RESUMO
BACKGROUND: In the 20th century, epidemics of human African trypanosomiasis (HAT) ravaged communities in a number of African countries. The latest surge in disease transmission was recorded in the late 1990s, with more than 35,000 cases reported annually in 1997 and 1998. In 2013, after more than a decade of sustained control efforts and steady progress, the World Health Assembly resolved to target the elimination of HAT as a public health problem by 2020. We report here on recent progress towards this goal. METHODOLOGY/PRINCIPAL FINDINGS: With 992 and 663 cases reported in 2019 and 2020 respectively, the first global target was amply achieved (i.e. fewer than 2,000 HAT cases/year). Areas at moderate or higher risk of HAT, where more than 1 case/10,000 people/year are reported, shrunk to 120,000 km2 for the five-year period 2016-2020. This reduction of 83% from the 2000-2004 baseline (i.e. 709,000 km2) is slightly below the target (i.e. 90% reduction). As a result, the second global target for HAT elimination as a public health problem cannot be considered fully achieved yet. The number of health facilities able to diagnose and treat HAT expanded (+9.6% compared to a 2019 survey), thus reinforcing the capacity for passive detection and improving epidemiological knowledge of the disease. Active surveillance for gambiense HAT was sustained. In particular, 2.8 million people were actively screened in 2019 and 1.6 million in 2020, the decrease in 2020 being mainly caused by COVID-19-related restrictions. Togo and Côte d'Ivoire were the first countries to be validated for achieving elimination of HAT as a public health problem at the national level; applications from three additional countries are under review by the World Health Organization (WHO). CONCLUSIONS/SIGNIFICANCE: The steady progress towards the elimination of HAT is a testament to the power of multi-stakeholder commitment and coordination. At the end of 2020, the World Health Assembly endorsed a new road map for 2021-2030 that set new bold targets for neglected tropical diseases. While rhodesiense HAT remains among the diseases targeted for elimination as a public health problem, gambiense HAT is targeted for elimination of transmission. The goal for gambiense HAT is expected to be particularly arduous, as it might be hindered by cryptic reservoirs and a number of other challenges (e.g. further integration of HAT surveillance and control into national health systems, availability of skilled health care workers, development of more effective and adapted tools, and funding for and coordination of elimination efforts).
Assuntos
Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/prevenção & controle , África Subsaariana/epidemiologia , Animais , Doenças Endêmicas , Humanos , Controle de Insetos , Insetos Vetores/parasitologia , Tripanossomíase Africana/epidemiologia , Moscas Tsé-Tsé/parasitologia , Organização Mundial da SaúdeRESUMO
BACKGROUND: Riverine species of tsetse (Glossina) transmit Trypanosoma brucei gambiense, which causes Gambian human African trypanosomiasis (gHAT), a neglected tropical disease. Uganda aims to eliminate gHAT as a public health problem through detection and treatment of human cases and vector control. The latter is being achieved through the deployment of 'Tiny Targets', insecticide-impregnated panels of material which attract and kill tsetse. We analysed the spatial and temporal distribution of cases of gHAT in Uganda during the period 2010-2019 to assess whether Tiny Targets have had an impact on disease incidence. METHODS: To quantify the deployment of Tiny Targets, we mapped the rivers and their associated watersheds in the intervention area. We then categorised each of these on a scale of 0-3 according to whether Tiny Targets were absent (0), present only in neighbouring watersheds (1), present in the watersheds but not all neighbours (2), or present in the watershed and all neighbours (3). We overlaid all cases that were diagnosed between 2000 and 2020 and assessed whether the probability of finding cases in a watershed changed following the deployment of targets. We also estimated the number of cases averted through tsetse control. RESULTS: We found that following the deployment of Tiny Targets in a watershed, there were fewer cases of HAT, with a sampled error probability of 0.007. We estimate that during the intervention period 2012-2019 we should have expected 48 cases (95% confidence intervals = 40-57) compared to the 36 cases observed. The results are robust to a range of sensitivity analyses. CONCLUSIONS: Tiny Targets have reduced the incidence of gHAT by 25% in north-western Uganda.
Assuntos
Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Saúde Pública/normas , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/efeitos dos fármacos , Animais , Gâmbia , Humanos , Incidência , Insetos Vetores/parasitologia , Saúde Pública/métodos , Moscas Tsé-Tsé/parasitologia , Uganda/epidemiologiaRESUMO
Fighting trypanosomiasis with an anti-trypanosome vaccine is ineffective, the parasite being protected by a Variable Surface Glycoprotein (VSG) whose structure is modified at each peak of parasitaemia, which allows it to escape the host's immune defenses. However, the host immunization against an essential factor for the survival of the parasite or the expression of its pathogenicity could achieve the same objective. Here we present the results of mouse immunization against the Translationally Controlled Tumor Protein (TCTP), a protein present in the Trypanosoma brucei gambiense (Tbg) secretome, the parasite responsible for human trypanosomiasis. Mice immunization was followed by infection with Tbg parasites. The production of IgG, IgG1 and IgG2a begun after the second TCTP injection and was dose-dependant, the maximum level of anti-TCTP antibodies remained stable up to 4 days post-infection and then decreased. Regarding cytokines (IL-2, 4, 6, 10, INFγ, TNFα), the most striking result was their total suppression after immunization with the highest TCTP dose. Compared to the control group, the immunized mice displayed a reduced first peak of parasitaemia, a 100% increase in the time to onset of the second peak, and an increased time of mice survival. The effect of immunization was only transient but demonstrated the likely important role that TCTP plays in host-parasite interactions and that some key parasite proteins could reduce infection impact.
Assuntos
Biomarcadores Tumorais/genética , Citocinas/biossíntese , Imunoglobulinas/biossíntese , Camundongos/parasitologia , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/imunologia , Animais , Citocinas/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunoglobulinas/genética , Proteína Tumoral 1 Controlada por TraduçãoRESUMO
Objective: Human African trypanosomiasis, also known as sleeping sickness, is a parasitic disease in which Glossina is transmitted by human intervention and Trypanosoma b. rhodosiense and Trypanosoma b. gambiense are the causative agents Production of parasites in axenic cultures provides great advantage in parasite biochemistry, immunological, physiological and molecular studies. In this study, it is aimed to determine the medium which will produce in vigorous amount of Trypanosoma b. rhodosiense and Trypanasoma cruzi and to establish a new medium. Methods: In this study, Trypanosoma b. rhodosiense and Trypanasoma cruzi strains stored in Manisa Celal Bayar University Parasite Bank will be removed from liquid nitrogen tank under suitable conditions, planted in Medium I, Medium II, Medium III and newly developed medium. Reproductive densities of the media will be statistically analyzed on Thoma lamina depending on the time, using the Sidak's multiplequality test. Results: As a result of this study, it has been concluded that the best medium, to produce abundantly Trypanosoma b. rhodosiense and Trypanasoma cruzi strains, to be used in diagnosis and active substance screenings, molecular studies, metabolic analyzes and drug studies is the medium IV. Conclusion: This study is one of the first studies related to the production of Trypanosoma species in Turkey and planned to provide a basis for the studies of African sleeping disease, Chagas disease and their agents.
Assuntos
Doença de Chagas/parasitologia , Meios de Cultura/normas , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Trypanosoma cruzi/crescimento & desenvolvimento , Tripanossomíase Africana/parasitologia , Animais , Humanos , Insetos Vetores/parasitologia , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia , Turquia , Estados UnidosRESUMO
Background and objectives: Sleeping sickness and malaria alike are insect-borne protozoan diseases that share overlapping endemic areas in sub-Saharan Africa. The causative agent for malaria has developed resistance against all currently deployed anti-malarial agents. In the case of sleeping sickness, the currently deployed therapeutic options are limited in efficacy and activity spectra, and there are very few drug candidates in the development pipeline. Thus, there is a need to search for new drug molecules with a novel mode of actions. Materials and Methods: In the current study, an in vitro screening of a library of tetralone derivatives and related benzocycloalkanones was effected against T. b. brucei and P. falciparum. Results: Several hits with low micromolar activity (0.4-8 µM) against T. b. brucei were identified. Conclusions: The identified hits have a low molecular weight (<280 Da), a low total polar surface area (<50 Ų), and a defined structure activity relationship, which all make them potential starting points for further hit optimization studies.
Assuntos
Malária/tratamento farmacológico , Tetralonas/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Humanos , Malária/fisiopatologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Tetralonas/uso terapêutico , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/fisiopatologiaRESUMO
Infection by Trypanosoma brucei gambiense is characterized by a wide array of clinical outcomes, ranging from asymptomatic to acute disease and even spontaneous cure. In this study, we investigated the association between macrophage migrating inhibitory factor (MIF), an important pro-inflammatory cytokine that plays a central role in both innate and acquired immunity, and disease outcome during T. b. gambiense infection. A comparative expression analysis of patients, individuals with latent infection and controls found that MIF had significantly higher expression in patients (nâ¯=â¯141; 1.25⯱â¯0.07; pâ¯<â¯.0001) and latent infections (nâ¯=â¯25; 1.23⯱â¯0.13; pâ¯=â¯.0005) relative to controls (nâ¯=â¯46; 0.94⯱â¯0.11). Furthermore, expression decreased significantly after treatment (patients before treatment nâ¯=â¯33; 1.40⯱â¯0.18 versus patients after treatment nâ¯=â¯33; 0.99⯱â¯0.10, pâ¯=â¯.0001). We conducted a genome wide eQTL analysis on 29 controls, 128 cases and 15 latently infected individuals for whom expression and genotype data were both available. Four loci, including one containing the chemokine CXCL13, were found to associate with MIF expression. Genes at these loci are candidate regulators of increased expression of MIF after infection. Our study is the first data demonstrating that MIF expression is elevated in T. b. gambiense-infected human hosts but does not appear to contribute to pathology.
Assuntos
Quimiocina CXCL13/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Locos de Características Quantitativas/imunologia , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CXCL13/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Guiné , Humanos , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Pessoa de Meia-Idade , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/patologia , Adulto JovemRESUMO
Trypanosomiasis has been recognized as a scourge in sub-Saharan Africa for centuries. The disease, caused by protozoan parasites of the Trypanosoma genus, is a major cause of mortality and morbidity in animals and man. Human African trypanosomiasis (HAT), or sleeping sickness, results from infections with T. brucei (b.) gambiense or T. b. rhodesiense with T. b. gambiense accounting for over 95% of infections. Historically there have been major epidemics of the infection, followed by periods of relative disease control. As a result of concerted disease surveillance and treatment programmes, implemented over the last two decades, there has been a significant reduction in the number of cases of human disease reported. However, the recent identification of asymptomatic disease carriers gives cause for some concern. The parasites evade the host immune system by switching their surface coat, comprised of variable surface glycoprotein (VSG). In addition, they have evolved a variety of strategies, including the production of serum resistance associated protein (SRA) and T. b. gambiense-specific glycoprotein (TgsGP) to counter host defense molecules. Infection with either disease variant results in an early haemolymphatic-stage followed by a late encephalitic-stage when the parasites migrate into the CNS. The clinical features of HAT are diverse and non-specific with early-stage symptoms common to several infections endemic within sub-Saharan Africa which may result in a delayed or mistaken diagnosis. Migration of the parasites into the CNS marks the onset of late-stage disease. Diverse neurological manifestations can develop accompanied by a neuroinflammatory response, comprised of astrocyte activation, and inflammatory cell infiltration. However, the transition between the early and late-stage is insidious and accurate disease staging, although crucial to optimize chemotherapy, remains problematic with neurological symptoms and neuroinflammatory changes recorded in early-stage infections. Further research is required to develop better diagnostic and staging techniques as well as safer more efficacious drug regimens. Clearer information is also required concerning disease pathogenesis, specifically regarding asymptomatic carriers and the mechanisms employed by the trypanosomes to facilitate progression to the CNS and precipitate late-stage disease. Without progress in these areas it may prove difficult to maintain current control over this historically episodic disease.
Assuntos
Doenças Negligenciadas/diagnóstico , Doenças Negligenciadas/epidemiologia , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Barreira Hematoencefálica/parasitologia , Encéfalo/parasitologia , Diagnóstico Tardio , Humanos , Incidência , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/prevenção & controle , Pentamidina/administração & dosagem , Pentamidina/uso terapêutico , Índice de Gravidade de Doença , Suramina/administração & dosagem , Suramina/uso terapêutico , Resultado do Tratamento , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/prevenção & controleRESUMO
Trypanosoma brucei gambiense (T. b. gambiense) is the major causative agent of human African trypanosomiasis (HAT). A great variety of clinical outcomes have been observed in West African foci, probably due to complex host-parasite interactions. In order to separate the roles of parasite genetic diversity and host variability, we have chosen to precisely characterize the pathogenicity and virulence of T. b. gambiense field isolates in a mouse model. Thirteen T. b. gambiense strains were studied in experimental infections, with 20 Balb/C infected mice per isolate. Mice were monitored for 30â¯days, in which mortality, parasitemia, anemia, and weight were recorded. Mortality rate, prepatent period, and maximum parasitemia were estimated, and a survival analysis was performed to compare strain pathogenicity. Mixed models were used to assess parasitemia dynamics, weight, and changes in Packed Cell Volume (PCV). Finally, a multivariate analysis was performed to infer relationships between all variables. A large phenotypic diversity was observed. Pathogenicity was highly variable, ranging from strains that kill their host within 9â¯days to a non-pathogenic strain (no deaths during the experiment). Virulence was also variable, with maximum parasitemia values ranging from 42 million to 1 billion trypanosomes/ml. Reduced PCV and weight occurred in the first two weeks of the infection, with the exception of two strains. Finally, the global analysis highlighted three groups of strains: a first group with highly pathogenic strains showing an early mortality associated with a short prepatent period; a second group of highly virulent strains with intermediate pathogenicity; and a third group of isolates characterized by low pathogenicity and virulence patterns. Such biological differences could be related to the observed clinical diversity in HAT. A better understanding of the biological pathways underlying the observed phenotypic diversity could thus help to clarify the complex nature of the host-parasite interactions that determine the resistance/susceptibility status to T. brucei gambiense.
Assuntos
Interações Hospedeiro-Parasita , Parasitemia/patologia , Fenótipo , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/patologia , África Ocidental , Animais , Peso Corporal , Modelos Animais de Doenças , Índices de Eritrócitos , Eritrócitos/parasitologia , Eritrócitos/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Análise Multivariada , Parasitemia/mortalidade , Parasitemia/parasitologia , Análise de Componente Principal , Análise de Sobrevida , Trypanosoma brucei gambiense/classificação , Trypanosoma brucei gambiense/isolamento & purificação , Tripanossomíase Africana/mortalidade , Tripanossomíase Africana/parasitologia , VirulênciaRESUMO
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals' hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Assuntos
Anemia/imunologia , Interações Hospedeiro-Parasita/imunologia , Sistema Fagocitário Mononuclear/imunologia , Trypanosoma brucei gambiense/imunologia , Tripanossomíase Africana/imunologia , Anemia/sangue , Anemia/parasitologia , Animais , Modelos Animais de Doenças , Eritropoese/imunologia , Galectina 3/imunologia , Galectina 3/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Fatores Inibidores da Migração de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Sistema Fagocitário Mononuclear/metabolismo , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/sangue , Tripanossomíase Africana/parasitologiaRESUMO
BACKGROUND: In general, glycerol kinases (GKs) are transferases that catalyze phospho group transfer from ATP to glycerol, and the mechanism was suggested to be random bi-bi. The reverse reaction i.e. phospho transfer from glycerol 3-phosphate (G3P) to ADP is only physiologically feasible by the African trypanosome GK. In contrast to other GKs the mechanism of Trypanosoma brucei gambiense glycerol kinase (TbgGK) was shown to be in an ordered fashion, and proceeding via autophosphorylation. From the unique reaction mechanism of TbgGK, we envisaged its potential to possess phosphatase activity in addition to being a kinase. METHODS: Our hypothesis was tested by spectrophotometric and LC-MS/MS analyses using paranitrophenyl phosphate (pNPP) and TbgGK's natural substrate, G3P respectively. Furthermore, protein X-ray crystallography and site-directed mutagenesis were performed to examine pNPP binding, catalytic residues, and the possible reaction mechanism. RESULTS: In addition to its widely known and expected phosphotransferase (class II) activity, TbgGK can efficiently facilitate the hydrolytic cleavage of phosphoric anhydride bonds (a class III property). This phosphatase activity followed the classical Michaelis-Menten pattern and was competitively inhibited by ADP and G3P, suggesting a common catalytic site for both activities (phosphatase and kinase). The structure of the TGK-pNPP complex, and structure-guided mutagenesis implicated T276 to be important for the catalysis. Remarkably, we captured a crystallographic molecular snapshot of the phosphorylated T276 reaction intermediate. CONCLUSION: We conclude that TbgGK has both kinase and phosphatase activities. GENERAL SIGNIFICANCE: This is the first report on a bifunctional kinase/phosphatase enzyme among members of the sugar kinase family.
Assuntos
Glicerol Quinase/química , Monoéster Fosfórico Hidrolases/química , Conformação Proteica , Trypanosoma brucei gambiense/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Glicerofosfatos/metabolismo , Humanos , Nitrobenzenos/química , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Trypanosoma brucei gambiense/patogenicidadeRESUMO
All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.
Assuntos
Antígenos/análise , Interações Hospedeiro-Patógeno/genética , Recombinação Genética/genética , Trypanosoma brucei gambiense/genética , Tripanossomíase Africana/genética , Imunidade Adaptativa/genética , Animais , Variação Antigênica/genética , Antígenos/imunologia , Replicação do DNA/genética , Conversão Gênica/genética , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/parasitologiaAssuntos
Efeitos Psicossociais da Doença , Genômica , Falência Renal Crônica/economia , Diálise Renal/economia , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/complicações , Adolescente , África Subsaariana , Alelos , Apolipoproteína L1/genética , Evolução Fatal , Feminino , Hereditariedade , Humanos , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Nefrologistas/ética , Prevalência , Edema Pulmonar/economia , Edema Pulmonar/etiologia , Edema Pulmonar/terapia , Fatores de Risco , Tripanossomíase Africana/genética , Tripanossomíase Africana/microbiologia , UltrassonografiaRESUMO
African trypanosomes, which divide their life cycle between mammals and tsetse flies, are confronted with environments that differ widely in temperature, nutrient availability and host responses to infection. In particular, since trypanosomes cannot predict when they will be transmitted between hosts, it is vital for them to be able to sense and adapt to their milieu. Thanks to technical advances, significant progress has been made in understanding how the parasites perceive external stimuli and react to them. There is also a growing awareness that trypanosomes use a variety of mechanisms to exchange information with each other, thereby enhancing their chances of survival.
Assuntos
Meio Ambiente , Interações Hospedeiro-Patógeno/fisiologia , Estágios do Ciclo de Vida/fisiologia , Mamíferos/parasitologia , Trypanosoma brucei gambiense/fisiologia , Trypanosoma brucei rhodesiense/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Insetos Vetores/parasitologia , Percepção de Quorum/fisiologia , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologiaRESUMO
Human African Trypanosomiasis (HAT) transmitted by the tsetse fly continues to be a public health issue, despite more than a century of research. There are two types of the disease, the chronic gambiense and the acute rhodesiense-HAT. Fly abundance and distribution have been affected by changes in land-use patterns and climate. However, disease transmission still continues. Here, we review some aspects of HAT ecoepidemiology in the context of altered infestation patterns and maintenance of the transmission cycle as well as emerging options in disease and vector control.
Assuntos
Insetos Vetores , Tripanossomíase Africana/epidemiologia , Moscas Tsé-Tsé/patogenicidade , Animais , Congo , Humanos , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologiaAssuntos
Sistemas de Liberação de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Nanopartículas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Animais , Humanos , Nanopartículas/química , Polímeros/química , Polímeros/uso terapêutico , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/genética , Tripanossomíase Africana/parasitologiaRESUMO
Humans resist infection by the African parasite Trypanosoma brucei owing to the trypanolytic activity of the serum apolipoprotein L1 (APOL1). Following uptake by endocytosis in the parasite, APOL1 forms pores in endolysosomal membranes and triggers lysosome swelling. Here we show that APOL1 induces both lysosomal and mitochondrial membrane permeabilization (LMP and MMP). Trypanolysis coincides with MMP and consecutive release of the mitochondrial TbEndoG endonuclease to the nucleus. APOL1 is associated with the kinesin TbKIFC1, of which both the motor and vesicular trafficking VHS domains are required for MMP, but not for LMP. The presence of APOL1 in the mitochondrion is accompanied by mitochondrial membrane fenestration, which can be mimicked by knockdown of a mitochondrial mitofusin-like protein (TbMFNL). The BH3-like peptide of APOL1 is required for LMP, MMP and trypanolysis. Thus, trypanolysis by APOL1 is linked to apoptosis-like MMP occurring together with TbKIFC1-mediated transport of APOL1 from endolysosomal membranes to the mitochondrion.
Assuntos
Apolipoproteínas/metabolismo , Cinesinas/metabolismo , Lipoproteínas HDL/metabolismo , Lisossomos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Apolipoproteína L1 , Apoptose , Transporte Biológico , Endocitose , Humanos , Membranas Intracelulares/metabolismo , Permeabilidade , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidadeRESUMO
BACKGROUND: The duration of the stages of HAT is an important factor in epidemiological studies and intervention planning. Previously, we published estimates of the duration of the haemo-lymphatic stage 1 and meningo-encephalitic stage 2 of the gambiense form of human African trypanosomiasis (HAT), in the absence of treatment. Here we revise the estimate of stage 2 duration, computed based on data from Uganda and South Sudan, by adjusting observed infection prevalence for incomplete case detection coverage and diagnostic inaccuracy. FINDINGS: The revised best estimate for the mean duration of stage 2 is 252 days (95% CI 171-399), about half of our initial best estimate, giving a total mean duration of untreated gambiense HAT infection of approximately 2 years and 2 months. CONCLUSIONS: Our new estimate provides improved information on the transmission dynamics of this neglected tropical disease in Uganda and South Sudan. We stress that there remains considerable variability around the estimated mean values, and that one must be cautious in applying these results to other foci.
Assuntos
Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão , Humanos , Modelos Teóricos , Doenças Negligenciadas/epidemiologia , Sudão/epidemiologia , Fatores de Tempo , Uganda/epidemiologiaRESUMO
A third of African Americans with sporadic focal segmental glomerulosclerosis (FSGS) or HIV-associated nephropathy (HIVAN) do not carry APOL1 renal risk genotypes. This raises the possibility that other APOL1 variants may contribute to kidney disease. To address this question, we sequenced all APOL1 exons in 1437 Americans of African and European descent, including 464 patients with biopsy-proven FSGS/HIVAN. Testing for association with 33 common and rare variants with FSGS/HIVAN revealed no association independent of strong recessive G1 and G2 effects. Seeking additional variants that might have been under selection by pathogens and could represent candidates for kidney disease risk, we also sequenced an additional 1112 individuals representing 53 global populations. Except for G1 and G2, none of the 7 common codon-altering variants showed evidence of selection or could restore lysis against trypanosomes causing human African trypanosomiasis. Thus, only APOL1 G1 and G2 confer renal risk, and other common and rare APOL1 missense variants, including the archaic G3 haplotype, do not contribute to sporadic FSGS and HIVAN in the US population. Hence, in most potential clinical or screening applications, our study suggests that sequencing APOL1 exons is unlikely to bring additional information compared to genotyping only APOL1 G1 and G2 risk alleles.
Assuntos
Nefropatia Associada a AIDS/genética , Apolipoproteínas/genética , Glomerulosclerose Segmentar e Focal/genética , Lipoproteínas HDL/genética , Polimorfismo de Nucleotídeo Único , Nefropatia Associada a AIDS/diagnóstico , Nefropatia Associada a AIDS/etnologia , Negro ou Afro-Americano/genética , Apolipoproteína L1 , Apolipoproteínas/sangue , Biópsia , Estudos de Casos e Controles , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/etnologia , Haplótipos , Interações Hospedeiro-Parasita , Humanos , Lipoproteínas HDL/sangue , Masculino , Fenótipo , Medição de Risco , Fatores de Risco , Análise de Sequência de DNA , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidade , Estados Unidos/epidemiologia , População Branca/genéticaRESUMO
Human African trypanosomiasis (HAT) is a disease caused by infection with the parasite Trypanosoma brucei gambiense or T. b. rhodesiense. It is transmitted to humans via the tsetse fly. Approximately 70 million people worldwide were at risk of infection in 1995, and approximately 20,000 people across Africa are infected with HAT. The objective of this review was to identify existing economic evaluations in order to summarise cost-effective interventions to reduce, control, or eliminate the burden of HAT. The studies included in the review were compared and critically appraised in order to determine if there were existing standardised methods that could be used for economic evaluation of HAT interventions or if innovative methodological approaches are warranted. A search strategy was developed using keywords and was implemented in January 2014 in several databases. The search returned a total of 2,283 articles. After two levels of screening, a total of seven economic evaluations were included and underwent critical appraisal using the Scottish Intercollegiate Guidelines Network (SIGN) Methodology Checklist 6: Economic Evaluations. Results from the existing studies focused on the cost-effectiveness of interventions for the control and reduction of disease transmission. Modelling was a common method to forecast long-term results, and publications focused on interventions by category, such as case detection, diagnostics, drug treatments, and vector control. Most interventions were considered cost-effective based on the thresholds described; however, the current treatment, nifurtomix-eflornithine combination therapy (NECT), has not been evaluated for cost-effectiveness, and considerations for cost-effective strategies for elimination have yet to be completed. Overall, the current evidence highlights the main components that play a role in control; however, economic evaluations of HAT elimination strategies are needed to assist national decision makers, stakeholders, and key funders. These analyses would be of use, as HAT is currently being prioritized as a neglected tropical disease (NTD) to reach elimination by 2020.
Assuntos
Análise Custo-Benefício , Doenças Negligenciadas/prevenção & controle , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/economia , Tripanossomíase Africana/terapia , África , Animais , Eflornitina/economia , Eflornitina/uso terapêutico , Humanos , Insetos Vetores/parasitologia , Modelos Teóricos , Doenças Negligenciadas/economia , Medicina Tropical/economia , Tripanossomicidas/economia , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologiaRESUMO
African sleeping sickness is a neglected tropical disease transmitted by tsetse flies. New and better drugs are still needed especially for its second stage, which is fatal if untreated. 28DAP010, a dipyridylbenzene analogue of DB829, is the second simple diamidine found to cure mice with central nervous system infections by a parenteral route of administration. 28DAP010 showed efficacy similar to that of DB829 in dose-response studies in mouse models of first- and second-stage African sleeping sickness. The in vitro time to kill, determined by microcalorimetry, and the parasite clearance time in mice were shorter for 28DAP010 than for DB829. No cross-resistance was observed between 28DAP010 and pentamidine on the tested Trypanosoma brucei gambiense isolates from melarsoprol-refractory patients. 28DAP010 is the second promising preclinical candidate among the diamidines for the treatment of second-stage African sleeping sickness.