Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 905
Filtrar
1.
Gut Microbes ; 16(1): 2347728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706226

RESUMO

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Indóis , Triptofano , Triptofano/metabolismo , Humanos , Indóis/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/genética , Triptofano Sintase/metabolismo , Triptofano Sintase/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
2.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398508

RESUMO

Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αßßα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and ß entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the ß one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αß dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.


Assuntos
Basidiomycota , Simulação de Dinâmica Molecular , Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Triptofano , Fungos/metabolismo
3.
J Chem Inf Model ; 64(3): 983-1003, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291608

RESUMO

L-tryptophan (l-Trp), a vital amino acid for the survival of various organisms, is synthesized by the enzyme tryptophan synthase (TS) in organisms such as eubacteria, archaebacteria, protista, fungi, and plantae. TS, a pyridoxal 5'-phosphate (PLP)-dependent enzyme, comprises α and ß subunits that typically form an α2ß2 tetramer. The enzyme's activity is regulated by the conformational switching of its α and ß subunits between the open (T state) and closed (R state) conformations. Many microorganisms rely on TS for growth and replication, making the enzyme and the l-Trp biosynthetic pathway potential drug targets. For instance, Mycobacterium tuberculosis, Chlamydiae bacteria, Streptococcus pneumoniae, Francisella tularensis, Salmonella bacteria, and Cryptosporidium parasitic protozoa depend on l-Trp synthesis. Antibiotic-resistant salmonella strains have emerged, underscoring the need for novel drugs targeting the l-Trp biosynthetic pathway, especially for salmonella-related infections. A single amino acid mutation can significantly impact enzyme function, affecting stability, conformational dynamics, and active or allosteric sites. These changes influence interactions, catalytic activity, and protein-ligand/protein-protein interactions. This study focuses on the impact of mutating the ßGln114 residue on the catalytic and allosteric sites of TS. Extensive molecular dynamics simulations were conducted on E(PLP), E(AEX1), E(A-A), and E(C3) forms of TS using the WT, ßQ114A, and ßQ114N versions. The results show that both the ßQ114A and ßQ114N mutations increase protein backbone root mean square deviation fluctuations, destabilizing all TS forms. Conformational and hydrogen bond analyses suggest the significance of ßGln114 drifting away from cofactor/intermediates and forming hydrogen bonds with water molecules necessary for l-Trp biosynthesis. The ßQ114A mutation creates a gap between ßAla114 and cofactor/intermediates, hindering hydrogen bond formation due to short side chains and disrupting ß-sites. Conversely, the ßQ114N mutation positions ßAsn114 closer to cofactor/intermediates, forming hydrogen bonds with O3 of cofactors/intermediates and nearby water molecules, potentially disrupting the l-Trp biosynthetic mechanism.


Assuntos
Criptosporidiose , Cryptosporidium , Triptofano Sintase , Humanos , Triptofano Sintase/genética , Triptofano Sintase/química , Triptofano Sintase/metabolismo , Domínio Catalítico , Simulação de Dinâmica Molecular , Salmonella typhimurium/genética , Cryptosporidium/metabolismo , Conformação Proteica , Aminoácidos , Mutação , Água , Cinética
4.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959692

RESUMO

Tryptophan synthetase (TSase), which functions as a tetramer, is a typical enzyme with a substrate channel effect, and shows excellent performance in the production of non-standard amino acids, histamine, and other biological derivatives. Based on previous work, we fused a mutant CE protein (colistin of E. coli, a polypeptide with antibacterial activity) sequence with the sequence of TSase to explore whether its catalytic activity could be enhanced, and we also analyzed whether the addition of a DNA scaffold was a feasible strategy. Here, dCE (CE protein without DNase activity) protein tags were constructed and fused to the TrapA and TrapB subunits of TSase, and the whole cell was used for the catalytic reaction. The results showed that after the dCE protein tag was fused to the TrapB subunit, its whole cell catalytic activity increased by 50%. Next, the two subunits were expressed separately, and the proteins were bound in vitro to ensure equimolar combination between the two subunits. After the dCE label was fused to TrapB, the activity of TSase assembled with TrapA also improved. A series of experiments revealed that the enzyme fused with dCE9 showed higher activity than the wild-type protein. In general, the activity of assembly TSase was optimal when the temperature was 50 °C and the pH was about 9.0. After a long temperature treatment, the enzyme maintained good activity. With the addition of exogenous nucleic acid, the activity of the enzyme increased. The maximum yield was 0.58 g/L, which was almost three times that of the wild-type TSase (0.21 g/L). The recombinant TSase constructed in this study with dCE fusion had the advantages of higher heat resistance and higher activity, and confirmed the feasibility of adding a nucleic acid scaffold, providing a new idea for the improvement of structurally similar enzymes.


Assuntos
Ácidos Nucleicos , Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Escherichia coli/metabolismo , Aminoácidos
5.
Curr Opin Struct Biol ; 82: 102657, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467527

RESUMO

The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (ßTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and ßTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone ßTS have also revealed the importance of αTS in modulating the conformational changes in ßTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.


Assuntos
Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/metabolismo , Modelos Moleculares , Catálise , Regulação Alostérica
6.
Neurogastroenterol Motil ; 35(10): e14629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37357378

RESUMO

BACKGROUND: An emerging strategy to treat symptoms of gastrointestinal (GI) dysmotility utilizes the administration of isolated bacteria. However, the underlying mechanisms of action of these bacterial agents are not well established. Here, we elucidate a novel approach to promote intestinal motility by exploiting the biochemical capability of specific bacteria to produce the serotonin (5-HT) precursor, tryptophan (Trp). METHODS: Mice were treated daily for 1 week by oral gavage of Bacillus (B.) subtilis (R0179), heat-inactivated R0179, or a tryptophan synthase-null strain of B. subtilis (1A2). Tissue levels of Trp, 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured and changes in motility were evaluated. KEY RESULTS: Mice treated with B. subtilis R0179 exhibited greater colonic tissue levels of Trp and the 5-HT breakdown product, 5-HIAA, compared to vehicle-treated mice. Furthermore, B. subtilis treatment accelerated colonic motility in both healthy mice as well as in a mouse model of constipation. These effects were not observed with heat-inactivated R0179 or the live 1A2 strain that does not express tryptophan synthase. Lastly, we found that the prokinetic effects of B. subtilis R0179 were blocked by coadministration of a 5-HT4 receptor (5-HT4 R) antagonist and were absent in 5-HT4 R knockout mice. CONCLUSIONS AND INFERENCES: Taken together, these data demonstrate that intestinal motility can be augmented by treatment with bacteria that synthesize Trp, possibly through increased 5-HT signaling and/or actions of Trp metabolites, and involvement of the 5-HT4 R. Our findings provide mechanistic insight into a transient and predictable bacterial strategy to promote GI motility.


Assuntos
Triptofano Sintase , Triptofano , Camundongos , Animais , Triptofano/farmacologia , Serotonina/metabolismo , Ácido Hidroxi-Indolacético , Triptofano Sintase/farmacologia , Motilidade Gastrointestinal , Camundongos Knockout , Bactérias
7.
Methods Enzymol ; 685: 199-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245902

RESUMO

Pyridoxal-5'-phosphate (PLP) Schiff's bases of 2-aminoacrylate are intermediates in ß-elimination and ß-substitution reaction of PLP-dependent enzymes. These enzymes are found in two major families, the α-, or aminotransferase, superfamily, and the ß-family. While the α-family enzymes primarily catalyze ß-eliminations, the ß-family enzymes catalyze both ß-elimination and ß-substitution reactions. Tyrosine phenol-lyase (TPL), which catalyzes the reversible elimination of phenol from l-tyrosine, is an example of an α-family enzyme. Tryptophan synthase catalyzes the irreversible formation of l-tryptophan from l-serine and indole, and is an example of a ß-family enzyme. The identification and characterization of aminoacrylate intermediates in the reactions of both of these enzymes is discussed. The use of UV-visible absorption and fluorescence spectroscopy, X-ray and neutron crystallography, and NMR spectroscopy to identify aminoacrylate intermediates in these and other PLP enzymes is presented.


Assuntos
Triptofano Sintase , Tirosina Fenol-Liase , Humanos , Triptofano Sintase/química , Triptofano Sintase/metabolismo , Tirosina Fenol-Liase/química , Tirosina Fenol-Liase/metabolismo , Fosfato de Piridoxal/metabolismo , Catálise , Fosfatos , Cinética
8.
J Chem Phys ; 158(11): 115101, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948822

RESUMO

Tryptophan synthase (TRPS) is a bifunctional enzyme consisting of α- and ß-subunits that catalyzes the last two steps of L-tryptophan (L-Trp) biosynthesis. The first stage of the reaction at the ß-subunit is called ß-reaction stage I, which converts the ß-ligand from an internal aldimine [E(Ain)] to an α-aminoacrylate [E(A-A)] intermediate. The activity is known to increase 3-10-fold upon the binding of 3-indole-D-glycerol-3'-phosphate (IGP) at the α-subunit. The effect of α-ligand binding on ß-reaction stage I at the distal ß-active site is not well understood despite the abundant structural information available for TRPS. Here, we investigate the ß-reaction stage I by carrying out minimum-energy pathway searches based on a hybrid quantum mechanics/molecular mechanics (QM/MM) model. The free-energy differences along the pathway are also examined using QM/MM umbrella sampling simulations with QM calculations at the B3LYP-D3/aug-cc-pVDZ level of theory. Our simulations suggest that the sidechain orientation of ßD305 near the ß-ligand likely plays an essential role in the allosteric regulation: a hydrogen bond is formed between ßD305 and the ß-ligand in the absence of the α-ligand, prohibiting a smooth rotation of the hydroxyl group in the quinonoid intermediate, whereas the dihedral angle rotates smoothly after the hydrogen bond is switched from ßD305-ß-ligand to ßD305-ßR141. This switch could occur upon the IGP-binding at the α-subunit, as evidenced by the existing TRPS crystal structures.


Assuntos
Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/metabolismo , Regulação Alostérica , Sítios de Ligação , Ligantes , Conformação Proteica , Cinética
9.
Sci Rep ; 13(1): 1417, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697464

RESUMO

We report here a new application, CustomProteinSearch (CusProSe), whose purpose is to help users to search for proteins of interest based on their domain composition. The application is customizable. It consists of two independent tools, IterHMMBuild and ProSeCDA. IterHMMBuild allows the iterative construction of Hidden Markov Model (HMM) profiles for conserved domains of selected protein sequences, while ProSeCDA scans a proteome of interest against an HMM profile database, and annotates identified proteins using user-defined rules. CusProSe was successfully used to identify, in fungal genomes, genes encoding key enzyme families involved in secondary metabolism, such as polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), hybrid PKS-NRPS and dimethylallyl tryptophan synthases (DMATS), as well as to characterize distinct terpene synthases (TS) sub-families. The highly configurable characteristics of this application makes it a generic tool, which allows the user to refine the function of predicted proteins, to extend detection to new enzymes families, and may also be applied to biological systems other than fungi and to other proteins than those involved in secondary metabolism.


Assuntos
Fungos , Anotação de Sequência Molecular , Metabolismo Secundário , Software , Sequência de Aminoácidos , Anotação de Sequência Molecular/métodos , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Metabolismo Secundário/genética , Fungos/enzimologia , Fungos/genética , Triptofano Sintase/genética , Sequência Conservada/genética
10.
Biochemistry ; 61(18): 2025-2035, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36084241

RESUMO

The regiospecific prenylation of an aromatic amino acid catalyzed by a dimethylallyl-l-tryptophan synthase (DMATS) is a key step in the biosynthesis of many fungal and bacterial natural products. DMATS enzymes share a common "ABBA" fold with divergent active site contours that direct alternative C-C, C-N, and C-O bond-forming trajectories. DMATS1 from Fusarium fujikuroi catalyzes the reverse N-prenylation of l-Trp by generating an allylic carbocation from dimethylallyl diphosphate (DMAPP) that then alkylates the indole nitrogen of l-Trp. DMATS1 stands out among the greater DMATS family because it exhibits unusually broad substrate specificity: it can utilize geranyl diphosphate (GPP) or l-Tyr as an alternative prenyl donor or acceptor, respectively; it can catalyze both forward and reverse prenylation, i.e., at C1 or C3 of DMAPP; and it can catalyze C-N and C-O bond-forming reactions. Here, we report the crystal structures of DMATS1 and its complexes with l-Trp or l-Tyr and unreactive thiolodiphosphate analogues of the prenyl donors DMAPP and GPP. Structures of ternary complexes mimic Michaelis complexes with actual substrates and illuminate active site features that govern prenylation regiochemistry. Comparison with CymD, a bacterial enzyme that catalyzes the reverse N-prenylation of l-Trp with DMAPP, indicates that bacterial and fungal DMATS enzymes share a conserved reaction mechanism. However, the narrower active site contour of CymD enforces narrower substrate specificity. Structure-function relationships established for DMATS enzymes will ultimately inform protein engineering experiments that will broaden the utility of these enzymes as useful tools for synthetic biology.


Assuntos
Produtos Biológicos , Dimetilaliltranstransferase , Triptofano Sintase , Catálise , Dimetilaliltranstransferase/química , Fusarium , Hemiterpenos , Indóis , Neopreno , Nitrogênio , Compostos Organofosforados , Prenilação , Especificidade por Substrato , Triptofano/química , Triptofano Sintase/metabolismo
11.
Microbiol Spectr ; 10(5): e0141022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069562

RESUMO

The P1-like phage plasmid (PP) has been widely used as a molecular biology tool, but its role as an active accessory cargo element is not fully understood. In this study, we provide insights into the structural features and gene content similarities of 77 P1-like PPs in the RefSeq database. We also describe a P1-like PP carrying a blaCTX-M-55 gene, JL22, which was isolated from a clinical strain of Escherichia coli from a duck farm. P1-like PPs were very similar and conserved based on gene content similarities, with only eight highly variable regions. Importantly, two kinds of replicon types, namely, IncY and p0111, were identified and can be used to specifically identify the P1-like phage. JL22 is similar to P1, acquiring an important foreign DNA fragment with two obvious features, namely, the plasmid replication gene repA' (p0111) replacing the gene repA (IncY) and a 4,200-bp fragment mobilized by IS1380 and IS5 and containing a blaCTX-M-55 gene and a trpB gene encoding tryptophan synthase (indole salvaging). The JL22 phage could be induced but had no lytic capacities. However, a lysogenic recipient and intact structure of JL22 virions were observed, showing that the extended-spectrum ß-lactamase blaCTX-M-55 gene was successfully transferred. Overall, conserved genes can be a good complement to improve the identification efficiency and accuracy in future screening for P1-like PPs. Moreover, the highly conserved structures may be important for their prevalence and dissemination. IMPORTANCE As a PP, P1 DNA exists as a low-copy-number plasmid and replicates autonomously with a lysogenization style. This unique mode of P1-like elements probably indicates a stable contribution to antibiotic resistance. After analyzing these elements, we show that P1-like PPs are very similar and conserved, with only eight highly variable regions. Moreover, we observed the occurrence of replicon IncY and p0111 only in the P1-like PP community, implying that these conserved regions, coupled with IncY and p0111, can be an important complement in future screening of P1-like PPs. Identification and characterization of JL22 confirmed our findings that major changes were located in variable regions, including the first detection of blaCTX-M-55 in such a mobile genetic element. This suggests that these variable regions may facilitate foreign DNA mobilization. This study features a comprehensive genetic analysis of P1-like PPs, providing new insights into the dissemination mechanisms of antibiotic resistance through P1 PPs.


Assuntos
Bacteriófagos , Triptofano Sintase , beta-Lactamases/genética , Bacteriófagos/genética , Triptofano Sintase/genética , Plasmídeos/genética , Escherichia coli , Indóis , Antibacterianos/farmacologia
12.
Protein Sci ; 31(10): e4426, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173176

RESUMO

The three-dimensional structure of the enzymes provides very relevant information on the arrangement of the catalytic machinery and structural elements gating the active site pocket. The recent success of the neural network Alphafold2 in predicting the folded structure of proteins from the primary sequence with high levels of accuracy has revolutionized the protein design field. However, the application of Alphafold2 for understanding and engineering function directly from the obtained single static picture is not straightforward. Indeed, understanding enzymatic function requires the exploration of the ensemble of thermally accessible conformations that enzymes adopt in solution. In the present study, we evaluate the potential of Alphafold2 in assessing the effect of the mutations on the conformational landscape of the beta subunit of tryptophan synthase (TrpB). Specifically, we develop a template-based Alphafold2 approach for estimating the conformational heterogeneity of several TrpB enzymes, which is needed for enhanced stand-alone activity. Our results show the potential of Alphafold2, especially if combined with molecular dynamics simulations, for elucidating the changes induced by mutation in the conformational landscapes at a rather reduced computational cost, thus revealing its plausible application in computational enzyme design.


Assuntos
Triptofano Sintase , Catálise , Domínio Catalítico , Conformação Proteica , Proteínas , Triptofano Sintase/química
13.
Front Cell Infect Microbiol ; 12: 931653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982780

RESUMO

Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.


Assuntos
Infecções por Chlamydia , Triptofano Sintase , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis , Humanos , Indóis/metabolismo , Interferon gama/metabolismo , Triptofano/metabolismo , Triptofano Sintase/genética
14.
Appl Biochem Biotechnol ; 194(10): 4673-4682, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802240

RESUMO

The reverse genetic approach has uncovered indole synthase (INS) as the first enzyme in the tryptophan (trp)-independent pathway of IAA synthesis. The importance of INS was reevaluated suggesting it may interact with tryptophan synthase B (TSB) and therefore involved in the trp-dependent pathway. Thus, the main aim of this study was to clarify the route of INS through the analysis of Arabidopsis genome. Analysis of the top 2000 co-expression gene lists in general and specific conditions shows that TSA is strongly positively co-expressed with TSB in general, hormone, and abiotic conditions with mutual ranks of 89, 38, and 180 respectively. Moreover, TSA is positively correlated with TSB (0.291). However, INS was not found in any of these coexpressed gene lists and negatively correlated with TSB (- 0.046) suggesting unambiguously that these two routes are separately and independently operated. So far, the remaining steps in the INS pathway have remained elusive. Among all enzymes reported to have a role in IAA synthesis, amidase was found to strongly positively co-expressed with INS in general and light conditions with mutual ranks of 116 and 141 respectively. Additionally, amidase1 was found to positively correlate with INS (0.297) and negatively coexpressed with TSB concluding that amidase may exclusively involve in the trp-independent pathway.


Assuntos
Arabidopsis , Triptofano Sintase , Amidoidrolases/genética , Amidoidrolases/metabolismo , Arabidopsis/genética , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Triptofano/metabolismo , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
15.
J Agric Food Chem ; 70(18): 5634-5645, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500281

RESUMO

Indole is produced in nature by diverse organisms and exhibits a characteristic odor described as animal, fecal, and floral. In addition, it contributes to the flavor in foods, and it is applied in the fragrance and flavor industry. In nature, indole is synthesized either from tryptophan by bacterial tryptophanases (TNAs) or from indole-3-glycerol phosphate (IGP) by plant indole-3-glycerol phosphate lyases (IGLs). While it is widely accepted that the tryptophan synthase α-subunit (TSA) has intrinsically low IGL activity in the absence of the tryptophan synthase ß-subunit, in this study, we show that Corynebacterium glutamicum TSA functions as a bona fide IGL and can support fermentative indole production in strains providing IGP. By bioprospecting additional bacterial TSAs and plant IGLs that function as bona fide IGLs were identified. Capturing indole in an overlay enabled indole production to titers of about 0.7 g L-1 in fermentations using C. glutamicum strains expressing either the endogenous TSA gene or the IGL gene from wheat.


Assuntos
Liases , Triptofano Sintase , Animais , Fermentação , Glicerofosfatos , Indóis , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
16.
Mol Plant ; 15(6): 973-990, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35488429

RESUMO

To adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase ß subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses. Plants experiencing high salinity or drought display reduced TSB1 expression, resulting in decreased Trp and auxin accumulation and thus reduced growth. In comparison with the wild type, amiR-TSB1 lines and TSB1 mutants exhibited repressed growth under non-stress conditions but had enhanced ABA accumulation and stress tolerance when subjected to salt or drought stress. Furthermore, we found that TSB1 interacts with and inhibits ß-glucosidase 1 (BG1), which hydrolyses glucose-conjugated ABA into active ABA. Mutation of BG1 in the amiR-TSB1 lines compromised their increased ABA accumulation and enhanced stress tolerance. Moreover, stress-induced H2O2 disrupted the interaction between TSB1 and BG1 by sulfenylating cysteine-308 of TSB1, relieving the TSB1-mediated inhibition of BG1 activity. Taken together, we revealed that TSB1 serves as a key coordinator of plant growth and stress responses by balancing Trp and ABA homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Triptofano Sintase , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Homeostase , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Triptofano/metabolismo , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
17.
J Phys Chem B ; 126(17): 3300-3308, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35446577

RESUMO

Tryptophan synthase (TRPS) is a bifunctional enzyme consisting of α and ß-subunits and catalyzes the last two steps of l-tryptophan (L-Trp) biosynthesis, namely, cleavage of 3-indole-d-glycerol-3'-phosphate (IGP) into indole and glyceraldehyde-3-phosphate (G3P) in the α-subunit, and a pyridoxal phosphate (PLP)-dependent reaction of indole and l-serine (L-Ser) to produce L-Trp in the ß-subunit. Importantly, the IGP binding at the α-subunit affects the ß-subunit conformation and its ligand-binding affinity, which, in turn, enhances the enzymatic reaction at the α-subunit. The intersubunit communications in TRPS have been investigated extensively for decades because of the fundamental and pharmaceutical importance, while it is still difficult to answer how TRPS allostery is regulated at the atomic detail. Here, we investigate the allosteric regulation of TRPS by all-atom classical molecular dynamics (MD) simulations and analyze the potential of mean-force (PMF) along conformational changes of the α- and ß-subunits. The present simulation has revealed a widely opened conformation of the ß-subunit, which provides a pathway for L-Ser to enter into the ß-active site. The IGP binding closes the α-subunit and induces a wide opening of the ß-subunit, thereby enhancing the binding affinity of L-Ser to the ß-subunit. Structural analyses have identified critical hydrogen bonds (HBs) at the interface of the two subunits (αG181-ßS178, αP57-ßR175, etc.) and HBs between the ß-subunit (ßT110 - ßH115) and a complex of PLP and L-Ser (an α-aminoacrylate intermediate). The former HBs regulate the allosteric, ß-subunit opening, whereas the latter HBs are essential for closing the ß-subunit in a later step. The proposed mechanism for how the interdomain communication in TRPS is realized with ligand bindings is consistent with the previous experimental data, giving a general idea to interpret the allosteric regulations in multidomain proteins.


Assuntos
Triptofano Sintase , Regulação Alostérica , Sítios de Ligação , Indóis/metabolismo , Cinética , Ligantes , Fosfatos , Conformação Proteica , Triptofano Sintase/química , Triptofano Sintase/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996869

RESUMO

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Assuntos
Alanina/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Triptofano Sintase/química , Catálise , Indóis , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Fosfato de Piridoxal/metabolismo , Triptofano Sintase/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058365

RESUMO

NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the ß-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the ß-subunit from solution.


Assuntos
Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Triptofano Sintase/química , Cristalografia por Raios X/métodos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Multimerização Proteica
20.
Protein Sci ; 31(2): 432-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767267

RESUMO

Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αß interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.


Assuntos
Antibacterianos , Triptofano Sintase , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triptofano Sintase/antagonistas & inibidores , Triptofano Sintase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA