Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857838

RESUMO

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Assuntos
Divisão Celular , Microtúbulos , Simbiose , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Microtúbulos/efeitos dos fármacos , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Trypanosomatina/fisiologia , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Bactérias/metabolismo , Bactérias/genética , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura
2.
Trends Parasitol ; 37(4): 317-329, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33308952

RESUMO

The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.


Assuntos
Trypanosomatina , Flagelos/ultraestrutura , Interações Hospedeiro-Parasita , Relação Estrutura-Atividade , Trypanosomatina/patogenicidade , Trypanosomatina/fisiologia , Trypanosomatina/ultraestrutura
3.
PLoS One ; 15(1): e0227832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945116

RESUMO

Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).


Assuntos
Infecções por Euglenozoa/veterinária , Heterópteros/imunologia , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia , Trypanosomatina/crescimento & desenvolvimento , Animais , Resistência à Doença , Infecções por Euglenozoa/imunologia , Infecções por Euglenozoa/parasitologia , Hemolinfa/parasitologia , Heterópteros/parasitologia , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/parasitologia , Mucosa Intestinal/ultraestrutura , Microscopia Eletrônica , Trypanosomatina/patogenicidade , Trypanosomatina/ultraestrutura
4.
Infect Genet Evol ; 70: 90-100, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30738194

RESUMO

The mitochondrial DNA (mtDNA) is a potentially valuable phylogenetic marker given its presence across all eukaryotic taxa and its relative conservation in structure and sequence. In trypanosomatids, a homologue of the mtDNA referred to as the maxicircle DNA, is located within a specialised structure in the single mitochondrion of the trypanosomatids called the kinetoplast; a high molecular weight network of DNA composed of thousands of catenated minicircles and a smaller number of larger maxicircles. Unique to the kinetoplastid protists, the maxicircle component of this complex network could represent a desirable target for taxonomic inquiry that may also facilitate exploration of the evolutionary history of this important group of parasites. The aim of this study was to investigate the phylogenetic value of the trypanosomatid maxicircle for these applications. Maxicircle sequences were obtained either by assembling raw sequence data publicly accessible in online databases (i.e., NCBI), or by amplification of novel maxicircle sequences from trypanosomatid DNA using long-range (LR) PCR with subsequent Illumina sequencing. This procedure facilitated the generation of nearly complete maxicircle sequences (i.e., excluding the divergent region) for numerous dixenous and monoxenous trypanosomatid species. Annotation of each maxicircle sequence confirmed that their structure was conserved across all taxa examined. Phylogenetic analyses confirmed that Z. australiensis showed a greater genetic relatedness with the dixenous trypanosomatids of the genera Leishmania and Endotrypanum, as opposed to members of the monoxenous genera Crithidia and Leptomonas. Additionally, molecular clock analysis supported that the dixenous Leishmaniinae appeared approximately 75 million years ago during the breakup of Gondwana. In line with previous studies, our results support the Supercontinents hypothesis regarding the origin of dixenous Leishmaniinae. Ultimately, we demonstrate that the maxicircle represents an excellent phylogenetic marker for studying the evolutionary history of trypanosomatids, resulting in trees with very high bootstrap support values.


Assuntos
DNA de Cinetoplasto/genética , Trypanosomatina/genética , Animais , Evolução Biológica , Crithidia/genética , Crithidia/ultraestrutura , Marcadores Genéticos , Leishmania/genética , Leishmania/ultraestrutura , Filogeografia , Trypanosomatina/ultraestrutura
5.
PLoS One ; 13(9): e0204467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261003

RESUMO

Blastocrithidia papi is a unique trypanosomatid in that its life cycle is synchronized with that of its host, and includes an obligate stage of development in Malpighian tubules (MTs). This occurs in firebugs, which exited the winter diapause. In the short period, preceding the mating of overwintered insects, the flagellates penetrate MTs of the host, multiply attached to the epithelial surface with their flagella, and start forming cyst-like amastigotes (CLAs) in large agglomerates. By the moment of oviposition, a large number of CLAs are already available in the rectum. They are discharged on the eggs' surface with feces, used for transmission of bugs' symbiotic bacteria, which are compulsorily engulfed by the newly hatched nymphs along with the CLAs. The obligate development of B. papi in MTs is definitely linked to the life cycle synchronization. The absence of peristalsis allow the trypanosomatids to accumulate and form dense CLA-forming subpopulations, whereas the lack of peritrophic structures facilitates the extensive discharge of CLAs directly into the hindgut lumen. The massive release of CLAs associated with oviposition is indispensable for maximization of the infection efficiency at the most favorable time point.


Assuntos
Hemípteros/parasitologia , Interações Hospedeiro-Patógeno , Túbulos de Malpighi/parasitologia , Trypanosomatina/crescimento & desenvolvimento , Animais , Células Epiteliais/parasitologia , Células Epiteliais/ultraestrutura , Fezes/parasitologia , Hemípteros/ultraestrutura , Intestinos/parasitologia , Intestinos/ultraestrutura , Estágios do Ciclo de Vida , Túbulos de Malpighi/ultraestrutura , Oviposição , Trypanosomatina/ultraestrutura
6.
Protist ; 168(1): 71-79, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28043008

RESUMO

Phytomonas spp. (phytomonads) are a diverse and globally distributed group of unicellular eukaryotes that parasitize a wide range of plants and are transmitted by insect hosts. Here we report the discovery and characterisation of a new species of Phytomonas, named Phytomonas oxycareni n. sp., which was obtained from the salivary glands of the invasive species of true bug Oxycarenus lavaterae (Heteroptera). The new Phytomonas species exhibits a long slender promastigote morphology and can be found both within the lumen of the insect host's salivary glands as well as within the cells of the salivary gland itself. Sampling multiple individuals from the same population post-winter hibernation on two consecutive years revealed that infection was persistent over time. Finally, phylogenetic analyses of small subunit ribosomal RNA genes revealed that this species is sister to other species within the genus Phytomonas, providing new insight into the evolutionary history of the clade.


Assuntos
Heterópteros/parasitologia , Trypanosomatina/classificação , Animais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Glândulas Salivares/parasitologia , Trypanosomatina/genética , Trypanosomatina/ultraestrutura
7.
J Eukaryot Microbiol ; 63(6): 794-803, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27194398

RESUMO

In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution.


Assuntos
Bactérias/citologia , Proteínas de Protozoários/genética , Simbiose , Trypanosomatina/microbiologia , Bactérias/genética , Divisão Celular , Proteínas de Protozoários/metabolismo , Interferência de RNA , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
J Eukaryot Microbiol ; 63(2): 198-209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26352484

RESUMO

In this study, we surveyed six species of cockroaches, two synanthropic (i.e. ecologically associated with humans) and four wild, for intestinal trypanosomatid infections. Only the wild cockroach species were found to be infected, with flagellates of the genus Herpetomonas. Two distinct genotypes were documented, one of which was described as a new species, Herpetomonas tarakana sp. n. We also propose a revision of the genus Herpetomonas and creation of a new subfamily, Phytomonadinae, to include Herpetomonas, Phytomonas, and a newly described genus Lafontella n. gen. (type species Lafontella mariadeanei comb. n.), which can be distinguished from others by morphological and molecular traits.


Assuntos
Baratas/parasitologia , Trypanosomatina/classificação , Animais , Biodiversidade , República Tcheca , DNA de Protozoário/genética , Genótipo , Microscopia Eletrônica de Transmissão , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Eslováquia , Trypanosomatina/genética , Trypanosomatina/isolamento & purificação , Trypanosomatina/ultraestrutura
9.
Mem Inst Oswaldo Cruz ; 110(1): 48-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25742263

RESUMO

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Tomatina/análogos & derivados , Tomatina/farmacologia , Trypanosomatina/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Colesterol/análise , Solanum lycopersicum/parasitologia , Metiltransferases/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Doenças das Plantas/parasitologia , Esteróis/análise , Esteróis/biossíntese , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura
10.
Folia Parasitol (Praha) ; 61(2): 97-112, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24822316

RESUMO

Four new species of monoxenous kinetoplastid parasites are described from Brachycera flies, namely Wallaceina raviniae Votýpka et Lukes, 2014 and Crithidia otongatchiensis Votýpka et Lukes, 2014 from Ecuador, Leptomonas moramango Votypka et Lukes, 2014 from Madagascar, and Crithidia pragensis Votýpka, Klepetková et Lukes, 2014 from the Czech Republic. The new species are described here based on sequence analysis of their spliced leader (SL) RNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and small subunit (SSU) rRNA genes, as well as their morphology and ultrastructure. High-pressure freezing and Bernhard's EDTA regressive staining, used for the first time for monoxenous (one host) trypanosomatids, revealed the presence of viral particles with cytosolic localization in one and unique mitochondrial localization in another species. In accordance with previous observations, our results emphasize a discrepancy between morphology and molecular taxonomy of the family Trypanosomatidae. All four newly described species are represented by typical morphotypes (mainly choano- and promastigotes) and are virtually indistinguishable from other monoxenous trypanosomatids by morphology. Nevertheless, they all differ in their phylogenetic affinities. Whereas three of them grouped within the recently defined subfamily Leishmaniinae, which includes numerous representatives of the genera Leishmania Ross, 1903, Crithidia Léger, 1902 and Leptomonas Kent, 1880, the fourth species clusters together with the 'collosoma' clade (named after 'Leptomonas' collosoma Wallace, Clark, Dyer et Collins, 1960). Here we demonstrate that the 'collosoma' group represents the elusive genus Wallaceina Podlipaev, Frolov et Kolesnikov, 1999. We redefine this genus in molecular terms based on similarities of the respective molecular markers and propose to use this taxon name for the group of species of the 'collosoma' clade.


Assuntos
Dípteros/parasitologia , Filogenia , Trypanosomatina/genética , Trypanosomatina/ultraestrutura , Animais , Interações Hospedeiro-Parasita , Especificidade da Espécie
11.
Curr Biol ; 23(18): 1787-93, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24012313

RESUMO

The kinetoplastids are a widespread and important group of single-celled eukaryotes, many of which are devastating parasites of animals, including humans. We have discovered a new insect trypanosomatid in the gut of Culex pipiens mosquitoes. Glyceraldehyde-3-phosphate dehydrogenase- and SSU rRNA-based phylogenetic analyses show this parasite to constitute a distinct branch between the free-living Bodo saltans and the obligatory parasitic clades represented by the genus Trypanosoma and other trypanosomatids. From draft genome sequence data, we identified 114 protein genes shared among the new flagellate, 15 trypanosomatid species, B. saltans, and the heterolobosean Naegleria gruberi, as well as 129 protein genes shared with the basal kinetoplastid Perkinsela sp. Individual protein phylogenies together with analyses of concatenated alignments show that the new species, here named Paratrypanosoma confusum n. gen., n. sp., branches with very high support at the base of the family Trypanosomatidae. P. confusum thus represents a long-sought-after missing link between the ancestral free-living bodonids and the derived parasitic trypanosomatids. Further analysis of the P. confusum genome should provide insight into the emergence of parasitism in the medically important trypanosomatids.


Assuntos
Filogenia , Trypanosomatina/classificação , Sequência de Aminoácidos , Animais , Culex/parasitologia , Feminino , Genoma , Dados de Sequência Molecular , RNA Ribossômico/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Análise de Sequência de RNA , Trypanosomatina/genética , Trypanosomatina/isolamento & purificação , Trypanosomatina/ultraestrutura
12.
Trends Parasitol ; 29(1): 43-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23246083

RESUMO

Monoxenous trypanosomatids, which are usually regarded as benign dwellers of the insect alimentary tract, represent a relatively obscure group within the family Trypanosomatidae. This field of study has long been in disarray with the genus level taxonomy of this group remaining artificial, species criteria elusive, host specificity and occurrence poorly known, and their diversity mostly unexplored. The time has arrived to remedy this situation: a phylogenetic approach has been applied to taxa recognition and description, and a culture-independent (PCR-based) approach for detection and identification of organisms in nature has made it feasible to study the diversity of the group. Although more than 100 typing units have been discovered recently, these appear to represent a small segment of trypanosomatid biodiversity, which still remains to be uncovered.


Assuntos
Biodiversidade , Filogenia , Trypanosomatina/classificação , Animais , Especificidade da Espécie , Trypanosomatina/citologia , Trypanosomatina/genética , Trypanosomatina/ultraestrutura
13.
Protist ; 163(4): 616-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22341645

RESUMO

A trypanosomatid species, designated as Typing Unit 1 (TU1) by sequences of SL RNA gene repeats, has been found in the intestine of pyrrhocorids (Insecta: Heteroptera) in Europe, Mediterranean, Central America and some parts of Asia and Africa. Phylogenetic analysis of the SL repeat sequences has shown that the isolates group in the tree according to their geographic origin. The maximal sequence divergence was observed in parasites from Neotropics suggesting the origin within and subsequent migrations from this region. The global distribution of the parasite could have been facilitated by ubiquity of its hosts that include several genera of the family Pyrrhocoridae. In Europe the TU1 flagellates frequently occur in Pyrrhocoris apterus, the host of Leptomonas pyrrhocorisZotta, 1912, a species that had been insufficiently defined by host and light microscopy level morphology. Herein, the Zotta's species description has been amended to include the TU1 SL RNA repeat, SSU rRNA, glycosomal GAPDH gene sequences, as well as ultrastructure. In addition, Leptomonas scantii n. sp. with an overlapping host range has been described. Moreover, 10 typing units of trypanosomatids found in the pyrrhocorid hosts demonstrate the extent of variability of trypanosomatids occurring in one host family.


Assuntos
Heterópteros/parasitologia , Filogeografia , Trypanosomatina/isolamento & purificação , África , Animais , Ásia , América Central , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Europa (Continente) , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Dados de Sequência Molecular , RNA Ribossômico 18S/genética , RNA Líder para Processamento/genética , Análise de Sequência de DNA , Trypanosomatina/classificação , Trypanosomatina/genética , Trypanosomatina/ultraestrutura
14.
Bioelectromagnetics ; 33(4): 334-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22012884

RESUMO

The literature shows that the effects of direct electric currents on biological material are numerous, including bactericidal, fungicidal, parasiticidal, and anti-tumoral, among others. Non-pathogenic trypanosomatids, such as Herpetomonas samuelpessoai, have emerged as important models for the study of basic biological processes performed by a eukaryotic cell. The present study reports a dose-dependent anti-protozoan effect of direct electric treatment with both cathodic and anodic current flows on H. samuelpessoai cells. The damaging effects can be attributable to the electrolysis products generated during electric stimulation. The pH of the cell suspension was progressively augmented from 7.4 to 10.5 after the cathodic treatment. In contrast, the anodic treatment caused a pH decrease varying from 7.4 to 6.5. Transmission electron microscopy analyses revealed profound alterations in vital cellular structures (e.g., mitochondrion, kinetoplast, flagellum, flagellar pocket, nucleus, and plasma membrane) after exposure to both cathodic and anodic current flows. Specifically, cathodic current flow treatment induced the appearance of autophagic-like structures on parasite cells, while those submitted to an anodic current flow presented marked disorganization of plasma membrane and necrotic appearance. However, parasites treated in the intermediary chamber (without contact with the electrodes) did not present significant changes in viability or morphology, and no pH variation was detected in this system. The use of H. samuelpessoai as a biological model and the direct electric current experimental approach used in our study provide important information for understanding the mechanisms involved in the cytotoxic effects of this physical agent.


Assuntos
Condutividade Elétrica/efeitos adversos , Trypanosomatina/ultraestrutura , Sobrevivência Celular , Trypanosomatina/citologia
15.
Mem Inst Oswaldo Cruz ; 106(3): 301-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21655817

RESUMO

A new trypanosomatid species, Blastocrithidia cyrtomeni, is herein described using morphological and molecular data. It was found parasitising the alimentary tract of the insect host Cyrtomenus bergi, a polyphagous pest. The morphology of B. cyrtomeni was investigated using light and transmission microscopy and molecular phylogeny was inferred from the sequences of spliced leader RNA (SL rRNA) - 5S rRNA gene repeats and the 18S small subunit (SSU) rRNA gene. Epimastigotes of variable size with straphanger cysts adhering to the middle of the flagellum were observed in the intestinal tract, hemolymph and Malpighian tubules. Kinetoplasts were always observed anterior to the nucleus. The ultrastructure of longitudinal sections of epimastigotes showed the flagellum arising laterally from a relatively shallow flagellar pocket near the kinetoplast. SL RNA and 5S rRNA gene repeats were positive in all cases, producing a 0.8-kb band. The amplicons were 797-803 bp long with > 98.5% identity, indicating that they originated from the same organism. According to the sequence analysis of the SL-5S rRNA gene repeats and the 18S SSU rRNA gene, B. cyrtomeni is different from all other known species or isolates of Trypanosomatidae. Both analyses indicate that among known species, it is most closely related to Blastocrithidia triatomae.


Assuntos
DNA de Protozoário/genética , Hemípteros/parasitologia , RNA de Protozoário/genética , RNA Líder para Processamento/genética , Trypanosomatina , Animais , Sequência de Bases , Colômbia , Hemípteros/classificação , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , Trypanosomatina/classificação , Trypanosomatina/genética , Trypanosomatina/isolamento & purificação , Trypanosomatina/ultraestrutura
16.
Methods Mol Biol ; 736: 211-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21660730

RESUMO

Here, we describe the methodology currently used to analyze the structural organization of protozoa of the Trypanosomatidae family by atomic force microscopy. The results are compared with those obtained using light, scanning, and transmission electron microscopy.


Assuntos
Microscopia de Força Atômica/métodos , Trypanosomatina/ultraestrutura
17.
Mem. Inst. Oswaldo Cruz ; 106(3): 301-307, May 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-589038

RESUMO

A new trypanosomatid species, Blastocrithidia cyrtomeni, is herein described using morphological and molecular data. It was found parasitising the alimentary tract of the insect host Cyrtomenus bergi, a polyphagous pest. The morphology of B. cyrtomeni was investigated using light and transmission microscopy and molecular phylogeny was inferred from the sequences of spliced leader RNA (SL rRNA) - 5S rRNA gene repeats and the 18S small subunit (SSU) rRNA gene. Epimastigotes of variable size with straphanger cysts adhering to the middle of the flagellum were observed in the intestinal tract, hemolymph and Malpighian tubules. Kinetoplasts were always observed anterior to the nucleus. The ultrastructure of longitudinal sections of epimastigotes showed the flagellum arising laterally from a relatively shallow flagellar pocket near the kinetoplast. SL RNA and 5S rRNA gene repeats were positive in all cases, producing a 0.8-kb band. The amplicons were 797-803 bp long with > 98.5 percent identity, indicating that they originated from the same organism. According to the sequence analysis of the SL-5S rRNA gene repeats and the 18S SSU rRNA gene, B. cyrtomeni is different from all other known species or isolates of Trypanosomatidae. Both analyses indicate that among known species, it is most closely related to Blastocrithidia triatomae.


Assuntos
Animais , DNA de Protozoário , Hemípteros , RNA de Protozoário , RNA Líder para Processamento , Trypanosomatina , Sequência de Bases , Colômbia , Hemípteros , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , Trypanosomatina , Trypanosomatina , Trypanosomatina , Trypanosomatina/ultraestrutura
18.
Protist ; 162(3): 503-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21420905

RESUMO

We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.


Assuntos
Betaproteobacteria/classificação , Betaproteobacteria/genética , Simbiose , Trypanosomatina/classificação , Trypanosomatina/genética , Sequência de Bases , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/ultraestrutura , Evolução Biológica , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Intergênico/química , DNA Intergênico/genética , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Funções Verossimilhança , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , RNA Ribossômico 16S/genética , Subunidades Ribossômicas Menores/genética , Análise de Sequência de DNA , Simbiose/genética , Trypanosomatina/isolamento & purificação , Trypanosomatina/ultraestrutura
19.
Bol. latinoam. Caribe plantas med. aromát ; 10(2): 147-154, mar. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-686994

RESUMO

Gingko biloba has been one of the most used medicinal plants all over the world in the past years. In this study, our group has studied the effect of a hydroethanolic extract from the aerial parts of this plant on the growth and morphological differentiation of trypanosomatids. Herpetomonas samuelpessoai and Herpetomonas sp were used in this study. The extract was obtained in a Soxhlet apparatus (50 oC, 2 hours). This extract was aseptically added to Roitman’s medium in different concentrations (4, 20, 40, 60, 80 and 100 mg/ml). The growth rate was determined using a Newbauer chamber to count numbers of cells after the extract inoculation (24 and 72 hours later). Smears stained by the Panotic method was used to determine the percentages of pro, para and opisthomastigote forms. The extract inhibited Herpetomonas sp growth in concentrations higher than 20 mg/ml. H. samuelpessoai has been inhibited in doses higher than 40 mg/ml. No morphological differentiation was observed in Herpetomonas sp cell. However, morphological differentiations could be noticed in H. samuelpessoai cell using doses higher than 40 mg/ml. These alterations are probably related to the cell division process, since cells with 3 or 4 nucleus were observed. Also, cytoplasmatic expansions, representing unsuccessful process of cell division were frequently found out. Further ultrastructural analysis using a transmission electron microscope showed cells with homogeneous nucleus or the absence of it. Protozoan protein profile was also analyzed. It was possible to notice changes in both trypanosomatids used in this study. H. samuelpessoai has shown over expression and accumulation of proteins which its degradation is essential to continue the cell differentiation. Also, it is possible to suggest that this extract acts through the modulation of the genetic expression and may be harmful to human cells if not purified.


Gingko biloba es una de las plantas medicinales más utilizadas en todo el mundo en los últimos años. En este estudio, nuestro grupo ha estudiado el efecto de un extracto hidroetanólico de la parte aérea de esta planta sobre el crecimiento y la diferenciación morfológica de tripanosomátidos. Herpetomonas samuelpessoai y Herpetomonas sp se utilizaron en este estudio. El extracto se obtuvo en un aparato Soxhlet (50° C/2 horas). Este extracto se agregó asépticamente a medio Roitman en diferentes concentraciones (4, 20, 40, 60, 80 y 100 mg /ml). La tasa de crecimiento se determinó utilizando una cámara de Newbauer para contar el número de células después de la inoculación de extracto (24 y 72 horas más tarde). Frotis teñidos por el método Panotic se utilizó para determinar los porcentajes de pro, para y las formas opistomastigota. El extracto inhibió el crecimiento Herpetomonas sp en concentraciones superiores a 20 mg /ml. H. samuelpessoai se ha inhibido en dosis superiores a 40 mg /ml. No se observó diferenciación morfológica en la celda Herpetomonas sp. Sin embargo, las diferenciaciones morfológicas se pudo observar en la celda H. samuelpessoai con dosis superiores a 40 mg /ml. Estas alteraciones son probablemente relacionado con el proceso de división celular, ya que las células con 3 o 4 núcleos se observaron. Además, las expansiones citoplasmáticas, lo que representa el proceso fallido de la división celular se encontraron con frecuencia hacia fuera. Un análisis más detallado ultraestructural usando microscopio electrónico de transmisión mostró células con núcleo homogéneo o la ausencia de ella. El perfil de proteínas por Protozoarios también se ha analizado. Fue posible notar cambios tanto en tripanosomátidos utilizados en este estudio. H. samuelpessoai ha demostrado a lo largo de expresión y la acumulación de proteínas que su degradación es esencial para continuar con la diferenciación celular. Además, es posible sugerir que este extracto...


Assuntos
Extratos Vegetais/farmacologia , Ginkgo biloba/química , Trypanosomatina/crescimento & desenvolvimento , Trypanosomatina , Eletroforese , Folhas de Planta/química , Microscopia Eletrônica de Transmissão , Trypanosomatina/ultraestrutura
20.
J Parasitol ; 96(2): 465-75, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20540605

RESUMO

The Trypanosomatidae is closely related to euglenids that harbor plastids acquired from a green alga via secondary endosymbiosis. This discovery led to the idea that trypanosomatid parasites contained a green alga-derived plastid in their evolutionary past, an evolutionary scenario that was criticized based on the rarity of plant/plastid/cyanobacterium-like genes in the completely sequenced genomes of Trypanosoma and Leishmania species. Because it is difficult to identify such genes, however, their apparent rarity does not preclude a previous plastid endosymbiosis in the Trypanosomatidae. The genome of the plastid-less apicomplexan Cryptosporidium parvum preserves only a handful of plant/plastid/cyanobacterium-like genes, suggesting massive loss of plastid genes after elimination of its plastid. Additional support for such wholesale gene loss comes from fucoxanthin-containing dinoflagellates. Trypanosomatid nuclear genomes contain cyanobacterium-, green plant-, and haptophyte alga-derived genes, suggesting that they could have possessed a plastid in their evolutionary past; however, these genes also could represent examples of more typical horizontal gene transfer that did not accompany a plastid endosymbiosis. Thus, the presence of host cell genes that were adapted for use in the plastid would be much stronger evidence for a past plastid endosymbiosis in the Trypanosomatidae. Good examples of such genes are those encoding superoxide dismutases (SODs). Trypanosomatid parasites possess 4 iron-containing SODs, with 2 of them, SODA and SODC, targeted to the mitochondrion. In contrast with SODAs with classical single-domain mitochondrial targeting signals, SODCs carry bipartite pre-sequences composed of a signal peptide, followed by a transit peptide. Interestingly, these N-terminal extensions show striking similarities in length, hydropathy profiles, amino acid composition, and targeting properties to pre-sequences of proteins targeted to eukaryotic alga-derived plastids of euglenids and dinoflagellates. In turn, phylogenetic analyses indicate that SODCs originated from a mitochondrion-targeted SOD via gene duplication and were inherited vertically in the trypanosomatid lineage. These data represent a new kind of evidence for a past plastid endosymbiosis in the Trypanosomatidae, but the nature of this plastid remains unclear. It is usually assumed that the trypanosomatid plastid shared a common origin with that of euglenids, but Delta 4 desaturase phylogenies suggest that it could have originated via an independent, tertiary endosymbiosis involving a haptophyte alga. It is also possible that ancestors of the Trypanosomatidae initially possessed a primary plastid that later was replaced by a secondary or tertiary plastid.


Assuntos
Evolução Biológica , Clorófitas/ultraestrutura , Plastídeos , Simbiose/fisiologia , Trypanosomatina/classificação , Clorófitas/genética , Clorófitas/fisiologia , Plastídeos/genética , Trypanosomatina/genética , Trypanosomatina/fisiologia , Trypanosomatina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA