Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 991
Filtrar
1.
Respir Res ; 25(1): 261, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943142

RESUMO

AIMS: To detect the expression of autophagy components, p38 MAPK (p38) and phosphorylated forkhead box transcription factor O-1 (pFoxO1) in pulmonary vascular endothelial cells of chronic thromboembolic pulmonary hypertension (CTEPH) rats and to investigate the possible mechanism through which tissue factor (TF) regulates autophagy. METHODS: Pulmonary artery endothelial cells (PAECs) were isolated from CTEPH (CTEPH group) and healthy rats (control group (ctrl group)) which were cocultured with TF at different time points including 12 h, 24 h, 48 h and doses including 0 nM,10 nM, 100 nM, 1µM, 10µM, 100µM and cocultured with TFPI at 48 h including 0 nM, 2.5 nM, 5 nM. The expression of forkhead box transcription factor O-1 (FoxO1), pFoxO1, p38, Beclin-1 and LC3B in PAECs was measured. Coimmunoprecipitation (co-IP) assays were used to detect the interaction between FoxO1 and LC3. RESULTS: The protein expression of p-FoxO1/FoxO1 was significantly lower in the CTEPH groups (cocultured with TF from 0 nM to 100 µM) than in the ctrl group at 12 h, 24 h, and 48 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of p38 in the CTEPH groups treated with 0 nM, 10 nM, 100 nM or 1 µM TF for 48 h significantly increased than ctrl groups (P < 0.05) and was significantly increased in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of Beclin1 at the same concentration (cocultured with TF from 0 nM to 100 µM) was significantly lower in the CTEPH groups than ctrl groups after 24 h and 48 h (P < 0.05) and was significantly decreased in the CTEPH groups (cocultured with TFPI concentration from 2.5 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of LC3-II/LC3-I at the same concentration (cocultured with TF 0 nM, 1 µM, 10 µM, and 100 µM) was significantly lower in the CTEPH than in the ctrl groups after 12 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). There were close interactions between FoxO1 and LC3 in the control and CTEPH groups at different doses and time points. CONCLUSION: The autophagic activity of PAECs from CTEPH rats was disrupted. TF, FoxO1 and p38 MAPK play key roles in the autophagic activity of PAECs. TF may regulate autophagic activity through the p38 MAPK-FoxO1 pathway.


Assuntos
Autofagia , Células Endoteliais , Hipertensão Pulmonar , Artéria Pulmonar , Ratos Sprague-Dawley , Tromboplastina , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Autofagia/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Masculino , Células Endoteliais/metabolismo , Células Cultivadas , Tromboplastina/metabolismo , Tromboplastina/biossíntese , Hipertensão Pulmonar/metabolismo , Embolia Pulmonar/metabolismo , Embolia Pulmonar/patologia , Doença Crônica , Transdução de Sinais/fisiologia , Proteína Forkhead Box O1
2.
Biochem Pharmacol ; 225: 116314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797271

RESUMO

Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.


Assuntos
Apolipoproteínas E , Estenose das Carótidas , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos C57BL , NF-kappa B , Pró-Proteína Convertase 9 , Transdução de Sinais , Tromboplastina , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos , NF-kappa B/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Humanos , Estenose das Carótidas/metabolismo , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Tromboplastina/metabolismo , Tromboplastina/genética , Tromboplastina/biossíntese , Transdução de Sinais/fisiologia , Camundongos Knockout para ApoE , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Knockout , Inibidores de PCSK9 , Feminino
3.
Oncol Rep ; 48(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775375

RESUMO

The clinical introduction of molecular imaging for the management of oropharyngeal squamous cell carcinoma (OPSCC) relies on the identification of relevant cancer­specific biomarkers. The application of three membrane­bound receptors, namely urokinase­type plasminogen activator receptor (uPAR), tissue factor (TF) and EGFR have been previously explored for targeted imaging and therapeutic strategies in a broad range of solid cancers. The present study aimed to investigate the expression patterns of uPAR, EGFR and TF by immunohistochemistry (IHC) to evaluate their potential for targeted imaging and prognostic value in OPSCC. In a retrospective cohort of 93 patients with primary OPSCC, who were balanced into the 45 human papillomavirus (HPV)­positive and 48 HPV­negative groups, the IHC­determined expression profiles of uPAR, TF and EGFR in large biopsy or tumor resection specimens were analyzed. Using the follow­up data, overall survival (OS) and recurrence­free survival were measured. Specifically, associations between survival outcome, biomarker expression and clinicopathological factors were examined using Cox proportional hazards model and log­rank test following Kaplan­Meier statistics. After comparing the expression pattern of biomarkers within the tumor compartment with that in the adjacent normal tissues, uPAR and TF exhibited a highly tumor­specific expression pattern, whereas EGFR showed a homogeneous expression within the tumor compartment as well as a consistent expression in the normal mucosal epithelium and salivary gland tissues. The positive expression rate of uPAR, TF and EGFR in the tumors was 98.9, 76.3 and 98.9%, respectively. No statistically significant association between biomarker expression and survival outcome could be detected. Higher uPAR expression levels had a trend towards reduced OS according to results from univariate analysis (P=0.07; hazard ratio=2.01; 95% CI=0.92­4.37). Taken together, these results suggest that uPAR, TF and EGFR may be suitable targets for molecular imaging and therapy in OPSCC. In particular, uPAR may be an attractive target owing to their high positive expression rates in tumors and a highly tumor­specific expression pattern.


Assuntos
Neoplasias Orofaríngeas , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Biomarcadores Tumorais/biossíntese , Receptores ErbB/biossíntese , Humanos , Imagem Molecular , Terapia de Alvo Molecular , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/tratamento farmacológico , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Papillomaviridae , Infecções por Papillomavirus/diagnóstico por imagem , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Prognóstico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tromboplastina/biossíntese
4.
Transfus Apher Sci ; 60(6): 103237, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34419356

RESUMO

SARS-CoV-2 attaches to the angiotensin-converting enzyme 2 (ACE-2) receptor on human cells. The virus causes hypercytokinemia, capillary leak, pulmonary edema, acute respiratory distress syndrome, acute cardiac injury, and leads to death. Mesenchymal stem cells (MSCs) are ACE-2 negative cells; therefore, can escape from SARS-CoV-2. MSCs prevent hypercytokinemia and help the resolution of the pulmonary edema and other damages occurred during the course of COVID-19. In addition, MSCs enhance the regeneration of the lung and other tissues affected by SARS-CoV-2. The case series reported beneficial effect of MSCs in COVID-19 treatment. However, there are some concerns about the safety of MSCs, particularly referring to the increased risk of disseminated intravascular coagulation, and thromboembolism due to the expression of TF/CD142. Prospective, randomized, large scale studies are needed to reveal the optimum dose, administration way, time, efficacy, and safety of MSCs in the COVID-19 treatment.


Assuntos
COVID-19 , Pulmão/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Regeneração , SARS-CoV-2/metabolismo , COVID-19/sangue , COVID-19/epidemiologia , COVID-19/terapia , Coagulação Intravascular Disseminada/sangue , Coagulação Intravascular Disseminada/etiologia , Humanos , Peptidil Dipeptidase A/metabolismo , Estudos Prospectivos , Fatores de Risco , Tromboembolia/sangue , Tromboembolia/etiologia , Tromboplastina/biossíntese
5.
Reprod Biol Endocrinol ; 19(1): 52, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794911

RESUMO

BACKGROUND: Blood coagulation has been associated with ovulation and female infertility. In this study, the expression of the tissue factor system was examined during ovulation in immature rats; the correlation between tissue factor and ovarian hyperstimulation syndrome (OHSS) was evaluated both in rats and human follicular fluids. METHODS: Ovaries were obtained at various times after human chorionic gonadotropin (hCG) injection to investigate the expression of tissue factor system. Expression levels of ovarian tissue factor, tissue factor pathway inhibitor (Tfpi)-1 and Tfpi-2 genes and proteins were determined by real-time quantitative polymerase chain reaction (qPCR), and Western blot and immunofluorescence analyses, respectively. Expression levels of tissue factor system were also investigated in ovaries of OHSS-induced rats and in follicular fluid of infertile women. RESULTS: The expression of tissue factor in the preovulatory follicles was stimulated by hCG, reaching a maximum at 6 h. Tissue factor was expressed in the oocytes and the preovulatory follicles. Tfpi-2 mRNA levels were mainly increased by hCG in the granulosa cells whereas the mRNA levels of Tfpi-1 were decreased by hCG. Human CG-stimulated tissue factor expression was inhibited by the progesterone receptor antagonist. The increase in Tfpi-2 expression by hCG was decreased by the proliferator-activated receptor γ (PPARγ) antagonist. Decreased expression of the tissue factor was detected in OHSS-induced rats. Interestingly, the tissue factor concentrations in the follicular fluids of women undergoing in vitro fertilization were correlated with pregnancy but not with OHSS. CONCLUSIONS: Collectively, the results indicate that tissue factor and Tfpi-2 expression is stimulated during the ovulatory process in rats; moreover, a correlation exists between the levels of tissue factor and OHSS in rats but not in humans.


Assuntos
Glicoproteínas/biossíntese , Síndrome de Hiperestimulação Ovariana/metabolismo , Ovulação/metabolismo , Tromboplastina/biossíntese , Animais , Feminino , Expressão Gênica , Glicoproteínas/genética , Humanos , Síndrome de Hiperestimulação Ovariana/genética , Ratos , Ratos Sprague-Dawley
6.
J Clin Invest ; 130(11): 5674-5676, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32925166

RESUMO

In a stunningly short period of time, the unexpected coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned the unprepared world topsy-turvy. Although the rapidity with which the virus struck was indeed overwhelming, scientists throughout the world have been up to the task of deciphering the mechanisms by which SARS-CoV-2 induces the multisystem and multiorgan inflammatory responses that, collectively, contribute to the high mortality rate in affected individuals. In this issue of the JCI, Skendros and Mitsios et al. is one such team who report that the complement system plays a substantial role in creating the hyperinflammation and thrombotic microangiopathy that appear to contribute to the severity of COVID-19. In support of the hypothesis that the complement system along with neutrophils and platelets contributes to COVID-19, the authors present empirical evidence showing that treatment with the complement inhibitor compstatin Cp40 inhibited the expression of tissue factor in neutrophils. These results confirm that the complement axis plays a critical role and suggest that targeted therapy using complement inhibitors is a potential therapeutic option to treat COVID-19-induced inflammation.


Assuntos
Betacoronavirus/metabolismo , Ativação do Complemento/efeitos dos fármacos , Infecções por Coronavirus , Pandemias , Peptídeos Cíclicos/farmacologia , Pneumonia Viral , Tromboplastina/biossíntese , Microangiopatias Trombóticas , Plaquetas/metabolismo , Plaquetas/patologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Inflamação/virologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Microangiopatias Trombóticas/tratamento farmacológico , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/patologia , Microangiopatias Trombóticas/virologia
7.
Eur J Pharmacol ; 885: 173422, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32755551

RESUMO

Epidemiologic studies have clearly demonstrated the correlation existing between Vitamin D (Vit. D) deficiency and increased risk of developing cardiovascular disease, suggesting that it might have a protective role in this clinical setting. Although many experimental studies have investigated the molecular mechanisms by which Vit. D might exert these effects, its potential role in protecting against athero-thrombosis is still partially unknown. We have investigated whether Vit. D might exert anti athero-thombotic effects by preventing expression of adhesion molecules (CAMs) and Tissue Factor (TF), molecules involved in atherothrombotic pathophysiology, in oxLDL stimulated endothelial cells (HUVEC). Moreover, we have investigated whether Vit. D effects might be due to the NF-kB modulation. HUVEC cultivated in medium enriched with Vit. D (10 nM) were stimulated with oxLDL (50 µg/ml). TF gene (RT-PCR), protein (Western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. Similarly, CAMs gene (RT-PCR), surface expression (FACS) and soluble values (ELISA) were measured. NF-kB translocation was also investigated. Vit. D significantly reduced TF gene as well protein expression and procoagulant activity in oxLDL-treated HUVEC. Similar effects were observed for CAMs. These effects were associated with Vit. D modulation of NF-κB pathway. This study, although in vitro, indicate that Vit. D has protective effect on endothelial cells by inhibiting expression of TF and CAMs, proteins involved in atherothrombotic pathophysiology. Further studies will be necessary to translate these findings to a clinical scenario to better define the potential therapeutical role of Vit. D supplementation in the management of cardiovascular disease in patients with Vit. D deficiency.


Assuntos
Moléculas de Adesão Celular/biossíntese , Células Endoteliais/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , NF-kappa B/efeitos dos fármacos , Tromboplastina/biossíntese , Vitamina D/farmacologia , Vitaminas/farmacologia , Aterosclerose/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Oxirredução , Receptores de Calcitriol/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trombose/tratamento farmacológico
8.
J Thromb Thrombolysis ; 49(2): 228-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31612355

RESUMO

Antiphospholipid antibodies (aPL) are heterogeneous and there is evidence that binding specificity determines which cellular effects they can trigger. We have therefore hypothesised that the induction of tissue factor (TF) in monocytes and endothelial cells by aPL depends on their binding specificity. To further investigate this, we have analyzed the ability of three human monoclonal aPL with distinctly different binding specificities to induce transcription and cell surface expression of TF in monocytes and endothelial cells. Results with human monoclonal aPL were validated with IgG-fractions obtained from patients with APS. We confirmed previous results that a lipid reactive human monoclonal aPL rapidly induced TF transcription and cell surface expression in monocytes and endothelial cells. A monoclonal aPL reactive against ß2 glycoprotein I (ß2GPI) induced TF with a delayed time course. This was fully dependent on the induction of tumor necrosis factor alpha (TNFα) secretion as capture of TNFα by adalimumab prevented TF induction. This pattern was confirmed with patient IgG fractions. Both lipid reactive and anti-ß2GPI induced TF transcription. Unexpectedly, this activity of anti-ß2GPI was mediated fully by TNFα which was secreted in response to incubation with anti-ß2GPI. The role of TNFα in mediating TF induction by anti-ß2GPI may have wider implications for APS pathogenesis.


Assuntos
Anticorpos Monoclonais/farmacologia , Tromboplastina/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , beta 2-Glicoproteína I/farmacologia , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Tromboplastina/genética , Fator de Necrose Tumoral alfa/genética
9.
J Cancer Res Clin Oncol ; 146(2): 467-475, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734835

RESUMO

PURPOSE: The expression of active tissue factor (TF) on the surface of microvesicles (MVs) is essential for the activation of the coagulation system and transduction of the signaling pathways in cancer cells. In its use as a biomarker for cancer-associated venous thromboembolism (VTE), TF has shown high expression variability. As a contribution to this discussion, we present a study investigating plasma samples from patients with various progressive tumors at high risk for VTE. METHODS: Based on our previous study uncovering microvesicles (MVs), the larger ectosome-like extracellular vesicles (EV), as the major source of TF activity in EV preparations, we now determined TF activity on enriched MVs isolated from plasma of cancer patients and compared it with that on MVs from healthy individuals. RESULTS: We found considerably higher amounts of MVs as well as higher levels of MV-bound TF activities in the plasma of cancer patients. We also show that preparations from plasma of cancer patients have the potency to induce ERK phosphorylation in a human tumor cell line through proteinase-activated receptor two (PAR2) activation. CONCLUSION: We suggest that MVs instead of whole EV preparations, and TF activity rather than its antigenic quantification should be used in clinical studies for identifying patients with progressive tumors at high risk for VTE.


Assuntos
Tromboplastina/metabolismo , Idoso , Estudos de Casos e Controles , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Fosforilação , Tromboplastina/biossíntese , Tromboembolia Venosa/sangue , Tromboembolia Venosa/patologia
10.
J Immunol ; 203(4): 853-863, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31270150

RESUMO

Cholesterol crystals (CC) are strong activators of complement and could potentially be involved in thromboinflammation through complement-coagulation cross-talk. To explore the coagulation-inducing potential of CC, we performed studies in lepirudin-based human whole blood and plasma models. In addition, immunohistological examinations of brain thrombi and vulnerable plaque material from patients with advanced carotid atherosclerosis were performed using polarization filter reflected light microscopy to identify CC. In whole blood, CC exposure induced a time- and concentration-dependent generation of prothrombin fragment 1+2 (PTF1.2), tissue factor (TF) mRNA synthesis, and monocyte TF expression. Blocking Abs against TF abolished CC-mediated coagulation, thus indicating involvement of the TF-dependent pathway. Blockade of FXII by corn trypsin inhibitor had a significant inhibitory effect on CC-induced PTF1.2 in platelet-free plasma, although the overall activation potential was low. CC exposure did not induce platelet aggregation, TF microparticle induction, or TF on granulocytes or eosinophils. Inhibition of complement C3 by CP40 (compstatin), C5 by eculizumab, or C5aR1 by PMX53 blocked CC-induced PTF1.2 by 90% and reduced TF+ monocytes from 18-20 to 1-2%. The physiologic relevance was supported by birefringent CC structures adjacent to monocytes (CD14), TF, and activated complement iC3b and C5b-9 in a human brain thrombus. Furthermore, monocyte influx and TF induction in close proximity to CC-rich regions with activated complement were found in a vulnerable plaque. In conclusion, CC could be active, releasable contributors to thrombosis by inducing monocyte TF secondary to complement C5aR1 signaling.


Assuntos
Coagulação Sanguínea/imunologia , Colesterol/imunologia , Ativação do Complemento/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Tromboplastina/biossíntese , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/metabolismo , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Tromboplastina/imunologia , Trombose/imunologia , Trombose/metabolismo
11.
Nano Lett ; 19(7): 4721-4730, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180684

RESUMO

Within tumors, the coagulation-inducing protein tissue factor (TF), a major initiator of blood coagulation, has been shown to play a critical role in the hematogenous metastasis of tumors, due to its effects on tumor hypercoagulability and on the mediation of interactions between platelets and tumor cells. Targeting tumor-associated TF has therefore great therapeutic potential for antimetastasis therapy and preventing thrombotic complication in cancer patients. Herein, we reported a novel peptide-based nanoparticle that targets delivery and release of small interfering RNA (siRNA) into the tumor site to silence the expression of tumor-associated TF. We showed that suppression of TF expression in tumor cells blocks platelet adhesion surrounding tumor cells in vitro. The downregulation of TF expression in intravenously administered tumor cells (i.e., simulated circulating tumor cells [CTCs]) prevented platelet adhesion around CTCs and decreased CTCs survival in the lung. In a breast cancer mouse model, siRNA-containing nanoparticles efficiently attenuated TF expression in the tumor microenvironment and remarkably reduced the amount of lung metastases in both an experimental lung metastasis model and tumor-bearing mice. What's more, this strategy reversed the hypercoagulable state of the tumor bearing mice by decreasing the generation of thrombin-antithrombin complexes (TAT) and activated platelets, both of which are downstream products of TF. Our study describes a promising approach to combat metastasis and prevent cancer-associated thrombosis, which advances TF as a therapeutic target toward clinic applications.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Neoplasias Pulmonares , Nanopartículas , Proteínas de Neoplasias , Neoplasias Experimentais , RNA Interferente Pequeno , Trombofilia , Tromboplastina , Trombose , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Metástase Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Trombofilia/genética , Trombofilia/metabolismo , Trombofilia/prevenção & controle , Tromboplastina/biossíntese , Tromboplastina/genética , Trombose/genética , Trombose/metabolismo , Trombose/patologia , Trombose/prevenção & controle
12.
Eur Rev Med Pharmacol Sci ; 23(4): 1634-1640, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30840287

RESUMO

OBJECTIVE: To investigate the expression changes of high mobility group box-1 (HMGB-1) and tissue factor (TF) and their correlation in the serum of sepsis rat models. MATERIALS AND METHODS: 30 rats were divided into the sham-operated group, 15 rats were in the control group. The cecal ligation and puncture method was used to make the animal model with abdominal infection induced by sepsis. There were 15 rats in the sepsis group among which they were divided into 3 subgroups at different time points after modeling (after 6 hours, 12 hours, 24 hours). Cardiac function indicators of the rats in each subgroup were monitored, including heart rate (HR), left ventricular end-diastolic pressure (LVEDP) and left ventricular developed pressure (LVDP), and enzyme-linked immunosorbent assay (ELISA) was used to test the changes of the expression levels of HMGB-1 and TF in the serum of the rats after 6 hours, 12 hours, 24 hours. Pearson correlation analysis was used to analyze the correlation between HMGB-1 and TF. RESULTS: HR and LVEDP of the rats in the sepsis group were significantly higher than those of the rats in the control group. The differences were statistically significant (p<0.050). LVDP of the rats in the sepsis group was markedly lower than that of the rats in the control group. The differences were statistically significant (p<0.050). The expressions of HMGB-1 and TF of the rats in the subgroups of the sepsis group were higher than those of the rats in the control group after 6 hours, 12 hours, 24 hours; the expression levels of HMGB-1 and TF of the rats with sepsis increased with time. The differences were statistically significant (p<0.050). When the expressions of HMGB-1 and TF of the rats in the sepsis group were compared with each other within the group the differences were significantly different (p<0.050). The expressions of HMGB-1 and TF in the subgroups at the 24th hour were significantly higher than those at the 6th hour. The differences were statistically significant (p<0.050). The differences of the expression of TF of the rats in the control group were not statistically significant (p>0.050). There was a significant positive correlation between HMGB-1 and TF of the rats in the sepsis group (r=0.772, p=0.002). CONCLUSIONS: The expression levels of HMGB-1 and TF of the rats with sepsis gradually increased with time, and the level of HMGB-1 was positively correlated with the level of TF.


Assuntos
Proteína HMGB1/biossíntese , Sepse/metabolismo , Tromboplastina/biossíntese , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Proteína HMGB1/análise , Ratos , Ratos Wistar , Sepse/sangue , Tromboplastina/análise
13.
Arterioscler Thromb Vasc Biol ; 39(3): 402-412, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602303

RESUMO

Objective- Mutations in Krüppel like factor-11 ( KLF11), a gene also known as maturity-onset diabetes mellitus of the young type 7, contribute to the development of diabetes mellitus. KLF11 has anti-inflammatory effects in endothelial cells and beneficial effects on stroke. However, the function of KLF11 in the cardiovascular system is not fully unraveled. In this study, we investigated the role of KLF11 in vascular smooth muscle cell biology and arterial thrombosis. Approach and Results- Using a ferric chloride-induced thrombosis model, we found that the occlusion time was significantly reduced in conventional Klf11 knockout mice, whereas bone marrow transplantation could not rescue this phenotype, suggesting that vascular KLF11 is critical for inhibition of arterial thrombosis. We further demonstrated that vascular smooth muscle cell-specific Klf11 knockout mice also exhibited significantly reduced occlusion time. The expression of tissue factor (encoded by the F3 gene), a main initiator of the coagulation cascade, was increased in the artery of Klf11 knockout mice, as determined by real-time quantitative polymerase chain reaction and immunofluorescence. Furthermore, vascular smooth muscle cells isolated from Klf11 knockout mouse aortas showed increased tissue factor expression, which was rescued by KLF11 overexpression. In human aortic smooth muscle cells, small interfering RNA-mediated knockdown of KLF11 increased tissue factor expression. Consistent results were observed on adenovirus-mediated overexpression of KLF11. Mechanistically, KLF11 downregulates F3 at the transcriptional level as determined by reporter and chromatin immunoprecipitation assays. Conclusions- Our data demonstrate that KLF11 is a novel transcriptional suppressor of F3 in vascular smooth muscle cells, constituting a potential molecular target for inhibition of arterial thrombosis.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Repressoras/fisiologia , Tromboplastina/biossíntese , Trombose/prevenção & controle , Animais , Antitrombina III/análise , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Transplante de Medula Óssea , Células Cultivadas , Cloretos/toxicidade , Imunoprecipitação da Cromatina , Regulação para Baixo , Feminino , Compostos Férricos/toxicidade , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Hidrolases/análise , Agregação Plaquetária , Interferência de RNA , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Tromboplastina/genética , Trombose/induzido quimicamente , Transcrição Gênica
14.
Shock ; 51(3): 364-371, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29608549

RESUMO

Severe sepsis is critical to health and can result in acute renal failure (ARF). Tissue factor (TF) and thrombomodulin (TM) play key roles in vascular endothelial functions by helping maintain microcirculation in the kidney. Budding uninhibited by benzimidazole-1 (Bub1) plays a role in Akt and JNK signaling, which control TF and TM, respectively. We hypothesized that Bub1 could control vascular endothelial function in sepsis. The aim of this study was to determine the role of Bub1 in septic ARF. We used Mouse cecum ligation and puncture (CLP) using low Bub1 expressing (Bub1) and wild-type (Bub1) mice in vivo and lipopolysaccharide (LPS) stimulation of human aortic endothelial cell (HAEC) in vitro. Bub1 mice had a higher survival rate after CLP than Bub1. Bub1 mice had more severe ARF after CLP than Bub1 with blood biochemical and pathological analyses. TF expression in Bub1 mice and control HAEC (control) significantly increased in the septic model compared with Bub1 and Bub1 silenced HAEC (siBub1). TM expression in the control significantly decreased after LPS stimulation compared with siBub1. Akt and JNK phosphorylation of siBub1 were attenuated after LPS stimulation. Associations of Bub1 with Akt or JNK after LPS stimulation of HAEC were detected using immunoprecipitation, suggesting that Bub1 is involved in the phosphorylation of Akt and JNK after LPS stimulation. Bub1 insufficiency attenuates TF expression and reduces TM suppression by blocking Akt and JNK phosphorylation, respectively, thus leading to the prevention of ARF and death caused by sepsis.


Assuntos
Injúria Renal Aguda/metabolismo , Células Endoteliais/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Sepse/metabolismo , Trombomodulina/biossíntese , Tromboplastina/biossíntese , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Camundongos , Camundongos Mutantes , Proteínas Serina-Treonina Quinases/metabolismo , Sepse/genética , Sepse/patologia , Trombomodulina/genética , Tromboplastina/genética
15.
J Pak Med Assoc ; 68(11): 1644-11649, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30410143

RESUMO

OBJECTIVE: To investigate if lectin-like oxidised low density lipoprotein receptor is implicated in oxidised low density lipoprotein induced up regulation of tissue factor and whether recombinant domain V of beta (2)-Glycoprotein I expressed in Pichia pastoris inhibits the binding of oxidised and lectin-like low density lipoprotein. METHODS: The expression of tissue factor and lectin-like oxidised low density lipoprotein receptor was detected using Western blot methods. Small interference ribonucleic acid of lectin-like oxidised low density lipoprotein receptor was used to block lectin-like oxidised low density lipoprotein receptor expression. Flow cytometry was used to test the effect of beta (2)-Glycoprotein I expressed in Pichia pastoris on the binding of oxidised low density lipoprotein with lectin-like oxidised low density lipoprotein receptor by using the lectin-like oxidised low density lipoprotein receptor-expressing 293T cells. RESULTS: Oxidised low density lipoprotein at 5-10 g/mL increased tissue factor and lectin-like oxidised low density lipoprotein receptor expression, whereas 20-50 g/mL oxidised low density lipoprotein attenuated tissue factor expression. Inhibiting lectin-like oxidised low density lipoprotein receptor expression by small interference ribonucleic acid of lectin-like oxidised low density lipoprotein receptor impaired oxidised low density lipoprotein-induced tissue factor over expression in macrophages. Pretreatment with beta (2)-Glycoprotein I expressed in Pichia pastoris led to a strong inhibition of tissue factor and lectin-like oxidised low density lipoprotein receptor expression in a dose-dependent manner in macrophages. Flow cytometry analysis showed that beta (2)-Glycoprotein I expressed in Pichia pastoris attenuated the interaction of oxidised low density lipoprotein with lectin-like oxidised low density lipoprotein receptor in lectin-like oxidised low density lipoprotein receptor-expressing 293T cells. CONCLUSIONS: Lectin-like oxidised low density lipoprotein receptor was implicated in the expression of tissue factor induced by oxidised low density lipoprotein, and beta (2)-Glycoprotein I expressed in Pichia pastoris inhibited oxidised low density lipoprotein-induced tissue factor and lectin-like oxidised low density lipoprotein receptor expression, at least in part, via inhibition of the interaction between oxidised low density lipoprotein and lectin-like oxidised low density lipoprotein receptor.


Assuntos
Regulação da Expressão Gênica , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Tromboplastina/biossíntese , beta 2-Glicoproteína I/metabolismo , Animais , Western Blotting , Camundongos , Oxirredução , Coelhos
16.
J Thromb Haemost ; 16(9): 1800-1813, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29971917

RESUMO

Essentials Tumor-bearing mice were employed to follow oncogenic HRAS sequences in plasma, and blood cells. Cancer DNA accumulated in leukocytes above levels detected in exosomes, platelets and plasma. Extracellular vesicles and nucleosomes are required for uptake of tumor DNA by leukocytes. Uptake of tumor-derived extracellular vesicles by leukocytes triggers coagulant phenotype. SUMMARY: Background Tumor-derived extracellular vesicles (EVs) and free nucleosomes (NSs) carry into the circulation a wealth of cancer-specific, bioactive and poorly understood molecular cargoes, including genomic DNA (gDNA). Objective Here we investigated the distribution of extracellular oncogenic gDNA sequences (HRAS and HER2) in the circulation of tumor-bearing mice. Methods and Results Surprisingly, circulating leukocytes (WBCs), especially neutrophils, contained the highest levels of mutant gDNA, which exceeded the amount of this material recovered from soluble fractions of plasma, circulating EVs, platelets, red blood cells (RBCs) and peripheral organs, as quantified by digital droplet PCR (ddPCR). Tumor excision resulted in disappearance of the WBC-associated gDNA signal within 2-9 days, which is in line with the expected half-life of these cells. EVs and nucleosomes were essential for the uptake of tumor-derived extracellular DNA by neutrophil-like cells and impacted their phenotype. Indeed, the exposure of granulocytic HL-60 cells to EVs from HRAS-driven cancer cells resulted in a selective increase in tissue factor (TF) procoagulant activity and interleukin 8 (IL-8) production. The levels of circulating thrombin-antithrombin complexes (TAT) were markedly elevated in mice harboring HRAS-driven xenografts. Conclusions Myeloid cells may represent a hitherto unrecognized reservoir of cancer-derived, EV/NS-associated oncogenic gDNA in the circulation, and a possible novel platform for liquid biopsy in cancer. In addition, uptake of this material alters the phenotype of myeloid cells, induces procoagulant and proinflammatory activity and may contribute to systemic effects associated with cancer.


Assuntos
DNA de Neoplasias/sangue , Vesículas Extracelulares/química , Genes erbB-2 , Genes ras , Células Mieloides/química , Neutrófilos/química , Animais , Antitrombina III , Plaquetas/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Transformação Celular Neoplásica , DNA de Neoplasias/farmacocinética , Exossomos/química , Feminino , Células HL-60 , Xenoenxertos , Humanos , Interleucina-8/biossíntese , Camundongos , Camundongos SCID , Células Mieloides/metabolismo , Transplante de Neoplasias , Neutrófilos/metabolismo , Nucleossomos/química , Peptídeo Hidrolases/sangue , Plasma/química , Ratos , Células THP-1 , Tromboplastina/biossíntese , Carga Tumoral
17.
J Cell Mol Med ; 22(9): 4545-4549, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29893509

RESUMO

Recently, platelet-derived growth factors present in lysates became an extreme interest in the field of regenerative medicine such as in wound healing and as substitutes to foetal bovine serum in xeno-free cell culture systems. However, the generation of such platelet lysates completely depends on the availability of platelet donors. In this study, the possibility to use in vitro-generated megakaryocytes derived from induced pluripotent stem cells (iPSCs) as a cell source for typical platelet growth factors was investigated. Therefore, the presence and levels of those factors were characterized in in vitro-produced megakaryocytes. In comparison with platelets, in vitro-generated megakaryocytes showed a multifold increased content in transcript and protein levels of typical platelet growth factors including platelet-derived growth factors (PDGFs), transforming growth factor (TGF)-1ß, vascular endothelial cell factor (VEGF)-A, epidermal growth factor (EGF), insulin-like growth factor (IGF)-1 and tissue factor (TF). Hence, iPSC-derived megakaryocytes may serve as an efficient cell source for a donor-independent generation of growth factor-rich lysates with a broad application potential in innovative cell culture systems and regenerative therapies.


Assuntos
Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular , Extratos Celulares/química , Proliferação de Células , Fator de Crescimento Epidérmico/biossíntese , Fator de Crescimento Epidérmico/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/genética , Megacariócitos/metabolismo , Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator de Crescimento Derivado de Plaquetas/genética , Cultura Primária de Células , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Medicina Regenerativa/métodos , Tromboplastina/biossíntese , Tromboplastina/genética , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
18.
Cancer Biol Ther ; 19(5): 416-426, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29333924

RESUMO

Glomeruloid vascular proliferation (GVP) is a diagnostic hallmark and links to aggressive behavior, therapy resistance and poor prognosis in glioblastoma (GBM). It lacks clinical approaches to predict and monitor its formation and dynamic change. Yet the mechanism of GVPs also remains largely unknown. Using an in situ GBM xenograft mouse model, combined clinical MRI images of pre-surgery tumor and pathological investigation, we demonstrated that the inhibition of tissue factor (TF) decreased GVPs in Mouse GBM xenograft model. TF shRNA reduced microvascular area and diameter, other than bevacizumab. TF dominantly functions via PAR2/HB-EGF-dependent activation under hypoxia in endothelial cells (ECs), resulting in a reduction of GVPs and cancer cells invasion. TF expression strongly correlated to GVPs and microvascular area (MVA) in GBM specimens from 56 patients, which could be quantitatively evaluated in an advanced MRI images system in 33 GBM patients. This study presented an approach to assess GVPs that could be served as a MRI imaging biomarker in GBM and uncovered a molecular mechanism of GVPs.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/irrigação sanguínea , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tromboplastina/biossíntese , Adulto , Idoso , Animais , Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Transdução de Sinais , Adulto Jovem
19.
Clin Respir J ; 12(3): 1125-1133, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28419722

RESUMO

BACKGROUND: To examine the expression of D-dimer, fibrinogen (FIB), leukocyte, C-reactive protein (CRP) and tissue factor (TF) released from monocyte in non-small cell lung cancer (NSCLC) patients with or without venous thromboembolism (VTE) and analyse the correlation, to explore the possible mechanisms. METHODS: Seventy-two patients confirmed the diagnosis of lung cancer, among whom 10 with VTE were enrolled into the study from November 2012 to January 2014 in the First Affiliated Hospital of Fujian Medical University and 30 healthy subjects were also enrolled as the control group. Ficoll and Percoll density gradient centrifugation separated of peripheral blood monocyte. Monocyte TF mRNA expression was detected using reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: There were significant differences in different stages of the cancer (P < .05) and no significance among the histopathologic types (P > .05) for the expression of monocyte TF mRNA in NSCLC patients, its expression was significantly higher in cancer with lymph node metastasis than those without lymph node metastasis (P < .01). Meanwhile, in NSCLC patients with VTE, the expression of monocyte TF mRNA was significantly higher than that in patients without VTE (P < .01). Difference of the survival curves between the low monocyte TF mRNA expression and the high monocyte TF mRNA expression was significant (Log-rank x2 = 4.923, P < .05). CONCLUSIONS: Monocyte TF may be a relevant source of TF-mediated thrombogenicity in NSCLC patients and may be associated with prognosis in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Estadiamento de Neoplasias , RNA Neoplásico/genética , Tromboplastina/genética , Adulto , Idoso , Biópsia , Broncoscopia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Linfática , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Prognóstico , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Toracoscopia , Tromboplastina/biossíntese , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA