RESUMO
Two-dimensional transition metal dichalcogenides (TMDCs) exhibit promising photothermal therapy (PTT) and chemodynamic therapy (CDT) for anti-tumour treatment. Herein, we proposed an engineering strategy to regulate the lattice structure of tungsten-doped molybdenum selenide (MoxW1-xSe2) transformed conformational nanoarchitectonics using a microwave-assisted solvothermal method for enhancing peroxidase (POD)-like catalytic performance by adjusting the ratio of molybdenum (Mo) and tungsten (W). Furthermore, the optimised Mo0.8W0.2Se2 nanoflakes surface was modified with chitosan (CHI) for improved biocompatibility and nanocatalytic efficacy, then the obtained CHI-Mo0.8W0.2Se2 subsequently loaded the chemotherapeutic drug mitoxantrone (MTO) for enhanced 4 T1 cells killing ability, shortly denoted as CHI-Mo0.8W0.2Se2-MTO for PTT-augmented CDT and chemotherapy (CT). A series of performance validations successfully showed that electrons tend to transfer from W to Mo in CHI-Mo0.8W0.2Se2, which resulted in superior POD-like activity (Km = 0.038 mM) of CHI-Mo0.8W0.2Se2 compared with that of horseradish peroxidase. Furthermore, CHI-Mo0.8W0.2Se2-MTO with excellent photothermal conversion efficiency (PCE=63.2 %) in the near-infrared (NIR) region could further promote endogenous â¢OH generation and MTO controlled release within solid tumours. In vivo studies confirmed the successful achievement of synergistic therapeutic effects (tumour inhibition rate of over 90 %) with minimised side effects. Versatile therapeutic nanoagents hold great potential for personalised therapy of breast cancer and will find their way to the pharmaceutical field.
Assuntos
Antineoplásicos , Neoplasias da Mama , Molibdênio , Tungstênio , Tungstênio/química , Tungstênio/farmacologia , Molibdênio/química , Molibdênio/farmacologia , Feminino , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Fototérmica , Mitoxantrona/farmacologia , Mitoxantrona/química , Selênio/química , Selênio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Linhagem Celular Tumoral , Fototerapia , Nanoestruturas/química , Liberação Controlada de Fármacos , Conformação Molecular , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/terapiaRESUMO
In this study, molecular dynamics (MD) simulations were used to investigate how alloying tungsten (W) with molybdenum (Mo) and local strain affect the primary defect formation and interstitial dislocation loops (IDLs) in W-Mo alloys. While the number of Frenkel pairs (FPs) in the W-Mo alloy is similar to pure W, it is half that of pure Mo. The W-20% Mo alloy, chosen for further analysis, showed minimal FP variance after collision cascades induced by primary knock-on atoms (PKAs) at 10 to 80 keV. The research examined hydrostatic strains from -1.4% to 1.6%, finding that higher strains correlated with increased FP counts and cluster formation, including IDLs. The following two types of IDLs were identified: majority ½ <111> loops as well as <100> IDLs that formed within the initial picoseconds of the simulations under higher tensile strain (1.6%) and larger PKA energies (80 keV). The strain effects also correlated with changes in threshold displacement energy (TDE), with higher FP formation under tensile strain. This study highlights the impact of strain and alloying on radiation damage, particularly in low-temperature, high-energy environments.
Assuntos
Ligas , Simulação de Dinâmica Molecular , Molibdênio , Tungstênio , Tungstênio/química , Molibdênio/química , Ligas/química , Estresse MecânicoRESUMO
Selective and sensitive sarcosine detection is crucial due to its recent endorsement as a prostate cancer (PCa) biomarker in clinical diagnosis. The reduced graphene oxide-cobalt nickel tungsten boron oxides (CoNiWBO/rGO) nanocomposite is developed as a non-enzymatic electrochemical sensor for sarcosine detection in PCa patients' serum. CoNiWBO/rGO is synthesized by the chemical reduction method via a one-pot reduction method followed by calcination at 500 °C under a nitrogen environment for 2 h and characterized by UV-Vis, XRD, TGA, and SEM. CoNiWBO/rGO is then deposited on a glassy carbon electrode, and sarcosine sensing parameters are optimized, including concentration and pH. This non-enzymatic sensor is employed to directly determine sarcosine in serum samples. Differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) are employed to monitor the electrochemical behavior where sarcosine binding leads to oxidation. Chronoamperometric studies show the stability of the developed sensor. The results demonstrate a wide linear range from 0.1 to 50 µM and low limits of detection, i.e., 0.04 µM and 0.07 µM using DPV and LSV respectivel. Moreover, the calculated recovery of sarcosine in human serum of prostate cancer patients is 78-96%. The developed electrochemical sensor for sarcosine detection can have potential applications in clinical diagnosis.
Assuntos
Técnicas Eletroquímicas , Grafite , Nanocompostos , Níquel , Neoplasias da Próstata , Sarcosina , Humanos , Sarcosina/sangue , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Nanocompostos/química , Grafite/química , Técnicas Eletroquímicas/métodos , Níquel/sangue , Níquel/química , Tungstênio/química , Cobalto/sangue , Óxidos/química , Biomarcadores Tumorais/sangue , Limite de Detecção , EletrodosRESUMO
The large-scale utilization of antibiotics has opened a separate chapter of pollution with the generation of reactive drug-resistant bacteria. To deal with this, in this work, different mass ratios of CoFe2O4/WO3 nanocomposites were prepared following an in situ growth method using the precursors of WO3 and CoFe2O4. The structure, morphology, and optical properties of the nanocomposite photocatalysts were scrutinized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-Vis DRS), photoluminescence spectrum (PL), etc. The experimental data signified that the loading of CoFe2O4 obviously changed the optical properties of WO3. The photocatalytic performance of CoFe2O4/WO3 composites was investigated by considering tetracycline as a potential pollutant. The outcome of the analyzed data exposed that the CoFe2O4/WO3 composite with a mass ratio of 5% had the best degradation performance for tetracycline eradication under the solar light, and a degradation efficiency of 77% was achieved in 20 min. The monitored degradation efficiency of the optimized photocatalyst was 45% higher compared with the degradation efficiency of 32% for pure WO3. Capturing experiments and tests revealed that hydroxyl radical (·OH) and hole (h+) were the primary eradicators of the target pollutant. This study demonstrates that a proper mass of CoFe2O4 can significantly push WO3 for enhanced eradication of waterborne pollutants.
Assuntos
Antibacterianos , Cobalto , Nanocompostos , Óxidos , Tetraciclina , Tungstênio , Tungstênio/química , Nanocompostos/química , Catálise , Antibacterianos/química , Antibacterianos/farmacologia , Óxidos/química , Tetraciclina/química , Cobalto/química , Compostos Férricos/química , Fotólise , Poluentes Químicos da Água/química , Difração de Raios X , Processos FotoquímicosRESUMO
Artificial visual system empowered by 2D materials-based hardware simulates the functionalities of the human visual system, leading the forefront of artificial intelligence vision. However, retina-mimicked hardware that has not yet fully emulated the neural circuits of visual pathways is restricted from realizing more complex and special functions. In this work, we proposed a human visual pathway-replicated hardware that consists of crossbar arrays with split floating gate 2D tungsten diselenide (WSe2) unit devices that simulate the retina and visual cortex, and related connective peripheral circuits that replicate connectomics between the retina and visual cortex. This hardware experimentally displays advanced multi-functions of red-green color-blindness processing, low-power shape recognition, and self-driven motion tracking, promoting the development of machine vision, driverless technology, brain-computer interfaces, and intelligent robotics.
Assuntos
Interfaces Cérebro-Computador , Retina , Vias Visuais , Humanos , Vias Visuais/fisiologia , Retina/fisiologia , Córtex Visual/fisiologia , Tungstênio/química , Robótica/instrumentação , Selênio/química , Inteligência ArtificialRESUMO
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants. This work aims to assess the use of bioleached and stabilised residues from a tungsten mine for technosol production. The first objective was to evaluate mine tailings for their bioleaching potential by biostimulation or bioaugmentation with strain Diaphorobacter polyhydroxybutyrativorans B2A2W2. The second was to evaluate the effect of Portland cement or biopolymers such as Carboxymethyl Cellulose (CMC) or Xanthan Gum (XG) on the stabilisation of bioleached residues. The impact of biopolymers on residues' characteristics, such as metal leaching, number of cultivable microorganisms, compression strength and ecotoxicity was evaluated using flow systems. Over time, bioleached metallic elements decreased, except for iron (Fe). Biostimulated and stabilised residues exhibited similar trends; both CMC and cement showed low leaching rates and viable microorganisms in the same order (106 CFU × ml-1). However, bioaugmented residue stabilised with XG showed 106 CFU × ml-1 viable microorganisms and increased 2.2-fold Fe leaching than BA_Control. CMC addition to bioaugmented residue reduced 5.9-fold Fe leaching and increased 100-fold viable microorganisms. By utilising both biological and engineering approaches to characterise the technosol, this study contributes to advancing knowledge of technosol production. The residues biostimulated and stabilised with CMC produced a material useful for bio-applications, with low toxicity and metal leaching, useful for bio-applications. XG was the best stabiliser for geotechnical engineering applications, with improved compression strength. In conclusion, the study demonstrates the usefulness of biopolymer treatment for residues and emphasises the importance of selecting the appropriate biopolymer for the intended function of technosols.
Assuntos
Biodegradação Ambiental , Mineração , Polissacarídeos Bacterianos , Biopolímeros/química , Polissacarídeos Bacterianos/química , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/metabolismo , Tungstênio/química , Rhodobacteraceae/metabolismo , Resíduos IndustriaisRESUMO
Transition metal oxide semiconductors have great potential for use in H2 sensors, but in recent years, the strange phenomena about gas-sensitive performance associated with their special properties have been more widely discussed in research. In some cases, the resistance of transition metal oxide gas sensors will emerge with some changes contrary to their intrinsic semiconductor characteristics, especially in gas sensor research of WO3. Based on the hydrothermal synthesis of WO3, our work focuses on the abnormal change of tungsten oxide resistance to different gases at low temperature (80-200 °C) and high temperature (above 200 °C). Through in situ FT-IR and in situ XPS, combined with density functional theory calculations, a new reasonable explanation of WO3 is proposed for the abnormal resistance change caused by temperature and the strange response due to gas concentration. The occurrence of these findings can be attributed to the synergistic effect resulting from the presence of two contributing factors. One of them is attributed to the alteration in the surface valence state of WO3 induced by gas, resulting in the reduction of W6+. The other one is due to the reaction between gas and adsorbed oxygen on the surface of WO3. This work presents a novel and rational concept for addressing the reaction mechanism between gas and transition metal oxide semiconductors, thereby paving the way for the development of highly efficient gas sensors based on transition metal oxide semiconductors.
Assuntos
Hidrogênio , Óxidos , Temperatura , Tungstênio , Tungstênio/química , Óxidos/química , Hidrogênio/química , Semicondutores , Gases/química , Teoria da Densidade FuncionalRESUMO
Detecting hydrogen sulfide (H2S) odor gas in the environment at parts-per-billion-level concentrations is crucial. However, a significant challenge is the rapid deactivation caused by SO42- deposition. To address this issue, we developed a sensing material comprising Fe2O3-decorated WO3 nanowires (FWO) with strong interfacial interaction. During the H2S sensing process, important oxygen vacancies (OVs) are generated in situ and are recyclable on the surface of the Fe2O3 cluster. This sensor achieves a response of 140 (Ra/Rg) toward 50 ppm of H2S at 250 °C, with an experimentally measured detection limit of 1 ppb. It also exhibits remarkable stability, with no significant change observed over a long period of 150 days. Based on a combination of in situ DRIFT and DFT calculations, we have identified that the overactivation of O2 is the key step in the formation of SO42-. This overactivation can be partially modulated by the synergistic effect of Fe2O3 decoration and the in situ generated OVs, regulating the oxidation product to SO2 rather than the toxic SO42-. Furthermore, the continuous generation of OVs compensates for the loss of active sites pertaining to SO42- deposition, thereby contributing to the excellent stability of the sensor. This study underscores the beneficial impact of in situ OV generation in FWO for H2S sensing, offering a dynamic strategy to enhance sensor performance, particularly in terms of stability.
Assuntos
Compostos Férricos , Sulfeto de Hidrogênio , Nanofios , Óxidos , Oxigênio , Tungstênio , Tungstênio/química , Nanofios/química , Oxigênio/química , Óxidos/química , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Compostos Férricos/química , Limite de Detecção , Teoria da Densidade FuncionalRESUMO
Pharmaceuticals and personal care products (PPCPs) which include antibiotics such as tetracycline (TC) and ciprofloxacin (CIP), etc., have attracted increasing attention worldwide due to their potential threat to the aquatic environment and human health. In this work, a facile sol-gel method was developed to prepare tungsten-doped TiO2 with tunable W5+/W6+ ratio for the removal of PPCPs. The influence of solvents in the synthesis of the three different tungsten precursors doped TiO2 is also taken into account. WCl6, ammonium metatungstate (AMT), and Na2WO4â2H2O not only acted as the tungsten precursors but also controlled the tungsten ratio. The photocatalyst prepared by WCl6 as the tungsten precursor and ethanol as the solvent showed the highest photodegradation performance for ciprofloxacin (CIP) and tetracycline (TC), and the photodegradation performance for tetracycline (TC) was 2.3, 2.8, and 7.8 times that of AMT, Na2WO4â2H2O as the tungsten precursors and pristine TiO2, respectively. These results were attributed to the influence of the tungsten precursors and solvents on the W5+/W6+ ratio, sample crystallinity and surface properties. This study provides an effective method for the design of tungsten-doped TiO2 with tunable W5+/W6+ ratio, which has a profound impact on future studies in the field of photocatalytic degradation of PPCPs using an environmentally friendly approach.
Assuntos
Cosméticos , Solventes , Titânio , Tungstênio , Titânio/química , Tungstênio/química , Catálise , Solventes/química , Cosméticos/química , Fotólise , Ciprofloxacina/química , Preparações Farmacêuticas/química , Tetraciclina/química , Processos Fotoquímicos , Poluentes Químicos da Água/químicaRESUMO
Herein, coupling of noble metal-free plasmonic copper nanoparticles with tungsten suboxide and supporting on zeolite nanoclay (Cu/WO3-x@ZNC) composite will be introduced for bi-functional photocatalytic ciprofloxacin (CIP) degradation and water photothermal evaporation under visible/infrared (Vis/IR) exposure. Reduced band-gap of WO3-x via oxygen vacancies creation and localized surface plasmon resonance (LSPR) formation by Cu nanoparticles contributed significantly the extension and intensification of composite's photo-absorption range. Furthermore, small mesoporous structure of ZNC enhanced CIP adsorption and charge carriers separation where the reported photocatalytic efficiencies were 88.3 and 81.7% upon IR and Vis light exposure respectively. It was evidenced that plasmonic hot electrons (e-.s) and hydroxyl radicals (OHâ¢-) performed the basic functions of the photocatalytic process. At the other side, oxygen vacancies existence, plasmonic effect, and confining thermal characteristics of WO3-x, Cu, and ZNC correspondingly induced water photothermal evaporation with efficiencies up to 97.5 and 72.8% under IR and Vis illumination respectively. This work introduces synthesis of a novel bi-functional photocatalytic-photothermal composite by metal sub-oxide and non-noble metal plasmonic coupling and supporting on naturally-derived carrier for water restoration under broad spectral exposure.
Assuntos
Ciprofloxacina , Cobre , Tungstênio , Ciprofloxacina/química , Cobre/química , Tungstênio/química , Catálise , Poluentes Químicos da Água/química , Óxidos/química , Nanopartículas Metálicas/química , Água/química , Zeolitas/química , Raios Infravermelhos , Fotólise , Processos Fotoquímicos , Ressonância de Plasmônio de Superfície , AdsorçãoRESUMO
Bioactive NAD+ mediated multiple biocatalytic pathways in metabolic networks. Refining the structure of NADH oxidase-like (NOX) mimics to efficiently replenish NAD+ has been promising but challenging in NAD+-dependent dehydrogenase electrochemical cascade biosensing. Herein, we discovered that PtOx structures, formed via lattice oxygen translocation from WO3 to Pt NPs at the interface, potentially activate and modulate the NOX-like functionality in Pt@WO3 nanosheets. Incorporating PtOx leads to a more positive valence of Pt species within Pt/PtOx@WO3-x, where the PtO2 species serve as preeminent reaction sites for NADH coordination, activation, and dehydrogenation. Consequently, such nanozymes display enhanced NOX-like activity towards NADH oxidation in comparison to Pt@WO3. Ultimately, the 650-Pt/PtOx@WO3-x nanozyme is employed in an electrochemical cascade biosensor for ß-hydroxybutyrate (HB) detection, achieving a calculated detection limit of 25 µM. This study offers insights into PtOx activation in Pt-based NOX mimics and supports the future development of NAD+/NADH-dependent electrochemical biosensors.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , NAD , Óxidos , Platina , Tungstênio , NAD/química , Tungstênio/química , Platina/química , Óxidos/química , Hidroxibutiratos/química , Oxirredução , Nanopartículas Metálicas/química , Limite de DetecçãoRESUMO
Radiotherapy (RT) is often administered, either alone or in combination with other therapies, for most malignancies. However, the degree of tumor oxygenation, damage to adjacent healthy tissues, and inaccurate guidance remain issues that result in discontinuation or failure of RT. Here, a multifunctional therapeutic platform based on Ir@WO3-x is developed which simultaneously addresses these critical issues above for precision radiosensitization. Ir@WO3-x nanoreactors exhibit strong absorption of X-ray, acting as radiosensitizers. Moreover, ultrasmall Ir enzyme-mimic nanocrystals (NCs) are decorated onto the surface of the nanoreactor, where NCs have catalyst-like activity and are sensitive to H2O2 in the tumor microenvironment (TME) under near infrared-II (NIR-II) light stimulation. They efficiently catalyze the conversion of H2O2 to O2, thereby ameliorating hypoxia, inhibiting the expression of HIF-1α, and enhancing RT-induced DNA damage in cancerous tissue, further improving the efficiency of RT. Additionally, in response to high H2O2 levels in TME, the Ir@WO3-x nanoreactor also exerts peroxidase-like activity, boosting exogenous ROS, which increases oxidative damage and enhances ROS-dependent death signaling. Furthermore, Ir@WO3-x can serve as a high-quality computed tomography contrast agent due to its high X-ray attenuation coefficient and generation of pronounced tumor-tissue contrast. This report highlights the potential of advanced health materials to enhance precision therapeutic modalities.
Assuntos
Radiossensibilizantes , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Tungstênio , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Animais , Tungstênio/química , Tomografia Computadorizada por Raios X/métodos , Radiossensibilizantes/farmacologia , Nanopartículas/química , Humanos , Peróxido de Hidrogênio/metabolismo , Modelos Animais de Doenças , Óxidos/química , Catálise , Linhagem Celular TumoralRESUMO
The widespread usage of levofloxacin (LVF) intake is executed for several urinary and respiratory systems infections in human. But, its over intake leads to severe damage to humans and the environment by its exposure. Hence the detection of LVF is concerned and we herein developed an electrocatalyst, strontium tungsten oxide nanospheres and later decorated onto the functionalized multiwall carbon nanotubes (SrWO4/f-MWCNT) to perform effective electrochemical recognition of LVF in aquatic and biological samples. Binary metal oxide with carbon composite SrWO4/f-MWCNT was developed due to its specific features as nanostructures. Various methods of investigation have been examined to identify the physiochemical characteristics like X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and morphological characteristics including field emission scanning electron microscopy, and transmission electron microscopy. The synthesized SrWO4/f-MWCNT sample crystalline size was around 32.9 nm. The SrWO4/f-MWCNT modified glassy carbon electrode (GCE) has been subjected to electrochemical investigation with a wide linear range of 0.049 µM-574.73 µM with good sensitivity 2.86 µA µM-1 cm2, the limit of detection at 14.9 nM for LVF sensing. Furthermore, the designed LVF detection exhibited excellent anti-interference, stability, reproducibility, and repeatability. The as-developed sensor's electrochemical outcomes indicate the superior performance inherent in the developed composite.
Assuntos
Técnicas Eletroquímicas , Levofloxacino , Nanotubos de Carbono , Compostos de Tungstênio , Nanotubos de Carbono/química , Levofloxacino/química , Levofloxacino/análise , Levofloxacino/urina , Compostos de Tungstênio/química , Técnicas Eletroquímicas/métodos , Catálise , Eletrodos , Limite de Detecção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Óxidos/química , Tungstênio/químicaRESUMO
Acetaminophen (APAP) is a well-known type of over-the-counter painkillers and is frequently found in surface waterbodies, causing hepatotoxicity and skin irritation. Due to its persistence and chronic effects on the environment, innovative solutions must be provided to decompose APAP, effectively. Innovative catalysts of tungsten-modified iron oxides (TF) were successfully developed via a combustion method and thoroughly characterized using SEM, TEM, XRD, XPS, a porosimetry analysis, Mössbauer spectroscopy, VSM magnetometry, and EPR. With the synthesis method, tungsten was successfully incorporated into iron oxides to form ferrites and other magnetic iron oxides with a high porosity of 19.7 % and a large surface area of 29.5 m2/g. Also, their catalytic activities for APAP degradation by activating peroxymonosulfate (PMS) were evaluated under various conditions. Under optimal conditions, TF 2.0 showed the highest APAP degradation of 95 % removal with a catalyst loading of 2.0 g/L, initial APAP concentration of 5 mg/L, PMS of 6.5 mM, and pH 2.15 at room temperature. No inhibition by solution pHs, alkalinity, and humic acid was observed for APAP degradation in this study. The catalysts also showed chemical and mechanical stability, achieving 100 % degradation of 1 mg/L APAP during reusability tests with three consecutive experiments. These results show that TFs can effectively degrade persistent contaminants of emerging concern in water, offering an impactful contribution to wastewater treatment to protect human health and the ecosystem.
Assuntos
Acetaminofen , Compostos Férricos , Tungstênio , Poluentes Químicos da Água , Tungstênio/química , Acetaminofen/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Peróxidos/química , CatáliseRESUMO
Reliable and real-time monitoring of seafood decay is attracting growing interest for food safety and human health, while it is still a great challenge to accurately identify the released triethylamine (TEA) from the complex volatilome. Herein, defect-engineered WO3-x architectures are presented to design advanced TEA sensors for seafood quality assessment. Benefiting from abundant oxygen vacancies, the obtained WO2.91 sensor exhibits remarkable TEA-sensing performance in terms of higher response (1.9 times), faster response time (2.1 times), lower detection limit (3.2 times), and higher TEA/NH3 selectivity (2.8 times) compared with the air-annealed WO2.96 sensor. Furthermore, the definite WO2.91 sensor demonstrates long-term stability and anti-interference in complex gases, enabling the accurate recognition of TEA during halibut decay (0-48 h). Coupled with the random forest algorithm with 70 estimators, the WO2.91 sensor enables accurate prediction of halibut storage with an accuracy of 95%. This work not only provides deep insights into improving gas-sensing performance by defect engineering but also offers a rational solution for reliably assessing seafood quality.
Assuntos
Algoritmos , Óxidos , Alimentos Marinhos , Tungstênio , Alimentos Marinhos/análise , Tungstênio/química , Óxidos/química , Qualidade dos Alimentos , Algoritmo Florestas AleatóriasRESUMO
Currently, one of the primary challenges that human society must overcome is the task of decreasing the amount of energy used and the adverse effects that it has on the environment. The daily increase in liquid waste (comprising organic pollutants) is a direct result of the creation and expansion of new companies, causing significant environmental disruption. Water contamination is attributed to several industries such as textile, chemical, poultry, dairy, and pharmaceutical. In this study, we present the successful degradation of methylene blue dye using g-C3N4 (GCN) mixed with WO3 and V2O5 composites (GCN/WO3/V2O5 ternary composite) as a photocatalyst, prepared by a simple mechanochemistry method. The GCN/WO3/V2O5 ternary composite revealed a notable enhancement in photocatalytic performance, achieving around 97% degradation of aqueous methylene blue (MB). This performance surpasses that of the individual photocatalysts, namely pure GCN, GCN/WO3, and GCN/V2O5 composites. Furthermore, the GCN/WO3/V2O5 ternary composite exhibited exceptional stability even after undergoing five consecutive cycles. The exceptional photocatalytic activity of the GCN/WO3/V2O5 ternary composite can be ascribed to the synergistic effect of metal-free GCN and metal oxides, resulting in the alteration of the band gap and suppression of charge recombination in the ternary photocatalyst. This study offers a better platform for understanding the characteristics of materials and their photocatalytic performance under visible light conditions.
Assuntos
Azul de Metileno , Óxidos , Tungstênio , Poluentes Químicos da Água , Tungstênio/química , Óxidos/química , Catálise , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Azul de Metileno/química , Grafite/química , Purificação da Água/métodos , Processos Fotoquímicos , Fotólise , Compostos de NitrogênioRESUMO
Bacterial infections claim millions of lives every year, with the escalating menace of microbial antibiotic resistance compounding this global crisis. Nanozymes, poised as prospective substitutes for antibiotics, present a significant frontier in antibacterial therapy, yet their precise enzymatic origins remain elusive. With the continuous development of nanozymes, the applications of elemental N-modulated nanozymes have spanned multiple fields, including sensing and detection, infection therapy, cancer treatment, and pollutant degradation. The introduction of nitrogen into nanozymes not only broadens their application range but also holds significant importance for the design of catalysts in biomedical research. The synergistic interplay between W and N induces pivotal alterations in electronic configurations, endowing tungsten nitride (WN) with a peroxidase-like functionality. Furthermore, the introduction of N vacancies augments the nanozyme activity, thus amplifying the catalytic potential of WN nanostructures. Rigorous theoretical modeling and empirical validation corroborate the genesis of the enzyme activity. The meticulously engineered WN nanoflower architecture exhibits an exceptional ability in traversing bacterial surfaces, exerting potent bactericidal effects through direct physical interactions. Additionally, the topological intricacies of these nanostructures facilitate precise targeting of generated radicals on bacterial surfaces, culminating in exceptional bactericidal efficacy against both Gram-negative and Gram-positive bacterial strains along with notable inhibition of bacterial biofilm formation. Importantly, assessments using a skin infection model underscore the proficiency of WN nanoflowers in effectively clearing bacterial infections and fostering wound healing. This pioneering research illuminates the realm of pseudoenzyme activity and bacterial capture-killing strategies, promising a fertile ground for the development of innovative, high-performance artificial peroxidases.
Assuntos
Antibacterianos , Nitrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Nitrogênio/química , Testes de Sensibilidade Microbiana , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Peroxidase/metabolismo , Peroxidase/química , Animais , Tungstênio/química , Tungstênio/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Camundongos , Catálise , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , HumanosRESUMO
Water pollution has been made worse by the widespread use of organic dyes and their discharge, which has coincided with the industry's rapid development. Piezoelectric catalysis, as an effective wastewater purification method with promising applications, can enhance the catalyst activity by collecting tiny vibrations in nature and is not limited by sunlight. In this work, we designed and synthesized intriguing WS2/Bi2WO6 heterojunction nanocomposites, investigated their shape, structure, and piezoelectric characteristics using a range of characterization techniques, and used ultrasound to accelerate the organic dye Rhodamine B (RhB) degradation in wastewater. In comparison to the pristine monomaterials, the results demonstrated that the heterojunction composites demonstrated excellent degradation and stability of RhB under ultrasonic circumstances. The existence of heterojunctions and the internal piezoelectric field created by ultrasonic driving work in concert to boost catalytic performance, and the organic dye's rate of degradation is further accelerated by the carriers that are mutually transferred between the composites.
Assuntos
Rodaminas , Poluentes Químicos da Água , Catálise , Rodaminas/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Nanocompostos/química , Bismuto/química , Ondas Ultrassônicas , Purificação da Água/métodos , Compostos de Tungstênio/química , Ultrassom , Tungstênio/químicaRESUMO
A cleanroom free optimized fabrication of a low-cost facile tungsten diselenide (WSe2) combined with chitosan-based hydrogel device is reported for multifunctional applications including tactile sensing, pulse rate monitoring, respiratory rate monitoring, human body movements detection, and human electrophysiological signal detection. Chitosan being a natural biodegradable, non-toxic compound serves as a substrate to the semiconducting WSe2 electrode which is synthesized using a single step hydrothermal technique. Elaborate characterization studies are performed to confirm the morphological, structural, and electrical properties of the fabricated chitosan/WSe2 device. Chitosan/WSe2 sensor with copper contacts on each side is put directly on skin to capture human body motions. The resistivity of the sample was calculated as 26 kΩ m-1. The device behaves as an ultrasensitive pressure sensor for tactile and arterial pulse sensing with response time of 0.9 s and sensitivity of around 0.02 kPa-1. It is also capable for strain sensing with a gauge factor of 54 which is significantly higher than similar other reported electrodes. The human body movements sensing can be attributed to the piezoresistive character of WSe2 that originates from its non-centrosymmetric structure. Further, the sensor is employed for monitoring respiratory rate which measures to 13 counts/min for healthy individual and electrophysiological signals like ECG and EOG which can be used later for detecting numerous pathological conditions in humans. Electrophysiological signal sensing is carried out using a bio-signal amplifier (Bio-Amp EXG Pill) connected to Arduino. The skin-friendly, low toxic WSe2/chitosan dry electrodes pave the way for replacing wet electrodes and find numerous applications in personalized healthcare.
Assuntos
Quitosana , Dispositivos Eletrônicos Vestíveis , Quitosana/química , Humanos , Taxa Respiratória , Selênio/química , Frequência Cardíaca/fisiologia , Movimento , Tungstênio/química , Eletrodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodosRESUMO
In pursuing advanced neuromorphic applications, this study introduces the successful engineering of a flexible electronic synapse based on WO3-x, structured as W/WO3-x/Pt/Muscovite-Mica. This artificial synapse is designed to emulate crucial learning behaviors fundamental to in-memory computing. We systematically explore synaptic plasticity dynamics by implementing pulse measurements capturing potentiation and depression traits akin to biological synapses under flat and different bending conditions, thereby highlighting its potential suitability for flexible electronic applications. The findings demonstrate that the memristor accurately replicates essential properties of biological synapses, including short-term plasticity (STP), long-term plasticity (LTP), and the intriguing transition from STP to LTP. Furthermore, other variables are investigated, such as paired-pulse facilitation, spike rate-dependent plasticity, spike time-dependent plasticity, pulse duration-dependent plasticity, and pulse amplitude-dependent plasticity. Utilizing data from flat and differently bent synapses, neural network simulations for pattern recognition tasks using the Modified National Institute of Standards and Technology dataset reveal a high recognition accuracy of â¼95% with a fast learning speed that requires only 15 epochs to reach saturation.