Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Hazard Mater ; 474: 134753, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823104

RESUMO

Tricresyl phosphate (TCP) has received extensive attentions due to its potential adverse effects, while the toxicological information of TCP isomers is limited. In this study, 2 h post-fertilization zebrafish embryos were exposed to tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) or tri-p-cresyl phosphate (TpCP) at concentrations of 0, 100, 300 and 600 µg/L until 120 hpf, and the cardiotoxicity and mechanism of TCP isomers in zebrafish embryos/larvae were evaluated. The results showed that ToCP or TmCP exposure induced cardiac morphological defects and dysfunction in zebrafish, characterized by increased distance between sinus venosus and bulbus arteriosis, increased atrium and pericardial sac area, trabecular defects, and decreased heart rate and blood flow velocity, while no adverse effects of TpCP on zebrafish heart were found. Transcriptomic results revealed that extracellular matrix (ECM) and motor proteins, as well as PPAR signaling pathways, were included in the cardiac morphological defects and dysfunction induced by ToCP and TmCP. Co-exposure test with D-mannitol indicated that the inhibition of energy metabolism by ToCP and TmCP affected cardiac morphology and function by decreasing osmoregulation. This study is the first to report the cardiotoxicity induced by TCP in zebrafish from an isomer perspective, providing a new insight into the toxicity of TCP isomers and highlighting the importance of evaluating the toxicity of different isomers.


Assuntos
Cardiotoxicidade , Embrião não Mamífero , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/anormalidades , Cardiotoxicidade/etiologia , Larva/efeitos dos fármacos , Coração/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Tritolil Fosfatos/toxicidade
2.
Toxicology ; 504: 153812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653376

RESUMO

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.


Assuntos
Cálcio , Galinhas , Mitocôndrias , Necroptose , Degeneração Walleriana , Animais , Necroptose/efeitos dos fármacos , Cálcio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Degeneração Walleriana/induzido quimicamente , Degeneração Walleriana/patologia , Degeneração Walleriana/metabolismo , Feminino , Camundongos , Tritolil Fosfatos/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia , Compostos Organofosforados/toxicidade , Compostos Organofosforados/farmacologia , Linhagem Celular Tumoral
3.
Toxicol Lett ; 363: 77-84, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643292

RESUMO

Wallerian degeneration (WD) is a well-known process by which degenerating axons and myelin are cleared after nerve injury. Although organophosphate-induced delayed neuropathy (OPIDN) is characterized by Wallerian-like degeneration of long axons in human and sensitive animals, the precise pathological mechanism remains unclear. In this study, we cultured embryonic chicken dorsal root ganglia (DRG) neurons, the model of OPIDN in vitro, to investigate the underlying mechanism of axon degeneration induced by tri-ortho-cresyl phosphate (TOCP), an OPIDN inducer. The results showed that TOCP exposure time- and concentration-dependently induced a serious degeneration and fragmentation of the axons from the DRG neurons. A collapse of mitochondrial membrane potential and a dramatic depletion of ATP levels were found in the DRG neurons after TOCP treatment. In addition, nicotinamide nucleotide adenylyl transferase 2 (NMNAT2) expression and nicotinamide adenine dinucleotide (NAD+) level was also found to be decreased in the DRG neurons exposed to TOCP. However, the TOCP-induced Wallerian degeneration in the DRG neurons could be inhibited by ATP supplementation. And exogenous NAD+ or NAD+ processor nicotinamide riboside can rescue TOCP-induced ATP deficiency and prevent TOCP-induced axon degeneration of the DRG neurons. These findings may shed light on the pathophysiological mechanism of TOCP-induced axonal damages, and implicate the potential application of NAD+ to treat OPIDN.


Assuntos
Doenças do Sistema Nervoso Periférico , Tritolil Fosfatos , Trifosfato de Adenosina/metabolismo , Animais , Axônios , Galinhas , Gânglios Espinais , NAD/metabolismo , Neurônios , Organofosfatos/metabolismo , Fosfatos , Tritolil Fosfatos/metabolismo , Tritolil Fosfatos/toxicidade , Degeneração Walleriana/induzido quimicamente , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
4.
Neurotox Res ; 39(4): 1076-1086, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33650059

RESUMO

Autophagy is believed to be essential for the maintenance of axonal homeostasis in neurons. However, whether autophagy is causally related to the axon degeneration in organophosphorus-induced delayed neuropathy (OPIDN) still remains unclear. This research was designed to investigate the role of autophagy in axon degeneration following tri-ortho-cresyl phosphate (TOCP) in an in vitro model. Differentiated wild-type and Atg7-/- neuro-2a (N2a) cells were treated with TOCP for 24 h. Axonal degeneration in N2a cells was quantitatively analyzed; the key molecules responsible for axon degeneration and its upstream signaling pathway were determined by Western blotting and real-time PCR. The results found that Atg7-/- cells exhibited a higher resistance to TOCP insult than wild-type cells. Further study revealed that TOCP caused a significant decrease in pro-survival factors NMNATs and SCG10 and a significant increase in pro-degenerative factor SARM1 in both cells. Notably, Atg7-/- cells presented a higher level of pro-survival factors and a lower level of pro-degenerative factors than wild-type cells in the same setting of TOCP administration. Moreover, DLK-MAPK pathway was activated following TOCP. Altogether, our results suggest that autophagy is able to affect TOCP-induced axonal injury via regulating the balance between pro-survival and pro-degenerative factors, providing a promising avenue for the potential therapy for OPIDN patients.


Assuntos
Proteína 7 Relacionada à Autofagia/deficiência , Axônios/efeitos dos fármacos , Axônios/metabolismo , Plastificantes/toxicidade , Tritolil Fosfatos/toxicidade , Proteína 7 Relacionada à Autofagia/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Técnicas de Inativação de Genes/métodos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia
5.
Neuropharmacology ; 189: 108535, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766630

RESUMO

Neuregulin-1 (NRG1), a family of EGF-like factors that activates ErbB receptors, can regulate the proliferation, migration, and myelinating of Schwann cells. We previously reported that NRG1/ErbB signal is responsible for organophosphate (OP)-induced delayed neuropathy (OPIDN) in hens, a susceptive animal model to neuropathic organophosphorous compounds. Our previous study discovered that a neuropathic OP, tri-o-cresyl phosphate (TOCP) activated NRG1/ErbB signaling pathway in both spinal cord and sciatic nerves of hens during the formation of OPIDN and lapatinib, a non-selective antagonist of ErbB1 and ErbB2 receptors, alleviated the toxicity. In this study, we intended to further look into the potential role of NRG1 in the pathogenesis of TOCP-induced axon damage in spinal cord and sciatic nerves and whether lapatinib could also rescue this damage in mice, an OPIDN-resistant animal model. The results revealed that no obvious toxic signs were observed after single TOCP exposure. However, slight histopathological wreck in lumbar spinal cord and sciatic nerves was found following TOCP intoxication, and the damage in sciatic nerves was characterized by axon degeneration of myelin sheath but not the loss of neural skeleton. Only histopathological damage induced by TOCP in spinal cord could be prevented by lapatinib. The translational expression of NRG1/ErbB signaling molecules was analyzed by both in vivo and in vitro studies. In general, NRG1/ErbB pathway was activated by TOCP while combined treatment with lapatinib attenuated TOCP-induced NRG1/ErbB signaling cascade. The results implied that NRG1/ErbB system may predominately play functional role in spinal cord (central nervous system) but not in sciatic nerves (peripheral nervous system) of mouse subjected to neurotoxic OP, which was confirmed by the study in vitro that lapatinib was not able to attenuate TOCP-induced neurotoxicity in rodent Schwann cell line RSC 96 cells.


Assuntos
Axônios/efeitos dos fármacos , Lapatinib/farmacologia , Plastificantes/toxicidade , Medula Espinal/efeitos dos fármacos , Tritolil Fosfatos/toxicidade , Animais , Axônios/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/farmacologia , Nervo Isquiático/citologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Medula Espinal/citologia , Medula Espinal/patologia
6.
Arch Toxicol ; 95(1): 207-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078273

RESUMO

Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.


Assuntos
Encéfalo/efeitos dos fármacos , Retardadores de Chama/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Organofosfatos/toxicidade , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Éteres Difenil Halogenados/toxicidade , Metaboloma/efeitos dos fármacos , Metabolômica , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Gravidez , Ratos Sprague-Dawley , Esferoides Celulares , Transcriptoma/efeitos dos fármacos , Tritolil Fosfatos/toxicidade
7.
J Appl Toxicol ; 40(11): 1480-1490, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020912

RESUMO

As an organophosphorus ester, tri-ortho-cresyl phosphate (TOCP) has been widely used in agriculture and industry. It is reported that TOCP can induce organophosphate-induced delayed neuropathy (OPIDN) in sensitive animal and human species. However, the exact molecular mechanisms underlying TOCP-induced neurotoxicity are still unknown. In this study, we found that TOCP could induce autophagy by activating protein kinase C alpha (PKCα) signaling in neuroblastoma SK-N-SH cells. PKCα activators could positively regulate TOCP-induced autophagy by increasing the expression levels of neighbor BRCA1 gene protein 1 (NBR1), LC3 and P62 autophagic receptor protein. Furthermore, PKCα activation impaired the ubiquitin-proteasome system (UPS), resulting in inhibition of proteasome activity and accumulation of ubiquitinated proteins. UPS dysfunction could stimulate autophagy to serve as a compensatory pathway, which contributed to the accumulation of the abnormally hyperphosphorylated tau proteins and degradation of impaired proteins of the MAP 2 and NF-H families in neurodegenerative disorders.


Assuntos
Autofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Tritolil Fosfatos/toxicidade , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/enzimologia , Neurônios/ultraestrutura , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas tau/metabolismo
8.
Environ Toxicol ; 35(12): 1326-1333, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32662595

RESUMO

Organophosphate flame retardants (OPFRs) have become a growing concern due to their potential environmental and health risk. However, limited studies have described the toxicity, particularly neurotoxicity of alkyl and aromatic OPFRs. This study investigated the neurotoxicity of alkyl tri-n-butyl phosphate (TnBP) and aromatic tricresyl phosphate (TCP) to rat adrenal pheochromocytoma (PC12) cells for 24 h. Viability detection showed dose-response toxicity effect of TCP and TnBP to PC12 cells. The half-maximal inhibitory concentration of 24 h (24 h-IC50 ) of TCP and TnBP were 2415.61 and 338.09 µM, respectively. Both TnBP and TCP significantly changed the acetylcholinesterase (AChE) activity, and TnBP is more likely to cause neurotoxicity to PC12 cells compared to TCP. Also, The results of LDH and caspase-3 activity detection as well as Hoechst staining suggested that cell apoptosis induced by TCP and TnBP may be the primary pathway. These findings provide a toxicity data of aromatic and alkyl-substituted OPFRs to PC12 cells, and a new insight into the toxicity of OPFRs on health risk assessment.


Assuntos
Apoptose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Neurônios/efeitos dos fármacos , Organofosfatos/toxicidade , Tritolil Fosfatos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neurônios/enzimologia , Neurônios/patologia , Células PC12 , Ratos
9.
Toxicol Appl Pharmacol ; 395: 114977, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234386

RESUMO

Plastic in the ocean degrades to microplastic, thereby enhancing the leaching of incorporated plasticizers due to the increased particle surface. The uptake of microplastic-derived plasticizers by marine animals and the subsequent entry in the food chain raises concerns for adverse health effects in human beings. Frequently used plasticizers as the organophosphate ester tri-o-cresyl phosphate (TOCP) are known to affect the male reproductive system. However, the overall endocrine potential of TOCP and the underlying molecular mechanisms remain elusive as yet. In this study, we investigated the molecular effects of TOCP on estrogen receptor α (ERα)-transfected HEK-ESR1 cells and the human breast cancer cell line MCF-7. Applying virtual screening and molecular docking, we identified TOCP as potent ligand of ERα in silico. Microscale thermophoresis confirmed the binding in vitro with similar intensity as the natural ligand 17-ß-estradiol. To identify the molecular mechanisms of TOCP-mediated effects, we used next-generation sequencing to analyze the gene expression pattern of TOCP-treated MCF-7 cells. RNA-sequencing revealed 22 differently expressed genes associated with ESR1 as upstream regulator: CYP1A1, SLC7A11, RUNX2, DDIT4, STC2, KLHL24, CCNG2, CEACAM5, SLC7A2, MAP1B, SLC7A5, IGF1R, CD55, FOSL2, VEGFA, and HSPA13 were upregulated and PRKCD, CCNE1, CEBPA, SFPQ, TNFAIP2, KRT19 were downregulated. The affected genes promote tumor growth by increasing angiogenesis and nutritional supply, favor invasion and metastasis, and interfere with the cell cycle. Based on the gene expression pattern, we conclude TOCP to mediate endocrine effects on MCF-7 cells by interacting with ERα.


Assuntos
Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Plastificantes/toxicidade , Tritolil Fosfatos/toxicidade , Neoplasias da Mama/genética , Ciclo Celular/genética , Disruptores Endócrinos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Masculino , Modelos Moleculares , Simulação de Acoplamento Molecular , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neovascularização Patológica/genética , RNA/química , Transfecção , Tritolil Fosfatos/metabolismo
10.
Environ Toxicol ; 35(1): 97-107, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31566301

RESUMO

Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, and reported causing reproductive toxicity in mammals. However, little is known about the toxic effect on the placenta. In this study, dams were orally administered different doses of TOCP to explore the effect of TOCP on placental development. Results showed that TOCP exposure significantly reduced numbers of implanted embryo, caused atrophy and collapse of ectoplacental cone, and decreased total areas of placenta and numbers of PCNA-positive cells. Expression levels of placental development genes were prominently downregulated in the TOCP-treated groups. Moreover, TOCP administration induced placental apoptosis and autophagy by upregulating P53, Bax, Beclin-1, ratio of LC3 II/LC3 I and Atg5 and downregulating Bcl-2 protein. In addition, TOCP exposure markedly inhibited activities of catalase and superoxide dismutase and increased the production of H2 O2 and malondialdehyde. Collectively, these findings suggest that apoptosis, autophagy and oxidative stress may be involved in the TOCP-induced reproductive toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Placenta/efeitos dos fármacos , Plastificantes/toxicidade , Tritolil Fosfatos/toxicidade , Animais , Feminino , Masculino , Camundongos , Placenta/metabolismo , Placenta/patologia , Gravidez , Reprodução/efeitos dos fármacos
11.
Environ Toxicol ; 35(4): 478-486, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31793191

RESUMO

Tri-ortho-cresyl phosphate (TOCP), a widely used plasticizer in industry, can cause female reproductive damage. Tea polyphenols (TPs) have multiple health effects via inhibiting oxidative stress. However, the reproductive protection of TPs in TOCP-induced female reproductive system damage is yet to be elucidated. In the study, TOCP inhibited cell viability and induced autophagy of mouse ovarian granulosa cells; while TPs could rescue the inhibition of viability and induction of autophagy. 3-MA, an autophagy inhibitor, could also rescue the inhibition of cell viability. These results indicated that TPs played a protective role in TOCP-induced autophagy. Furthermore, TPs could inhibit the induction of oxidative stress of the cells by TOCP, which implying that TPs might alleviate TOCP-induced autophagy via inhibiting oxidative stress. Furthermore, TPs could rescue TOCP-induced autophagy and oxidative stress in the mouse ovarian tissues. Taken together, these results indicated that TPs could protect TOCP-induced ovarian damage via inhibiting oxidative stress.


Assuntos
Autofagia/efeitos dos fármacos , Camellia sinensis/química , Células da Granulosa/efeitos dos fármacos , Plastificantes/toxicidade , Polifenóis/farmacologia , Tritolil Fosfatos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/isolamento & purificação
12.
Reprod Toxicol ; 83: 21-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439503

RESUMO

As a plasticizer widely used in society, tri-ortho-cresyl phosphate (TOCP) is reported to inhibit spermatogenesis and growth of spermatogonial stem cells. However, its effects on female reproductive system are virtually unknown. The present study investigated the effects of TOCP on ovarian follicle development by using mouse model of chronic TOCP exposure, and examined the expression of the core components of the Hippo pathway, which had been proven to be crucial for ovarian follicle development. Furthermore, through up-regulation of Hippo-yes-associated protein 1 (Yap1) in ovaries, the potential protective effects of Yap1 over-expression on TOCP-induced ovarian dysfunction were observed. The results showed that TOCP impaired ovarian function in a dose-dependent manner, and the expression of the Hippo pathway changed significantly in TOCP-exposed ovaries. Further, YAP1 over-expression partially reversed the TOCP-induced ovarian impairment. Collectively, these data indicate that the Hippo pathway is involved in the mechanism by which TOCP elicits ovarian function impairment.


Assuntos
Ovário/efeitos dos fármacos , Plastificantes/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Tritolil Fosfatos/toxicidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Estradiol/sangue , Feminino , Via de Sinalização Hippo , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fosfoproteínas/metabolismo , Progesterona/sangue , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP
13.
Neuropharmacology ; 148: 31-39, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30553827

RESUMO

Organophosphorus compound (OP)-induced delayed neuropathy (OPIDN) is characterized by distal axonal degeneration and demyelination of the central and peripheral axons, which leads to progressive muscle weakness, ataxia and paralysis in several days after OP intoxication. This study aimed to investigate the possible use of an imidazole fungicide miconazole as a novel therapy for OPIDN. Adult hens, the most commonly used animal models in OPIDN studies, were orally given tri-o-cresyl phosphate (TOCP). We showed that miconazole, which was administered daily to hens beginning on the 7th day after TOCP exposure, drastically ameliorated the neurotoxic symptoms and histopathological damages in spinal cord and sciatic nerves. Mechanistically, miconazole inhibited the TOCP-induced activation of ErbB/Akt signaling, and enhanced the myelin basic protein (MBP) expression. In a glial cell model sNF96.2 cells, miconazole restored the TOCP-inhibited MBP expression, and promoted cell differentiation as well as cell migration by inhibiting the activation of ErbB/Akt signaling pathway. In sum, miconazole, a synthetic imidazole fungicide, could ameliorate the symptoms and histopathological changes of OPIDN, probably by promoting glial cell differentiation and migration to enhance myelination via inhibiting the activation of ErbB/Akt. Thus, miconazole is a promising candidate therapy for the clinical treatment of OPIDN.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Miconazol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tritolil Fosfatos/toxicidade , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Feminino , Humanos , Proteína Básica da Mielina/biossíntese , Síndromes Neurotóxicas/prevenção & controle , Proteínas Oncogênicas v-erbB/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Tritolil Fosfatos/antagonistas & inibidores
14.
Ecotoxicol Environ Saf ; 158: 78-86, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29660616

RESUMO

Organophosphate esters (OPEs) draw growing concern about characterizing the potential risk on environmental health due to its wide usage and distribution. Two typical types of organophosphate esters (OPEs): tris (2-chloroethyl) phosphate (TCEP) and tricresyl phosphate (TCP) were selected to evaluate toxicity of OPEs to the soil organism like earthworm (Eisenia fetida). Histopathological examination (H&E), oxidative stress, DNA damage and RT-qPCR was used to identify the effects and potential mechanism of their toxicity. Hameatoxylin and eosin (H&E) demonstrated that intestinal cells suffered serious damage, and the observed up-regulation of chitinase and cathepsin L in mRNA levels confirmed it. Both TCEP and TCP significantly increased the DNA damage when the concentrations exceeded 1 mg/kg (p < 0.01), and a dose-response relationship was observed. In addition, TCEP and TCP also changed the acetylcholinesterase (AChE) activity and expression of genes associated with neurotoxic effects in earthworms even under exposure to low OPEs concentration (0.1 mg/kg). Moreover, genes associated with nicotinic acetylcholine receptors (nAChR) and carrier protein further demonstrated that highest concentration of TCEP (10 mg/kg) may have an overloading impact on the cholinergic system of E. fetida. Integrated Biological Response index (IBRv2) showed that TCEP exerted stronger toxicity than TCP under the same concentrations. We deduced that the observed intestinal damage, oxidative stress and neurotoxic effect might be the primary mechanisms of TCEP and TCP toxicity. This study provides insight into the toxicological effects of OPEs on earthworm model, and may be useful for risk assessment of OPEs on soil ecosystems.


Assuntos
Dano ao DNA , Intestinos/efeitos dos fármacos , Neurotoxinas , Oligoquetos/efeitos dos fármacos , Organofosfatos/toxicidade , Poluentes do Solo/toxicidade , Tritolil Fosfatos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Proteínas de Transporte/metabolismo , Catepsina L/metabolismo , Quitinases/metabolismo , Biomarcadores Ambientais , Ésteres , Hematoxilina/metabolismo , Mucosa Intestinal/metabolismo , Oligoquetos/genética , Oligoquetos/metabolismo , Fosfatos/toxicidade , Receptores Nicotínicos/metabolismo , Medição de Risco , Solo/química
15.
J Neuropathol Exp Neurol ; 76(1): 52-60, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040792

RESUMO

The widely used organophosphorus compound tri-o-cresyl phosphate (TOCP) elicits delayed neurotoxicity characterized by progressive axonal degeneration in the spinal cord and peripheral nerves. However, the precise mechanisms of TOCP-induced delayed neurotoxicity are not clear. Because autophagy has been linked to the pathogenesis of neurodegenerative diseases, we aimed to characterize autophagy in the progression of TOCP-induced delayed neurotoxicity. In vivo experiments using the adult hen animal model showed that autophagy in spinal cord axons and in sciatic nerves was markedly induced at the early preclinical stage of TOCP-induced delayed neurotoxicity; it was decreased as the delayed neurotoxicity progressed to the overt neuropathy stage. In cultured human neuroblastoma SH-SY5Y cells, TOCP reduced cell growth, and induced prominent autophagy. The autophagy inhibitor 3-methyladenine could attenuate TOCP-induced cytotoxicity, indicating that the autophagy is accountable for TOCP-induced neurotoxicity. In addition, we found that TOCP-induced Parkin translocation to mitochondria in SH-SY5Y cells, suggesting that autophagy may function to degrade mitochondria after TOCP exposure. These results suggest that autophagy may play an important role in the initiation and progression of axonal damage during TOCP-induced neurotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Tritolil Fosfatos/toxicidade , Animais , Autofagia/fisiologia , Linhagem Celular Tumoral , Galinhas , Feminino , Humanos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
16.
Neurotoxicology ; 59: 222-230, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26851706

RESUMO

Exposure to tricresyl phosphates (TCPs), via for example contaminated cabin air, has been associated with health effects including the so-called aerotoxic syndrome. While TCP neurotoxicity is mainly attributed to ortho-isomers like tri-ortho-cresyl phosphate (ToCP), recent exposure and risk assessments indicate that ToCP levels in cabin air are very low. However, the neurotoxic potential of non-ortho TCP isomers and TCP mixtures is largely unknown. We therefore measured effects of exposure (up to 48h) to different TCP isomers, mixtures and the metabolite of ToCP (CBDP: cresyl saligenin phosphate) on cell viability and mitochondrial activity, spontaneous neuronal electrical activity, and neurite outgrowth in primary rat cortical neurons. The results demonstrate that exposure to TCPs (24-48h, up to 10µM) increases mitochondrial activity, without affecting cell viability. Effects of acute TCP exposure (30min) on neuronal electrical activity are limited. However, electrical activity is markedly decreased for the majority of TCPs (10µM) following 48h exposure. Additional preliminary data indicate that exposure to TCPs (48h, 10µM) did not affect the number of neurites per cell or average neurite length, except for TmCP and the analytical TCP mixture (Sigma) that induced a reduction of average neurite length. The combined neurotoxicity data demonstrate that the different TCPs, including ToCP, are roughly equipotent and a clear structure-activity relation is not apparent for the studied endpoints. The no-observed-effect-concentrations (1µM) are well above current exposure levels indicating limited neurotoxic health risk, although exposures may have been higher in the past. Moreover, prolonged and/or repeated exposure to TCPs may exacerbate the observed neurotoxic effects, which argues for additional research.


Assuntos
Neurônios/efeitos dos fármacos , Organofosfatos/toxicidade , Tritolil Fosfatos/toxicidade , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Mitocôndrias/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Fatores de Tempo
17.
Neurotoxicology ; 59: 210-221, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27288108

RESUMO

Environmental exposures to tri-cresyl phosphates (TCPs) and the possible formation of toxic metabolites (e.g. cresyl saligenin phosphate; CBDP) may cause a variety of neurotoxic effects in humans. As reported for other organophosphorus compounds (OPs), the inhibition of acetylcholine esterase (AChE) has also been proposed as the underlying mechanism for TCP neurotoxicity. The ortho-isomer, ToCP and its metabolite CBDP are also known to affect neuropathy target esterase (NTE) leading to organophosphate-induced delayed neuropathy (OPIDN). Recently, in vitro testing has led to the identification of other molecular targets and alternative mechanisms of ToCP toxicity. The metabolite CBDP and other isomers, as well as commercial mixtures have not been tested for such additional modes of actions. Accordingly, the present study investigates alterations of neurobiological correlates of central nervous processes using different in vitro techniques. The three symmetric TCP isomers - ToCP, TpCP, and TmCP - that contain a methyl group at the ortho-, para-, or meta-position of the aromatic ring system, respectively, together with a commercial TCP mixture, and CBDP were all tested using concentrations not exceeding their cytotoxic concentrations. Isolated cortical neurons were kept in culture for 6days followed by 24h incubation with different concentrations of the test compounds. Thus, all endpoints were assessed after 7days in vitro (DIV 7), at which time cell viability, neurite microstructure, and the function of glutamate receptors and voltage-gated calcium cannels (VGCC) were measured. While the cytotoxic potential of the TCP isomers and their mixture were comparable (IC50≥80µM), CBDP was more cytotoxic (IC50: 15µM) to primary cortical neurons. In contrast, CBDP (up to 10µM) did not compromise the microstructure of neurites. Ten µM of ToCP significantly reduced the size and complexity of neurite networks, but neither TmCP and TpCP nor the mixture affected this second endpoint of neurotoxicity assessment. TCPs and their mixture significantly reduced the Ca2+ influx in response to glutamate and KCl stimulation in concentrations of 10µM. Only ToCP showed a specific effect on glutamate receptors with 100nM reducing the evoked Ca2+ influx. The effects of CBDP on the provoked Ca2+ influx were much weaker than those observed for TCPs. These results confirmed that ToCP has a unique mode of action on glutamate receptors that are not observed with the metabolite CBDP and the other symmetric TCP isomers. In addition, the TmCP isomer seems to have the lowest potency with respect to inducing neurotoxic effects. CBDP did not affect the neurospecific endpoints investigated in this study. Therefore, the specific affinity of CBDP for NTE and the reported general cytotoxicity might be the most relevant modes of action of this toxic metabolite in the context of ToCP-induced neurotoxicity, including OPIDN.


Assuntos
Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Compostos Organofosforados/toxicidade , Tritolil Fosfatos/toxicidade , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Concentração Inibidora 50 , Camundongos , Neuritos/efeitos dos fármacos , Neurônios/citologia , Cloreto de Potássio/farmacologia
18.
Sci Rep ; 6: 37574, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883027

RESUMO

Tri-o-cresyl phosphate (TOCP) is a widely used organophosphorus compound, which can cause a neurodegenerative disorder, i.e., organophosphate-induced delayed neurotoxicity (OPIDN). The biochemical events in the initiation of OPIDN were not fully understood except for the essential inhibition of neuropathy target esterase (NTE). NTE, located in endoplasmic reticulum (ER), catalyzes the deacylation of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to glycerophosphocholine (GPC). The present study aims to study the changes of ER phospholipids profile as well as levels of important intermediates of phospholipid synthesis such as diacylglycerol (DAG) and phosphatidic acid (PA) at the initiation stage of OPIDN. Hens are the most commonly used animal models of OPIDN. The spinal cord phospholipidomic profiles of hens treated by TOCP were studied by using HPLC-MS-MS. The results revealed that TOCP induced an increase of PC, LPC, and sphingomyelin (SM) levels and a decrease of GPC, phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), phosphatidylglycerol (PG), and phosphatidylinositol (PI) levels., Levels of DAG and PA were also decreased. Pretreatment with phenylmethylsulfonyl fluoride (PMSF) 24 h before TOCP administration prevented OPIDN and restored the TOCP-induced changes of phospholipids except GPC. Thus, the disruption of ER phospholipid homeostasis may contribute to the initiation of organophosphate-induced delayed neurotoxicity.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Intoxicação por Organofosfatos/metabolismo , Fosfolipídeos/biossíntese , Tritolil Fosfatos/toxicidade , Animais , Hidrolases de Éster Carboxílico/metabolismo , Galinhas , Retículo Endoplasmático/química , Retículo Endoplasmático/patologia , Homeostase , Humanos , Lisofosfatidilcolinas/biossíntese , Lisofosfatidilcolinas/química , Síndromes Neurotóxicas/etiologia , Intoxicação por Organofosfatos/etiologia , Intoxicação por Organofosfatos/patologia , Compostos Organofosforados/toxicidade , Fluoreto de Fenilmetilsulfonil , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia
19.
Reprod Biol Endocrinol ; 14(1): 30, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27267904

RESUMO

BACKGROUND: As a plasticizer, plastic softener, and flame-retardant, tri-ortho-cresyl phosphate (TOCP) is and has been widely used in industry and reported to have a toxic effect on the male reproductive system in animals besides neurotoxicity and immunotoxicity. We have reported that TOCP inhibits spermatogenesis and induces autophagy of rat spermatogonial stem cells, but it is still unknown whether TOCP induces autophagy of mouse Leydig cells and its potential mechanism. METHODS: Cell viability was observed by MTT assay. Level of testosterone was measured by radioimmunoassay. Apoptosis was observed by AnnexinV-FITC/PI assay. The contents of LC3, Atg5-Atg12, and Beclin 1 were detected by Western blotting analysis. Autophagosomes were investigated by transmission electron microscopy. The contents of MDA and GSH and the activities of SOD, GSH-PX, total antioxidant status (TAS) and total oxidant status (TOS) were measured by oxidative stress kits. RESULTS: The present study shows that TOCP markedly inhibited viability and testosterone output of mouse Leydig TM3 cells but had no effect on apoptosis. However, TOCP significantly increased both LC3-II and the ratio of LC3-II to LC3-I and the contents of autophagy proteins Atg5 and Beclin 1. Transmission electron microscopy (TEM) showed that TOCP increased autophagic vacuoles of the cytoplasm, indicating that TOCP could induce autophagy of the cells. TOCP significantly induced oxidative stress of mouse Leydig TM3 cells. H2O2 also inhibited viability and induced autophagy of the cells; however, inhibition of oxidative stress by N-acetyl-L-cysteine (NAC) could rescue the inhibition of cell viability and induction of autophagy by TOCP. CONCLUSIONS: The results show oxidative stress might be involved in TOCP-induced autophagy of mouse Leydig TM3 cells.


Assuntos
Autofagia/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Estresse Oxidativo , Plastificantes/toxicidade , Espermatogênese/efeitos dos fármacos , Tritolil Fosfatos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Células Intersticiais do Testículo/ultraestrutura , Masculino , Camundongos , Testosterona/metabolismo , Testes de Toxicidade , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
20.
Hum Exp Toxicol ; 35(10): 1093-101, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26757727

RESUMO

Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have delayed neurotoxicity and reproductive toxicology in animals. However, it remains to be elusive whether TOCP induces liver injury. In this study, male mice were orally administered different concentrations of TOCP (100, 200, or 400 mg/kg/day) for 28 days. Histological examination showed that TOCP led to serious hepatocellular injury. In addition, administration of TOCP induced a marked elevation in the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice. The content of malondialdehyde (MDA) was increased significantly in the liver after the mice were treated with TOCP; while there was a dramatic decrease in the content of glutathione (GSH) and the activities of antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). TOCP inhibited viability of mouse liver cancer Hepa 1-6 cells in a dose-dependent manner. Meanwhile, TOCP significantly increased MDA content and inhibited GSH content and the activities of SOD and GSH-PX in the cells, respectively. Oxidative stress dramatically inhibited viability of Hepa 1-6 cells; while inhibition of oxidative stress by N-acetyl-l-cysteine could rescue the cell viability inhibited by TOCP to a certain extent. In summary, oxidative stress might be involved in TOCP-induced hepatocellular injury in male mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plastificantes/toxicidade , Tritolil Fosfatos/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Função Hepática , Masculino , Camundongos Endogâmicos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA