacos , Desenho de Fármacos , Relação Estrutura-Atividade , Linhagem Celular , Estrutura Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Oxirredutases
3.
Nat Commun ; 15(1): 3985, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734677

RESUMO

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Assuntos
Aquagliceroporinas , Microscopia Crioeletrônica , Melarsoprol , Simulação de Dinâmica Molecular , Pentamidina , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Aquagliceroporinas/metabolismo , Aquagliceroporinas/química , Melarsoprol/metabolismo , Melarsoprol/química , Pentamidina/química , Pentamidina/metabolismo , Transporte Biológico , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Humanos
4.
Expert Opin Drug Discov ; 19(6): 741-753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715393

RESUMO

INTRODUCTION: Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED: Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION: Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.


Assuntos
Doença de Chagas , Descoberta de Drogas , Resistência a Medicamentos , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Nitroimidazóis/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Tripanossomicidas/farmacologia , Humanos , Animais , Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos
5.
Nat Commun ; 15(1): 4400, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782898

RESUMO

Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. There is a lack of evidence on the mechanism of pathogenesis and rationales for treatment. We used a female C3H/HeN mouse model that recapitulates key clinical manifestations to study how infection dynamics shape DCD pathology and the impact of treatment with the front-line, anti-parasitic drug benznidazole. Curative treatment 6 weeks post-infection resulted in sustained recovery of gastrointestinal transit function, whereas treatment failure led to infection relapse and gradual return of DCD symptoms. Neuro/immune gene expression patterns shifted from chronic inflammation to a tissue repair profile after cure, accompanied by increased cellular proliferation, glial cell marker expression and recovery of neuronal density in the myenteric plexus. Delaying treatment until 24 weeks post-infection led to partial reversal of DCD, suggesting the accumulation of permanent tissue damage over the course of chronic infection. Our study shows that murine DCD pathogenesis is sustained by chronic T. cruzi infection and is not an inevitable consequence of acute stage denervation. The risk of irreversible enteric neuromuscular tissue damage and dysfunction developing highlights the importance of prompt diagnosis and treatment. These findings support the concept of treating asymptomatic, T. cruzi-infected individuals with benznidazole to prevent DCD development.


Assuntos
Doença de Chagas , Modelos Animais de Doenças , Sistema Nervoso Entérico , Camundongos Endogâmicos C3H , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Feminino , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Sistema Nervoso Entérico/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos
6.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792079

RESUMO

Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.


Assuntos
Amida Sintases , Glutationa , NADH NADPH Oxirredutases , Trypanosoma , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , Humanos , Amida Sintases/metabolismo , Amida Sintases/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Glutationa/metabolismo , Glutationa/análogos & derivados , Animais , Espermidina/análogos & derivados , Espermidina/metabolismo , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Trypanosomatina/metabolismo , Trypanosomatina/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124346, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692105

RESUMO

Considering the health relevance of Chagas' disease, recent research efforts have focused on developing more efficient drug delivery systems containing nifurtimox (NFX). This paper comprehensively investigates NFX through conformational analysis and spectroscopic characterization. Using a conformer-rotamer ensemble sampling tool (CREST-xtb), five distinct conformers of NFX were sampled within a 3.0 kcal mol-1 relative energy window. Subsequently, such structures were used as inputs for geometry optimization by density functional theory (DFT) at B3LYP-def2-TZVP level of theory. Notably, harmonic vibrational frequencies were calculated to establish an in-depth comparison with experimental results and existing literature for the NFX or similar molecules and functional groups, thereby achieving a widely reasoned assignment of the mid-infrared band absorptions for the first time. Moreover, UV-VIS spectra of NFX were obtained in several solvents, enabling the determination of the molar absorptivity coefficient for the two electronic transitions observed for NFX. Among the aprotic solvents, a bathochromic effect was observed in the function of the dielectric constants. Furthermore, a hypochromic effect was observed when the drug was dissolved in protic solvents. These findings offer crucial support for new drug delivery systems containing NFX while demonstrating the potential of spectrophotometric studies in establishing quality control assays for NFX drug products.


Assuntos
Doença de Chagas , Conformação Molecular , Nifurtimox , Doença de Chagas/tratamento farmacológico , Nifurtimox/química , Espectrofotometria Ultravioleta , Tripanossomicidas/química , Modelos Moleculares , Teoria da Densidade Funcional , Trypanosoma cruzi/efeitos dos fármacos , Solventes/química
8.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747267

RESUMO

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Assuntos
Simulação de Acoplamento Molecular , Pirazóis , Pirimidinas , Tripanossomicidas , Trypanosoma brucei brucei , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Leishmania mexicana/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Simulação por Computador , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Parasitária
9.
Tidsskr Nor Laegeforen ; 144(6)2024 May 14.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-38747663

RESUMO

Background: Chagas encephalitis is a rare but severe manifestation of reactivation in patients with chronic Chagas disease. Case presentation: A woman in her seventies who was immunosuppressed after a heart transplant due to Chagas disease was admitted with convulsions, headache and visual disturbances. She developed fever, confusion and repeated convulsions. Pleocytosis was found in spinal fluid. Wet-mount microscopy of spinal fluid revealed motile Trypanosoma cruzi trypomastigotes, and multiple trypomastigotes were seen on a Giemsa-stained smear, confirming reactivation of Chagas disease with meningoencephalitis. Despite benznidazole treatment, she deteriorated, exhibiting pharyngeal paralysis, aphasia and increasing somnolence. Brain CT showed pathology consistent with Chagas encephalitis. Nifurtimox was given as an adjunctive treatment. After a week of treatment, the patient began to improve. She completed 60 days of benznidazole and had regained normal cognitive and neurological function on subsequent follow-up. She had no signs of myocarditis reactivation. Interpretation: Chronic Chagas disease is common among Latin American immigrants in Europe. Reactivation with myocarditis after a heart transplant is well known, while encephalitis is a rare manifestation. We report on a case of Chagas encephalitis in an immunosuppressed patient. Microscopy of parasites in spinal fluid revealed the diagnosis. The WHO provided antiparasitic medications, and despite a severe prognosis, the patient made a full recovery.


Assuntos
Convulsões , Humanos , Feminino , Convulsões/etiologia , Convulsões/tratamento farmacológico , Idoso , Febre/etiologia , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Hospedeiro Imunocomprometido
10.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
11.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673904

RESUMO

Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.


Assuntos
Benzopiranos , Glucoquinase , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Camundongos , Benzopiranos/farmacologia , Benzopiranos/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Glucoquinase/metabolismo , Glucoquinase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Células NIH 3T3 , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
12.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673995

RESUMO

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Assuntos
Inibidores de Cisteína Proteinase , Nitrilas , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Inibidores de Cisteína Proteinase/química , Malária/tratamento farmacológico , Nitrilas/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
13.
ACS Infect Dis ; 10(5): 1808-1838, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38606978

RESUMO

Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).


Assuntos
Doença de Chagas , Oxirredução , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Humanos , Camundongos
14.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677111

RESUMO

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Assuntos
Desenho de Fármacos , Leishmania infantum , Testes de Sensibilidade Parasitária , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Relação Dose-Resposta a Droga , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Humanos , Animais , Sulfonas/farmacologia , Sulfonas/síntese química , Sulfonas/química
15.
Exp Parasitol ; 261: 108749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593864

RESUMO

Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 µM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 µM) for trypomastigotes, and LIZ331 (IC50 1.9 µM) for amastigotes. We observed that LIZ311 (IC50 2.5 µM), LIZ431 (IC50 4.1 µM) and LIZ531 (IC50 5 µM) induced 200 µg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Óxido Nítrico , Tiazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tiazóis/farmacologia , Tiazóis/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Humanos , Animais , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/química , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
16.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644164

RESUMO

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Assuntos
Doença de Chagas , Quinonas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Animais , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinonas/química , Quinonas/farmacologia , Testes de Sensibilidade Parasitária , Estrutura Molecular , Luz , Modelos Animais de Doenças , Relação Estrutura-Atividade
17.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38631020

RESUMO

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Assuntos
Lignanas , Peperomia , Tripanossomicidas , Trypanosoma cruzi , Lignanas/farmacologia , Lignanas/química , Lignanas/isolamento & purificação , Trypanosoma cruzi/efeitos dos fármacos , El Salvador , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Estrutura Molecular , Peperomia/química , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Doença de Chagas/tratamento farmacológico
18.
Exp Parasitol ; 260: 108744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513971

RESUMO

Suramin was the first effective drug for the treatment of human African sleeping sickness. Structural analogues of the trypanocide have previously been shown to be potent inhibitors of several enzymes. Therefore, four suramin analogues lacking the methyl group on the intermediate rings and with different regiochemistry of the naphthalenetrisulphonic acid groups and the phenyl rings were tested to establish whether they exhibited improved antiproliferative activity against bloodstream forms of Trypanosomes brucei compared to the parent compound. The four analogues exhibited low trypanocidal activity and weak inhibition of the antitrypanosomal activity of suramin in competition experiments. This indicates that the strong trypanocidal activity of suramin is most likely due to the presence of methyl groups on its intermediate rings and to the specific regiochemistry of naphthalenetrisulphonic acid groups. These two structural features are also likely to be important for the inhibition mechanism of suramin because DNA distribution and nucleus/kinetoplast configuration analyses suggest that the analogues inhibit mitosis while suramin inhibits cytokinesis.


Assuntos
Suramina , Tripanossomicidas , Trypanosoma brucei brucei , Suramina/farmacologia , Suramina/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Relação Estrutura-Atividade , DNA de Protozoário/efeitos dos fármacos , DNA de Cinetoplasto/efeitos dos fármacos , Camundongos , Mitose/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
19.
J Biol Chem ; 300(4): 107162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484800

RESUMO

Kinetoplastid parasites are "living bridges" in the evolution from prokaryotes to higher eukaryotes. The near-intronless genome of the kinetoplastid Leishmania exhibits polycistronic transcription which can facilitate R-loop formation. Therefore, to prevent such DNA-RNA hybrids, Leishmania has retained prokaryotic-like DNA Topoisomerase IA (LdTOPIA) in the course of evolution. LdTOPIA is an essential enzyme that is expressed ubiquitously and is adapted for the compartmentalized eukaryotic form in harboring functional bipartite nuclear localization signals. Although exhibiting greater homology to mycobacterial TOPIA, LdTOPIA could functionally complement the growth lethality of Escherichia coli TOPIA null GyrB ts strain at non-permissive temperatures. Purified LdTOPIA exhibits Mg2+-dependent relaxation of only negatively supercoiled DNA and preference towards single-stranded DNA substrates. LdTOPIA prevents nuclear R-loops as conditional LdTOPIA downregulated parasites exhibit R-loop formation and thereby parasite killing. The clinically used tricyclic antidepressant, norclomipramine could specifically inhibit LdTOPIA and lead to R-loop formation and parasite elimination. This comprehensive study therefore paves an avenue for drug repurposing against Leishmania.


Assuntos
DNA Topoisomerases Tipo I , Leishmania , Proteínas de Protozoários , Estruturas R-Loop , Animais , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leishmania/enzimologia , Leishmania/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Tripanossomicidas/química , Tripanossomicidas/farmacologia
20.
J Vet Intern Med ; 38(3): 1725-1729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500407

RESUMO

Trypanosoma cruzi infection in dogs can cause heart failure and sudden death with few treatment options available. A litter of 4 dogs living in a T cruzi endemic area were randomized to prophylaxis and nonprophylaxis groups as part of a study evaluating a modified benznidazole dosing regimen administered twice weekly to prevent T cruzi infection during a vector transmission season. The 2 dogs that received prophylaxis remained healthy without T cruzi infection or cardiac disease for >2 years. One dog that did not receive prophylaxis died unexpectedly with acute T cruzi-induced pancarditis, and the second dog tested positive for T cruzi and developed complex arrhythmias with markedly increased cardiac troponin I and improved with a higher benznidazole treatment dose. Although the small sample size precludes definitive conclusions, we describe the potential clinical benefit of prophylactic and early treatment with modified benznidazole dosing regimens for dogs with T cruzi infection.


Assuntos
Doença de Chagas , Doenças do Cão , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Cães , Animais , Nitroimidazóis/uso terapêutico , Nitroimidazóis/administração & dosagem , Doenças do Cão/tratamento farmacológico , Doença de Chagas/veterinária , Doença de Chagas/tratamento farmacológico , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/uso terapêutico , Tripanossomicidas/administração & dosagem , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA