Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Exp Neurol ; 376: 114756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508482

RESUMO

Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.


Assuntos
Transtorno do Espectro Autista , Espinhas Dendríticas , Neuroglia , Ubiquitina-Proteína Ligases , Animais , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Células Cultivadas , Espinhas Dendríticas/patologia , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/biossíntese , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Nature ; 592(7855): 606-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658717

RESUMO

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.


Assuntos
Mucosa Intestinal/citologia , MAP Quinase Quinase Quinase 2/metabolismo , Nicho de Células-Tronco , Células Estromais/citologia , Animais , Antígenos CD34 , Colite/patologia , Colite/prevenção & controle , Epigênese Genética , Feminino , Mucosa Intestinal/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tetraspanina 28 , Trombospondinas/biossíntese , Trombospondinas/metabolismo , Antígenos Thy-1
3.
Artigo em Inglês | MEDLINE | ID: mdl-33515787

RESUMO

With a well-understood function in mammals, R-spondin1 (Rspo1) is an important regulator of ovarian development via the Wnt/ß-catenin pathway. Rspo1 deficiency causes retardation of ovarian development in XX fish, and increases Rspo1 function induces femininity and sex reversal in XY fish. In this study, Rspo1 was successfully cloned from loach (Misgurnus anguillicaudatus), and its expression profile was analyzed. The full-length cDNA of Misgurnus anguillicaudatus Rspo1 (MaRspo1) comprised 1322 bp and included an open reading frame (ORF) of 795 bp, which encoded a predicted polypeptide measuring 264 amino acids in length. Phylogenetic and gene structure analyses showed a highly conserved sequence of MaRspo1 (identical to the Rspo1 genes of other species), consisting of an N-terminal signal peptide (SP), two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat (TSP1) and a C-terminal region. Real-time PCR revealed the female-biased expression profile of MaRspo1, with the highest expression level among tested tissues detected in ovary. Investigation of MaRspo1 expression levels throughout the early development stage (10-60 days post hatching) under three temperature treatments (25 °C, 28 °C, and 31 °C) revealed significantly differential expression of MaRspo1 among the three temperature groups, with decreased MaRspo1 expression in the high-temperature (31 °C) group. The results of DNA methylation analysis indicated that exposure to high temperature during early development can increase the average promoter methylation level of MaRspo1 in both females and males. Taken together, the results of this study provide the basis for the further investigation of the molecular mechanism of Rspo1 in response to temperature.


Assuntos
Cipriniformes , Metilação de DNA , Proteínas de Peixes , Regulação da Expressão Gênica , Resposta ao Choque Térmico , Trombospondinas , Animais , Cipriniformes/genética , Cipriniformes/metabolismo , Feminino , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Trombospondinas/biossíntese , Trombospondinas/genética
4.
J Neurochem ; 158(4): 849-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33118159

RESUMO

Lysophosphatidic acid (LPA), a brain membrane-derived lipid mediator, plays important roles including neural development, function, and behavior. In the present study, the effects of LPA on astrocyte-derived synaptogenesis factor thrombospondins (TSPs) production were examined by real-time PCR and western blotting, and the mechanism underlying this event was examined by pharmacological approaches in primary cultured rat cortical astrocytes. Treatment of astrocytes with LPA increased TSP-1 mRNA, and TSP-2 mRNA, but not TSP-4 mRNA expression. TSP-1 protein expression and release were also increased by LPA. LPA-induced TSP-1 production were inhibited by AM966 a LPA1 receptor antagonist, and Ki16425, LPA1/3 receptors antagonist, but not by H2L5146303, LPA2 receptor antagonist. Pertussis toxin, Gi/o inhibitor, but not YM-254890, Gq inhibitor, and NF499, Gs inhibitor, inhibited LPA-induced TSP-1 production, indicating that LPA increases TSP-1 production through Gi/o-coupled LPA1 and LPA3 receptors. LPA treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK). LPA-induced TSP-1 mRNA expression was inhibited by U0126, MAPK/ERK kinase (MEK) inhibitor, but not SB202190, p38 MAPK inhibitor, or SP600125, JNK inhibitor. However, LPA-induced TSP-1 protein expression was diminished with inhibition of all three MAPKs, indicating that these signaling molecules are involved in TSP-1 protein production. Treatment with antidepressants, which bind to astrocytic LPA1 receptors, increased TSP-1 mRNA and protein production. The current findings show that LPA/LPA1/3 receptors signaling increases TSP-1 production in astrocytes, which could be important in the pathogenesis of affective disorders and could potentially be a target for the treatment of affective disorders.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Lisofosfolipídeos/farmacologia , Trombospondina 1/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/genética , Gravidez , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Trombospondinas/biossíntese
5.
Prostate ; 80(10): 753-763, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32421868

RESUMO

BACKGROUND: Although thrombospondins 4 (THBS4) participates in controlling the biology of prostate cancer (PCa), the mechanism underlying this regulation remains unknown. Hence, this study aims to identify the regulatory effects of THBS4 on the PCa stem cell-like properties and the potential mechanism associated with the phosphatidylinositol 3'-kinase (PI3K)/protein kinase B (Akt) pathway. METHODS: PCa stem cells were sorted and identified using flow cytometry and THBS4 expression in the identified PCa stem cells was measured using Western blot assay. THBS4 was overexpressed or silenced in PCa stem cells, following which, self-renewal, proliferation, cell cycle distribution, and apoptosis of PCa stem cells were assessed as well as tumorigenicity in vivo was evaluated. PI3K/Akt pathway inhibitor was applied to identify its involvement in the regulatory roles of THBS4 in PCa stem cells. RESULTS: THBS4 was expressed at a higher level in PCa stem cells than in PCa cells. The overexpression of THBS4 promoted the self-renewal and proliferation, curbed the apoptosis of PCa stem cells, and enhanced the in vivo tumorigenicity, which was achieved by activating the PI3K/Akt pathway. On the contrary, short-hairpin RNA-mediated silencing of THBS4 exhibited suppressive effects on those cancer stem cell (CSC)-like properties and promotive effects on their apoptosis. CONCLUSION: THBS4 silencing can impede the CSC-like properties in PCa via blockade of the PI3K/Akt pathway, which provides patients with PCa a new therapeutic target.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombospondinas/metabolismo , Antígeno AC133/biossíntese , Animais , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Células PC-3 , Neoplasias da Próstata/genética , Transdução de Sinais , Trombospondinas/biossíntese , Trombospondinas/deficiência , Trombospondinas/genética
6.
Am J Physiol Cell Physiol ; 318(3): C664-C674, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851527

RESUMO

R-spondin3 (RSPO3), an activator of Wnt/ß-catenin signaling, plays a key role in tumorigenesis of various cancers, but its role in choriocarcinoma remains unknown. To investigate the effect of RSPO3 on the tumor growth of choriocarcinoma JEG-3 cells, the expression of RSPO3 in human term placenta was detected, and a stable RSPO3-overexpressing JEG-3 cell line was established via lentivirus-mediated transduction. The expression of biomarkers involved in tumorigenicity was detected in the RSPO3-overexpressing JEG-3 cells, and cell proliferation, invasion, migration, and apoptosis were investigated. Moreover, soft agar clonogenic assays and xenograft tumorigenicity assays were performed to assess the effect of RSPO3 on tumor growth in vitro and in vivo. The results showed that RSPO3 was widely expressed in human term placenta and overexpression of RSPO3 promoted the proliferation and inhibited the migration, invasion, and apoptosis of the JEG-3 cells. Meanwhile, RSPO3 overexpression promoted tumor growth both in vivo and in vitro. Further investigation showed that the phosphorylation levels of Akt, phosphatidylinositol 3-kinase (PI3K), and ERK as well the expression of ß-catenin and proliferating cell nuclear antigen (PCNA) were increased in the RSPO3-overexpressing JEG-3 cells and tumor xenograft. Taken together, these data indicate that RSPO3 promotes the tumor growth of choriocarcinoma via Akt/PI3K/ERK signaling, which supports RSPO3 as an oncogenic driver promoting the progression of choriocarcinoma.


Assuntos
Coriocarcinoma/metabolismo , Coriocarcinoma/patologia , Trombospondinas/biossíntese , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Adulto , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Coriocarcinoma/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Gravidez , Trombospondinas/genética , Neoplasias Uterinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Dev Biol ; 458(1): 43-51, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610144

RESUMO

The steroid hormones are instrumental for the growth of mammary epithelial cells. Our previous study indicates that hormones regulate the expression of Rspondin-1 (Rspo1). Yet, the regulatory mechanism remains unknown. In the current study, we identify Amphiregulin (Areg) as a novel upstream regulator of Rspo1 expression mediating the hormonal influence. In response to hormonal signaling, Areg emanating from estrogen receptor (ER)-positive luminal cells, induce the expression of Rspo1 in ER-negative luminal cells. The paracrine action of Areg on Rspo1 expression is dependent on Egfr. Our data reveal a novel Estrogen-Areg-Rspo1 regulatory axis in the mammary gland, providing new evidence for the orchestrated action of systemic hormones and local growth factors.


Assuntos
Anfirregulina/fisiologia , Estradiol/fisiologia , Ciclo Estral/fisiologia , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/metabolismo , Progesterona/fisiologia , Trombospondinas/biossíntese , Anfirregulina/genética , Animais , Células Cultivadas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Cloridrato de Erlotinib/farmacologia , Estradiol/farmacologia , Ciclo Estral/genética , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cultura Primária de Células , Progesterona/farmacologia , RNA Interferente Pequeno/genética , Trombospondinas/genética , Transcriptoma
8.
Physiol Res ; 68(6): 893-900, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31647293

RESUMO

Thrombospondins (TSPs) are matricellular glycoproteins expressed in response to vascular injury. TSP-1 and TSP-2 are promotors of arterial remodeling while TSP-5 is believed to be protective. The current study assessed the differential effect of TSPs on protein expression in vascular smooth muscle cells (VSMCs). We hypothesized that TSP-1, TSP-2 and TSP-5 would regulate VSMC proteins involved in arterial remodeling. Human VSMCs were exposed to TSP-1, -2, -5 or serum free media (24 hours). Cell lysates were used to assess the targets TSP-1, TSP-2, TSP-5 and CD44), while the culture media was used to detect TGF-ß1, PDGF-BB, ANGPTL-4 and IL-8. Statistical analysis was performed by t-test and p< 0.05 was considered significant. All TSPs increased their own expression and TSP-5 increased TSP-2. TSP-1 and TSP-2 increased production of ANGPTL-4 and PDGF-BB, while TSP-5 only increased ANGPTL-4. TSP-1 increased exclusively TGF-ß1 and CD44 production. TSP-2 increased TSP-1 expression. All TSPs decreased IL-8. The findings suggest that TSP-1 and TSP-2 may promote vascular remodeling, in part, by increasing ANGPTL-4, PDGF-BB and their own expression. TSP-5 did not upregulate the inflammatory mediators TSP-1, PDGF-BB or TGF-ß1, but upregulated its own expression, which could be a protective mechanism against the response to vascular injury.


Assuntos
Artérias/metabolismo , Músculo Liso Vascular/metabolismo , Trombospondinas/biossíntese , Remodelação Vascular/fisiologia , Proteína de Matriz Oligomérica de Cartilagem/biossíntese , Células Cultivadas , Humanos , Miócitos de Músculo Liso/metabolismo , Trombospondina 1/biossíntese
9.
Exp Eye Res ; 189: 107820, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589839

RESUMO

Elevated intraocular pressure (IOP) is a major risk factor for the development of primary open-angle glaucoma (POAG). This is from an increased aqueous humour (AH) outflow resistance through the trabecular meshwork (TM). The pathogenic mechanisms leading to the increase in TM outflow resistance are poorly understood but are thought to be from a dysregulation of the TM extracellular matrix (ECM) environment. ECM modification and turnover are crucial in regulating the resistance to aqueous outflow. ECM turnover is influenced by a complex interplay of growth factors such as transforming growth factors (TGFß) family and matrix metalloproteinases (MMPs). Elevated TGFß2 levels result in an increase in ECM deposition such as fibronectin leading to increased resistance. Fibronectin is a major component of TM ECM and plays a key role in its maintenance. Thrombospondins (TSP)-1 and -2 are important regulators of the ECM environment. TSP-1 has been implicated in the pathogenesis of POAG through activation of TGFß2 within the TM. TSP-2 does not contain the catalytic domain to activate latent TGFß, but is able to mediate the activities of MMP 2 and 9, thereby influencing ECM turnover. TSP-2 knock out mice show lower IOP levels compared to their wild type counterparts, suggesting the involvement of TSP-2 in the pathogenesis of POAG but its role in the pathogenesis of POAG remains unclear. The purpose of this study was to investigate the role of TSP-2 in trabecular meshwork ECM regulation and hence the pathogenesis of POAG. TSP-1 and TSP-2 expressions in immortalised glaucomatous TM cells (GTM3) and primary human non-glaucomatous (NTM) and glaucomatous cells (GTM) were determined by immunocytochemistry, immuno-blot analysis and qPCR following treatment with TGFß2 and Dexamethasone. The level of ECM protein fibronectin was determined in TM cells using immuno-blot analysis following treatment with TSP-1 or -2. TM cells secrete TSP-1 and -2 under basal conditions at the protein level and TSP-2 mRNA and protein levels were increased in response to TGFß2 three days post treatment. Exogenous treatment with TSP-2 up-regulated the expression of fibronectin protein in GTM3 cells, primary NTM and GTM cells. TSP-1 did not affect fibronectin protein levels in GTM3 cells. This suggests that the role of TSP-2 might be distinct from that of TSP-1 in the regulation of the TM cell ECM environment. TSP-2 may be involved in the pathogenesis of POAG and contribute to increased IOP levels by increasing the deposition of fibronectin within the ECM in response to TGFß2.


Assuntos
Fibronectinas/genética , Regulação da Expressão Gênica , Glaucoma de Ângulo Aberto/genética , Trombospondinas/genética , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Regulação para Cima , Moléculas de Adesão Celular , Células Cultivadas , Fibronectinas/biossíntese , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Humanos , Pressão Intraocular/fisiologia , RNA Mensageiro/genética , Trombospondinas/biossíntese , Malha Trabecular/patologia
10.
BMC Nephrol ; 20(1): 332, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443644

RESUMO

BACKGROUND: Thrombospondin type 1 domain containing 7A (THSD7A) was recently identified target autoantigen in membranous nephropathy (MN). However, patients with positive THSD7A expression were prone to have malignancies. THSD7A was found to be expressed in a variety of malignant tumors. In this study, we investigated the histologic expression of THSD7A in colorectal or breast cancers, as well as the relationship between THSD7A expression and proteinuria in the patients with cancers. METHOD: A total of 101 patients were enrolled in the study, 81 of them had colorectal cancer and 20 had breast cancer. THSD7A expression was detected by immunohistochemical staining in tumor tissues. The clinical and laboratory parameters of these patients before their tumor resection were collected. RESULTS: Positive expression rates of THSD7A in the two types of tumor tissues were very high, 97.5% in colorectal cancer, and 100% in breast cancer. THSD7A expression was also detected in lymph nodes of two patients with lymph node metastasis. Total 11 patients (10.9%) had proteinuria before surgery. Among the 4 patients who had proteinuria and were followed up, the proteinuria of 3 patients disappeared after surgery. CONCLUSIONS: The positive rate of THSD7A expression was very high in human colorectal cancer or breast cancer. It might be an important link between malignant tumors and kidney diseases.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteinúria/metabolismo , Trombospondinas/biossíntese , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteinúria/genética , Estudos Retrospectivos , Método Simples-Cego , Trombospondinas/genética
11.
Pathol Res Pract ; 215(5): 952-956, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30765126

RESUMO

BACKGROUND: The identification of the M-type phospholipase A2 receptor (PLA2R) is a breakthrough recognized as a major target for adults with idiopathic membranous nephropathy (IMN). However, the role PLA2R played in pediatric patients with IMN, particularly in Chinese, has yet to be determined. METHODS: This retrospective study included 187 adult patients and 38 pediatric patients aged 17 years or younger with biopsy proved IMN. The pediatric cohort consisted of 27 children aged from 1 to 12 years and 11 children aged from 13 to 17. Glomerular expression of PLA2R was analyzed in stored, formalin-fixed, paraffin-embedded kidney biopsy sections. RESULTS: PLA2R staining in glomerular deposits was observed in 82.7% and 42.1% of adult and pediatric patients with IMN, respectively. The PLA2R-positive staining patients with IMN presented with more severe clinical features than PLA2R-negative staining patients in both adult and pediatric cohorts. When compared to the young children patients with IMN, the adolescents exhibited a higher positive rate of PLA2R staining (81.8% versus 25.9%), similar to the adult patients. CONCLUSION: The clinical features and prevalence of PLA2R positive staining in adolescent patients with IMN were similar to adult patients, suggesting that they probably have a close etiology and pathogenesis. However, most of the young children patients with IMN were PLA2R negative staining, suggesting a different underlying etiology.


Assuntos
Autoantígenos/análise , Autoantígenos/imunologia , Glomerulonefrite Membranosa/imunologia , Glomérulos Renais/imunologia , Receptores da Fosfolipase A2/imunologia , Adolescente , Adulto , Idoso , Povo Asiático , Criança , Pré-Escolar , Feminino , Glomerulonefrite Membranosa/metabolismo , Humanos , Lactente , Glomérulos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores da Fosfolipase A2/análise , Receptores da Fosfolipase A2/biossíntese , Estudos Retrospectivos , Trombospondinas/análise , Trombospondinas/biossíntese , Trombospondinas/imunologia
12.
Biochem Pharmacol ; 155: 537-546, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031810

RESUMO

Thrombospondin (TSP)-2, a matricellular glycoprotein of the TSP family, regulates multiple biological functions, including proliferation, angiogenesis, cell adhesion, and extracellular matrix (ECM) modeling. The clinical relevance of TSP-2 has been explored in many different cancers. TSP-2 expression levels vary between different cancer types, and their role in tumor progression remains controversial. Although previous studies have reported higher serum TSP-2 levels in patients with non-small cell lung cancer, the role of TSP-2 in lung cancer progression remains to be addressed. A total of 585 lung adenocarcinoma datasets, including mRNA sequencing and clinical data, were retrieved from The Cancer Genome Atlas (TCGA). Forty paired adjacent normal tissues and lung tumor tissue datasets were used to examine TSP-2 expression levels. Tumor microarray were performed with immunohistochemical staining to examine TSP-2 expression in lung cancer patients. Transwell migration assay, quantitative real-time PCR and Western blot were used to investigate molecular mechanism of TSP-2 in lung cancer cell. TSP-2 promotes matrix metalloproteinase-13 (MMP-13) expression, cell migration, and cell invasion by mediating integrin αvß3/FAK/Akt/NF-κB signal transduction. Using TSP-2 knockdown stable cell lines, we found that TSP-2 knockdown reduces MMP-13 expression and cell mobility. When we manipulated the tumor tissue microarray and TCGA datasets to investigate the clinical relevance of TSP-2, we found high TSP-2 expression levels in lung cancer specimens. The present study demonstrates that TSP-2 regulates cell mobility through MMP-13 expression in lung cancer cells. In addition, TSP-2 expression was associated with MMP-13 expression and poor prognosis in lung cancer. TSP-2 may therefore be a promising novel target for lung cancer treatment.


Assuntos
Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/enzimologia , Metaloproteinase 13 da Matriz/biossíntese , Trombospondinas/biossíntese , Células A549 , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Trombospondinas/toxicidade
13.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941541

RESUMO

The clinical management of pancreatic ductal adenocarcinoma (PDAC) is hampered by the lack of reliable biomarkers. This study investigated the value of soluble stroma-related molecules as PDAC biomarkers. In the first exploratory phase, 12 out of 38 molecules were associated with PDAC in a cohort of 25 PDAC patients and 16 healthy subjects. A second confirmatory phase on an independent cohort of 131 PDAC patients, 30 chronic pancreatitis patients, and 131 healthy subjects confirmed the PDAC association for MMP7, CCN2, IGFBP2, TSP2, sICAM1, TIMP1, and PLG Multivariable logistic regression model identified biomarker panels discriminating respectively PDAC versus healthy subjects (MMP7 + CA19.9, AUC = 0.99, 99% CI = 0.98-1.00) (CCN2 + CA19.9, AUC = 0.96, 99% CI = 0.92-0.99) and PDAC versus chronic pancreatitis (CCN2 + PLG+FN+Col4 + CA19.9, AUC = 0.94, 99% CI = 0.88-0.99). Five molecules were associated with PanIN development in two GEM models of PDAC (PdxCre/LSL-KrasG12D and PdxCre/LSL-KrasG12D/+/LSL-Trp53R172H/+), suggesting their potential for detecting early disease. These markers were also elevated in patient-derived orthotopic PDAC xenografts and associated with response to chemotherapy. The identified stroma-related soluble biomarkers represent potential tools for PDAC diagnosis and for monitoring treatment response of PDAC patients.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/tratamento farmacológico , Estudos de Coortes , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fator de Crescimento do Tecido Conjuntivo/sangue , Feminino , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/sangue , Masculino , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/sangue , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico , Solubilidade , Células Estromais/metabolismo , Trombospondinas/biossíntese , Trombospondinas/sangue , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/sangue , Microambiente Tumoral/fisiologia
14.
Mod Pathol ; 31(4): 616-622, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29243738

RESUMO

Thrombospondin type-1 domain-containing 7A (THSD7A) is the most recently recognized target antigen in patients with membranous nephropathy. We stained membranous nephropathy biopsies processed in our laboratory for phospholipase A2 receptor and THSD7A over an 18-month period and selected all THSD7A-positive cases for study. Serum samples from most patients were tested by an indirect immunofluorescence assay for the presence of THSD7A antibodies (Euroimmun). A total of 31 patients were diagnosed with THSD7A-associated membranous nephropathy for a prevalence of 2.4% among patients with membranous nephropathy. The patients were most often male (male-to-female ratio of 1.6) with a mean age of 62 years and a mean proteinuria of 9.6 g per day (range 1.1-15.9). Two of the 31 patients had a history of cancer and none were diagnosed with malignancy on follow-up. Serum samples were available at the time of biopsy from 24 patients and all tested positive for antibodies against THSD7A. Conversely, all 20 serum samples from patients with membranous nephropathy who had negative staining for THSD7A were negative for serum reactivity to THSD7A. We conclude that THSD7A tissue staining of kidney biopsies with membranous nephropathy is a sensitive and specific method for the diagnosis of THSD7A-associated membranous nephropathy and it correlates strongly with the serum antibody testing. We also present the clinicopathologic details of the largest cohort to date of THSD7A-associated membranous nephropathy from a single institution.


Assuntos
Autoanticorpos/sangue , Glomerulonefrite Membranosa/diagnóstico , Trombospondinas/biossíntese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoantígenos , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Glomerulonefrite Membranosa/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
J Cell Biochem ; 119(6): 4420-4434, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29143985

RESUMO

This study explores the effect of COL1A2, COL6A3, and THBS2 gene silencing on proliferation, migration, invasion, and apoptosis of gastric cancer cells through the PI3K-Akt signaling pathway. The gastric cancer microarray expression data (GSE19826, GSE79973, and GSE65801) was analyzed. Gastric cancer tissues and corresponding adjacent normal tissues were extracted from patients. Positive expression rate of PI3K, Akt, and p-Akt was measured with immunohistochemistry. Two cell lines, BGC-823 and SGC-7901, were transfected and cells were grouped into blank, negative control, COL1A2-shRNA, COL6A3-shRNA, and THBS2-shRNA groups. Expressions of COL1A2, COL6A3, and THBS2 in gastric cancer cells transfected with corresponding silencing sequences were evaluated by RT-qPCR and Western blot. MTT assay, Transwell, and cell scratch tests were conducted to evaluate cell proliferation, invasion, and migration capacity, respectively. Flow cytometry was used to evaluate cell cycle distribution and apoptosis. The positive expression of PI3K, Akt, and p-Akt was higher in gastric cancer tissues compared with adjacent normal tissues, and the mRNA expression of COL1A2, COL6A3, and THBS2 was increased in gastric cancer tissues. Akt, p-Akt, and PI3K expression drastically decreased in cells transfected with COL1A2, COL6A3, and THBS2 silencing sequences. Cells transfected with COL1A2, COL6A3, and THBS2 silencing sequences exhibited promoted apoptosis but inhibited proliferation, migration, and invasion. This study demonstrates that COL1A2, COL6A3, and THBS2 gene silencing inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3K-Akt signaling pathway.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Colágeno Tipo I/biossíntese , Colágeno Tipo VI/biossíntese , Inativação Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Trombospondinas/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Colágeno Tipo I/genética , Colágeno Tipo VI/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Trombospondinas/genética
16.
Cell Rep ; 20(8): 1745-1754, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834739

RESUMO

Coronary arteries are essential to support the heart with oxygen, and coronary heart disease is one of the leading causes of death worldwide. The coronary arteries form at highly stereotyped locations and are derived from the primitive vascular plexus of the heart. How coronary arteries are remodeled and the signaling molecules that govern this process are poorly understood. Here, we have identified the Wnt-signaling modulator Rspo3 as a crucial regulator of coronary artery formation in the developing heart. Rspo3 is specifically expressed around the coronary stems at critical time points in their development. Temporal ablation of Rspo3 at E11.5 leads to decreased ß-catenin signaling and a reduction in arterial-specific proliferation. As a result, the coronary stems are defective and the arterial tree does not form properly. These results identify a mechanism through which localized expression of RSPO3 induces proliferation of the coronary arteries at their stems and permits their formation.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Vasos Coronários/metabolismo , Trombospondinas/biossíntese , Animais , Proliferação de Células/fisiologia , Feminino , Camundongos , Neovascularização Fisiológica/fisiologia , Gravidez , Via de Sinalização Wnt
17.
Biochem Biophys Res Commun ; 490(1): 8-16, 2017 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-28576485

RESUMO

Protein tagging with a wide variety of epitopes and/or fusion partners is used routinely to dissect protein function molecularly. Frequently, the required DNA subcloning is inefficient, especially in cases where multiple constructs are desired for a given protein with unique tags. Additionally, the generated clones have unwanted junction sequences introduced. To add versatile tags into the extracellular domain of the transmembrane protein THSD1, we developed a protein tagging technique that utilizes non-classical type IIS restriction enzymes that recognize non-palindromic DNA sequences and cleave outside of their recognition sites. Our results demonstrate that this method is highly efficient and can precisely fuse any tag into any position of a protein in a scarless manner. Moreover, this method is cost-efficient and adaptable because it uses commercially available type IIS restriction enzymes and is compatible with the traditional cloning system used by many labs. Therefore, precision tagging technology will benefit a number of researchers by providing an alternate method to integrate an array of tags into protein expression constructs.


Assuntos
Clonagem Molecular/métodos , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Trombospondinas/genética , Células Cultivadas , Células HEK293 , Humanos , Trombospondinas/biossíntese
18.
Oncotarget ; 8(14): 23277-23288, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28177895

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy found worldwide and is associated with a high incidence of metastasis and vascular invasion. Elucidating the molecular mechanisms that underlie HCC tumorigenesis and progression is necessary for the development of novel therapeutics. By analyzing the Cancer Genome Atlas Network (TCGA) dataset, we identified Thrombospondin 4 (THBS4) is significantly overexpressed in HCC samples and is correlated with prognosis. Overexpression of THBS4 was also highly correlated with vascular invasion of advanced HCC. While THBS4 is often overexpressed in HCC it has also been shown to inhibit tumor growth by mediating cell-to-cell and cell-to-matrix interactions. Here, we identified that knockdown of THBS4 inhibits migration and invasion of HCC cells and inhibits HCC induced angiogenesis. MiRNAs are crucial regulators of multiple cellular processes, and aberrant expression of miRNAs has been observed to effect cancer development and progression. We further found that miR-142 is an upstream regulator of THBS4 in HCC cells. Moreover, miR-142 was significantly down-regulated in HCC tissue samples and correlated with overexpression of THBS4. Overexpression of miR-142 inhibited invasion and angiogenesis of HCC cells and re-expression of THBS4 overcame these effects of miR-142 expression. Stable over-expression of miR-142 significantly inhibited tumour growth in a xenograft tumour model through inhibiting THBS4 expression and tumor angiogenesis. In conclusion, our findings indicate that loss of miR-142 results in the over-expression of THBS4, which enhances HCC migration and vascular invasion. Thus, targeting THBS4 or miR-142 may provide a promising therapeutic strategy for treatment of advanced HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Trombospondinas/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Invasividade Neoplásica , Taxa de Sobrevida , Trombospondinas/genética
19.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 488-498, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28216224

RESUMO

Breast cancer is the most common and molecularly relatively well characterized malignant disease in women, however, its progression to metastatic cancer remains lethal for 78% of patients 5years after diagnosis. Novel markers could identify the high risk patients and their verification using quantitative methods is essential to overcome genetic, inter-tumor and intra-tumor variability and translate novel findings into cancer diagnosis and treatment. We recently identified 13 proteins associated with estrogen receptor, tumor grade and lymph node status, the key factors of breast cancer aggressiveness, using untargeted proteomics. Here we verified these findings in the same set of 96 tumors using targeted proteomics based on selected reaction monitoring with mTRAQ labeling (mTRAQ-SRM), transcriptomics and immunohistochemistry and validated in 5 independent sets of 715 patients using transcriptomics. We confirmed: (i) positive association of anterior gradient protein 2 homolog (AGR2) and periostin (POSTN) and negative association of annexin A1 (ANXA1) with estrogen receptor status; (ii) positive association of stathmin (STMN1), cofilin-1 (COF1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1) and negative associations of thrombospondin-2 (TSP2) and POSTN levels with tumor grade; and (iii) positive association of POSTN, alpha-actinin-4 (ACTN4) and STMN1 with lymph node status. This study highlights a panel of gene products that can contribute to breast cancer aggressiveness and metastasis, the understanding of which is important for development of more precise breast cancer treatment.


Assuntos
Fatores de Despolimerização de Actina/biossíntese , Neoplasias da Mama/genética , Moléculas de Adesão Celular/biossíntese , Proteínas de Ligação a RNA/biossíntese , Estatmina/biossíntese , Trombospondinas/biossíntese , Fatores de Despolimerização de Actina/genética , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Prognóstico , Proteômica , Proteínas de Ligação a RNA/genética , Receptores de Estrogênio/genética , Estatmina/genética , Trombospondinas/genética
20.
Intern Med ; 55(18): 2663-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27629964

RESUMO

A 30-year-old woman with proteinuria first noted at 26 weeks of gestation was admitted to undergo further evaluation. A renal biopsy revealed membranous nephropathy (MN). There was no evidence of any secondary MN. Prednisolone was initiated 6 months after delivery. Four months later, her urine protein became negative. Enhanced granular staining for thrombospondin type-1 domain-containing 7A (THSD7A) in the glomeruli was retrospectively detected in a biopsy specimen. A literature review revealed that 60% of cases of THSD7A-related MN occurred in women of childbearing age. Therefore, THSD7A-related MN should be considered in female patients presenting with idiopathic MN in childbearing age.


Assuntos
Anti-Inflamatórios/uso terapêutico , Glomerulonefrite Membranosa/metabolismo , Glomérulos Renais/metabolismo , Prednisolona/uso terapêutico , Complicações na Gravidez/metabolismo , Proteinúria/patologia , Trombospondinas/metabolismo , Adulto , Grânulos Citoplasmáticos/metabolismo , Feminino , Glomerulonefrite Membranosa/complicações , Glomerulonefrite Membranosa/fisiopatologia , Humanos , Imuno-Histoquímica , Glomérulos Renais/patologia , Gravidez , Complicações na Gravidez/etiologia , Proteinúria/etiologia , Trombospondinas/biossíntese , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA