Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.248
Filtrar
1.
Biol Pharm Bull ; 47(7): 1275-1281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987176

RESUMO

The generation of DNA damage causes mutations and consequently cancer. Reactive oxygen species are important sources of DNA damage and some mutation signatures found in human cancers. 8-Oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine) is one of the most abundant oxidized bases and induces a G→T transversion mutation at the modified site. The damaged G base also causes untargeted base substitution mutations at the G bases of 5'-GpA-3' dinucleotides (action-at-a-distance mutations) in human cells, and the cytosine deaminase apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) is involved in the mutation process. The deaminated cytosine, i.e., uracil, bases are expected to be removed by uracil DNA glycosylase. Most of the substitution mutations at the G bases of 5'-GpA-3' might be caused by abasic sites formed by the glycosylase. In this study, we expressed the uracil DNA glycosylase inhibitor from Bacillus subtilis bacteriophage PBS2 in human U2OS cells and examined the effects on the GO-induced action-at-a-distance mutations. The inhibition of uracil DNA glycosylase increased the mutation frequency, and in particular, the frequency of G→A transitions. These results indicated that uracil DNA glycosylase, in addition to APOBEC3, is involved in the untargeted mutation process induced by GO.


Assuntos
Guanina , Mutação , Uracila-DNA Glicosidase , Humanos , Guanina/análogos & derivados , Guanina/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Linhagem Celular Tumoral , Dano ao DNA , Bacillus subtilis/genética , Bacteriófagos/genética
2.
Biotechnol J ; 19(7): e2400097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987221

RESUMO

DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL-1. Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.


Assuntos
Sistemas CRISPR-Cas , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Sistemas CRISPR-Cas/genética , Humanos , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética
3.
Nat Commun ; 15(1): 4897, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851742

RESUMO

DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Engenharia de Proteínas , Uracila-DNA Glicosidase , Humanos , Edição de Genes/métodos , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Engenharia de Proteínas/métodos , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Citosina/metabolismo , Timina/metabolismo , Sistemas CRISPR-Cas , Células HEK293 , Mutagênese , Guanina/metabolismo , DNA/metabolismo , DNA/genética
4.
Biomolecules ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927084

RESUMO

Clickable nucleosides, most often 5-ethynyl-2'-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase ß. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable.


Assuntos
Química Click , Reparo do DNA , Nucleotídeos de Pirimidina , Humanos , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Desoxiuridina/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Replicação do DNA , Uracila-DNA Glicosidase/metabolismo
5.
Anal Chim Acta ; 1314: 342799, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876521

RESUMO

BACKGROUND: As a core enzyme in the base excision repair system, uracil DNA glycosylase (UDG) is indispensable in maintaining genomic integrity and normal cell cycles. Its abnormal activity intervenes in cancers and neurodegerative diseases. Previous UDG assays based on isothermal amplification and Clustered Regularly Interspaced Short Palindromic Repeats/Cas (CRISPR/Cas) system were fine in sensitivity, but exposed to complications in assay flow, time, and probe design. After isothermal amplification, a CRISPR/Cas reagent should be separately added with extra manual steps and its guide RNA (gRNA) should be designed, considering the presence of protospacer adjacent motif (PAM) site. RESULTS: We herein describe a UDG-REtarded CRISPR Amplification assay, termed 'URECA'. In URECA, isothermal nucleic acid (NA) amplification and CRISPR/Cas12a system were tightly combined to constitute a one-pot, isothermal CRISPR amplification system. Isothermal NA amplification for a UDG substrate (US) with uracil (U) bases was designed to activate and boost CRISPR/Cas12a reaction. Such scheme enabled us to envision that UDG would halt the isothermal CRISPR amplification reaction by excising U bases and messing up the US. Based on this principle, the assay detected the UDG activity down to 9.17 x 10-4 U/mL in 50 min. With URECA, we fulfilled the recovery test of UDG activities in plasma and urine with high precision and reproducibility and reliably determined UDG activities in cell extracts. Also, we verified its capability to screen candidate UDG inhibitors, showing its potentials in practical application as well as drug discovery. SIGNIFICANCE: URECA offers further merits: i) the assay is seamless. Following target recognition, the reactions proceed in one-step without any intervening steps, ii) probe design is simple. Unlike the conventional CRISPR/Cas12a-based assays, URECA does not consider the PAM site in probe design as Cas12a activation relies on instantaneous gRNA binding to single-stranded DNA strands. By rationally designing an enzyme substrate probe to be specific to other enzymes, while keeping a role as a template for isothermal CRISPR amplification, the detection principle of URECA will be expanded to devise biosensors for various enzymes of biological, clinical significance.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Técnicas de Amplificação de Ácido Nucleico , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas CRISPR-Cas/genética , Ensaios Enzimáticos/métodos , Reparo por Excisão
6.
Anal Chem ; 96(21): 8458-8466, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710075

RESUMO

G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.


Assuntos
Benzotiazóis , DNA , Corantes Fluorescentes , Uracila-DNA Glicosidase , Benzotiazóis/química , Benzotiazóis/metabolismo , Corantes Fluorescentes/química , DNA/química , DNA/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/química , Espectrometria de Fluorescência , Fluorescência , Técnicas Biossensoriais/métodos , Dicroísmo Circular , Humanos
7.
Biosens Bioelectron ; 255: 116255, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565025

RESUMO

Single nucleotide polymorphisms (SNPs) are closely associated with many biological processes, including genetic disease, tumorigenesis, and drug metabolism. Accurate and efficient SNP determination has been proved pivotal in pharmacogenomics and diagnostics. Herein, a universal and high-fidelity genotyping platform is established based on the dual toeholds regulated Cas12a sensing methodology. Different from the conventional single stranded or double stranded activation mode, the dual toeholds regulated mode overcomes protospacer adjacent motif (PAM) limitation via cascade toehold mediated strand displacement reaction, which is highly universal and ultra-specific. To enhance the sensitivity for biological samples analysis, a modified isothermal recombinant polymerase amplification (RPA) strategy is developed via utilizing deoxythymidine substituted primer and uracil-DNA glycosylase (UDG) treatment, designated as RPA-UDG. The dsDNA products containing single stranded toehold domain generated in the RPA-UDG allow further incorporation with dual toeholds regulated Cas12a platform for high-fidelity human sample genotyping. We discriminate all the single-nucleotide polymorphisms of ApoE gene at rs429358 and rs7412 loci with human buccal swab samples with 100% accuracy. Furthermore, we engineer visual readout of genotyping results by exploiting commercial lateral flow strips, which opens new possibilities for field deployable implementation.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Apolipoproteínas E , Uracila-DNA Glicosidase
8.
Mol Cell ; 84(11): 2036-2052.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688279

RESUMO

Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.


Assuntos
Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Uracila-DNA Glicosidase , Uracila , Humanos , Uracila/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
9.
Mol Cell ; 84(7): 1257-1270.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377993

RESUMO

Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.


Assuntos
Ácidos Alcanossulfônicos , Edição de Genes , Uracila-DNA Glicosidase , Animais , Camundongos , Mutação , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
10.
Lab Chip ; 24(7): 1987-1995, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38372397

RESUMO

Uracil-DNA glycosylase (UDG) is a base excision repair (BER) enzyme, which catalyzes the hydrolysis of uracil bases in DNA chains that contain uracil and N-glycosidic bonds of the sugar phosphate backbone. The expression of UDG enzyme is associated with a variety of genetic diseases including cancers. Hence, the identification of UDG activity in cellular processes holds immense importance for clinical investigation and diagnosis. In this study, we employed Cas12a protein and enzyme-assisted cycle amplification technology with a test strip to establish a precise platform for the detection of UDG enzyme. The designed platform enabled amplifying and releasing the target probe by reacting with the UDG enzyme. The amplified target probe can subsequently fuse with crRNA and Cas12a protein, stimulating the activation of the Cas12a protein to cleave the signal probe, ultimately generating a fluorescent signal. This technique showed the ability for evaluating UDG enzyme activity in different cell lysates. In addition, we have designed a detection probe to convert the fluorescence signal into test strip bands that can then be observed with the naked eye. Hence, our tool presented potential in both biomedical research and clinical diagnosis related to DNA repair enzymes.


Assuntos
Sistemas CRISPR-Cas , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo , Limite de Detecção , DNA/química , Uracila/química
11.
Protein Pept Lett ; 31(3): 169-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343045

RESUMO

BACKGROUND: Heat-labile uracil-DNA glycosylase (HL-UDG) is commonly employed to eliminate carry-over contamination in DNA amplifications. However, the prevailing HL-UDG is markedly inactivated at 50°C, rendering it unsuitable for specific one-step RT-qPCR protocols utilizing reverse transcriptase at an optimal temperature of 42°C. OBJECTIVE: This study aimed to explore novel HL-UDG with lower inactivation temperature and for recombinant expression. METHODS: The gene encoding an HL-UDG was cloned from the cold-water fish rainbow trout (Oncorhynchus mykiss) and expressed in Escherichia coli with high yield. The thermostability of this enzyme and other enzymatic characteristics were thoroughly examined. The novel HL-UDG was then applied for controlling carry-over contamination in one-step RT-qPCR. RESULTS: This recombinantly expressed truncated HL-UDG of rainbow trout (OmUDG) exhibited high amino acids similarity (84.1% identity) to recombinant Atlantic cod UDG (rcUDG) and was easily denatured at 40°C. The optimal pH of OmUDG was 8.0, and the optimal concentrations of both Na+ and K+ were 10 mM. Since its inactivation temperature was lower than that of rcUDG, the OmUDG could be used to eliminate carry-over contamination in one-step RT-qPCR with moderate reverse transcription temperature. CONCLUSION: We successfully identified and recombinantly expressed a novel HL-UDG with an inactivation temperature of 40°C. It is suitable for eliminating carry-over contamination in one-step RT-qPCR.


Assuntos
Temperatura Alta , Oncorhynchus mykiss , Uracila-DNA Glicosidase , Oncorhynchus mykiss/genética , Animais , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/química , Estabilidade Enzimática , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Proteínas de Peixes/genética , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Clonagem Molecular
12.
Bioorg Chem ; 144: 107176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330721

RESUMO

Repurposing drugs can significantly reduce the time and costs associated with drug discovery and development. However, many drug compounds possess intrinsic fluorescence, resulting in aberrations such as auto-fluorescence, scattering and quenching, in fluorescent high-throughput screening assays. To overcome these drawbacks, time-resolved technologies have received increasing attention. In this study, we have developed a rapid and efficient screening platform based on time-resolved emission spectroscopy in order to screen for inhibitors of the DNA repair enzyme, uracil-DNA glycosylase (UDG). From a database of 1456 FDA/EMA-approved drugs, sodium stibogluconate was discovered as a potent UDG inhibitor. This compound showed synergistic cytotoxicity against 5-fluorouracil-resistant cancer cells. This work provides a promising future for time-resolved technologies for high-throughput screening (HTS), allowing for the swift identification of bioactive compounds from previously overlooked scaffolds due to their inherent fluorescence properties.


Assuntos
Neoplasias da Próstata , Uracila-DNA Glicosidase , Humanos , Masculino , Uracila-DNA Glicosidase/química , Oligonucleotídeos , Gluconato de Antimônio e Sódio , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Detecção Precoce de Câncer
13.
Nucleic Acids Res ; 52(2): 784-800, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000394

RESUMO

Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sµ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.


Assuntos
Proteína de Replicação A , Uracila-DNA Glicosidase , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Imunoglobulinas/genética , Mutagênicos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Uracila/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Humanos , Animais , Camundongos
14.
Biosci Rep ; 44(1)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38059429

RESUMO

Enzymes in uracil-DNA glycosylase (UDG) superfamily are involved in removal of deaminated nucleobases such as uracil, methylcytosine derivatives such as formylcytosine and carboxylcytosine, and other base damage in DNA repair. UDGX is the latest addition of a new class to the UDG superfamily with a sporadic distribution in bacteria. UDGX type enzymes have a distinct biochemical property of cross-linking itself to the resulting AP site after uracil removal. Built on previous biochemical and structural analyses, this work comprehensively investigated the kinetic and enzymatic properties of Mycobacterium smegmatis UDGX. Kinetics and mutational analyses, coupled with structural information, defined the roles of E52, D56, D59, F65 of motif 1, H178 of motif 2 and N91, K94, R107 and H109 of motif 3 play in uracil excision and cross-linking. More importantly, a series of quantitative analyses underscored the structural coupling through inter-motif and intra-motif interactions and subsequent functional coupling of the uracil excision and cross-linking reactions. A catalytic model is proposed, which underlies this catalytic feature unique to UDGX type enzymes. This study offers new insight on the catalytic mechanism of UDGX and provides a unique example of enzyme evolution.


Assuntos
Reparo do DNA , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Catálise , Uracila
15.
mSphere ; 8(5): e0027823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747202

RESUMO

Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA. We previously reported that a murine gammaherpesvirus (MHV68) with a stop codon in ORF46 (ORF46.stop) that encodes for vUNG was defective in lytic replication and latency in vivo. However, a mutant virus that expressed a catalytically inactive vUNG (ORF46.CM) had no replication defect unless coupled with additional mutations in the catalytic motif of the viral dUTPase (ORF54.CM). The disparate phenotypes observed in the vUNG mutants led us to explore the non-enzymatic properties of vUNG. Immunoprecipitation of vUNG followed by mass spectrometry in MHV68-infected fibroblasts identified a complex comprising the cognate viral DNA polymerase, vPOL, encoded by ORF9, and the viral DNA polymerase processivity factor, vPPF, encoded by ORF59. MHV68 vUNG co-localized with vPOL and vPPF in subnuclear structures consistent with viral replication compartments. In reciprocal co-immunoprecipitations, the vUNG formed a complex with the vPOL and vPPF upon transfection with either factor alone or in combination. Lastly, we determined that key catalytic residues of vUNG are not required for interactions with vPOL and vPPF upon transfection or in the context of infection. We conclude that the vUNG of MHV68 associates with vPOL and vPPF independently of its catalytic activity. IMPORTANCE Gammaherpesviruses encode a uracil-DNA glycosylase (vUNG) that is presumed to excise uracil residues from viral genomes. We previously identified the vUNG enzymatic activity, but not the protein itself, as dispensable for gammaherpesvirus replication in vivo. In this study, we report a non-enzymatic role for the viral UNG of a murine gammaherpesvirus in forming a complex with two key components of the viral DNA replication machinery. Understanding the role of the vUNG in this viral DNA replication complex may inform the development of antiviral drugs that combat gammaherpesvirus-associated cancers.


Assuntos
Gammaherpesvirinae , Rhadinovirus , Animais , Camundongos , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Replicação Viral , Replicação do DNA , DNA Viral/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo , Gammaherpesvirinae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Uracila , Mamíferos
16.
J Zhejiang Univ Sci B ; 24(8): 749-754, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37551560

RESUMO

Vibrio parahaemolyticus is a major pathogen frequently found in seafood. Rapid and accurate detection of this pathogen is important for the control of bacterial foodborne diseases and to ensure food safety. In this study, we established a one-pot system that combines uracil-DNA glycosylase (UDG), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12b (Cas12b) for detecting V. parahaemolyticus in seafood. This detection system can effectively perform identification using a single tube and avoid the risk of carry-over contamination.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Uracila-DNA Glicosidase/genética , Temperatura Alta , Sistemas CRISPR-Cas , Inocuidade dos Alimentos
17.
J Am Chem Soc ; 145(30): 16350-16354, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478299

RESUMO

We report the occurrence of register-shifted structures in simulations of uracil-containing dsDNA. These occur when the 3' base vicinal to uracil is thymine in U:A base-paired DNA. Upon base flipping of uracil, this 3' thymine hydrogen bonds with the adenine across the uracil instead of its complementary base. The register-shifted structure is persistent and sterically blocks re-entry of uracil into the helix stack. Register shifting might be important for DNA repair since the longer exposure of the lesion in register-shifted structures could facilitate enzymatic recognition and repair.


Assuntos
Timina , Uracila , Uracila/química , Timina/química , Uracila-DNA Glicosidase/química , Dano ao DNA , Reparo do DNA , DNA/química
18.
Mol Microbiol ; 120(2): 298-306, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37452011

RESUMO

DNA glycosylases protect genetic fidelity during DNA replication by removing potentially mutagenic chemically damaged DNA bases. Bacterial Lhr proteins are well-characterized DNA repair helicases that are fused to additional 600-700 amino acids of unknown function, but with structural homology to SecB chaperones and AlkZ DNA glycosylases. Here, we identify that Escherichia coli Lhr is a uracil-DNA glycosylase (UDG) that depends on an active site aspartic acid residue. We show that the Lhr DNA helicase activity is functionally independent of the UDG activity, but that the helicase domains are required for fully active UDG activity. Consistent with UDG activity, deletion of lhr from the E. coli chromosome sensitized cells to oxidative stress that triggers cytosine deamination to uracil. The ability of Lhr to translocate single-stranded DNA and remove uracil bases suggests a surveillance role to seek and remove potentially mutagenic base changes during replication stress.


Assuntos
Escherichia coli , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , DNA/metabolismo , Uracila/química , Reparo do DNA , DNA Helicases/metabolismo , Proteínas de Bactérias/metabolismo
19.
Eur J Med Chem ; 258: 115604, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37399710

RESUMO

Uracil DNA glycosylase (UDG or Ung) is a key enzyme involved in uracil excision from the DNA as a repair mechanism. Designing Ung inhibitors is thus a promising strategy to treat different cancers and infectious diseases. The uracil ring and its derivatives have been shown to inhibit Mycobacterium tuberculosis Ung (MtUng), resulting from specific and strong binding with the uracil-binding pocket (UBP). To design novel MtUng inhibitors, we screened several non-uracil ring fragments hypothesised to occupy MtUng UBP due to their high similarity to the uracil structural motif. These efforts have resulted in the discovery of novel MtUng ring inhibitors. Here we report the co-crystallised poses of these fragments, confirming their binding within the UBP, thus providing a robust structural framework for the design of novel lead compounds. We selected the barbituric acid (BA) ring as a case study for further derivatisation and SAR analysis. The modelling studies predicted the BA ring of the designed analogues to interact with the MtUng UBP much like the uracil ring. The synthesised compounds were screened in vitro using radioactivity and a fluorescence-based assay. These studies led to a novel BA-based MtUng inhibitor 18a (IC50 = 300 µM) displaying ∼24-fold potency over the uracil ring.


Assuntos
Mycobacterium tuberculosis , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo , Uracila/farmacologia , Barbitúricos/farmacologia , Reparo do DNA
20.
Anal Chim Acta ; 1271: 341432, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37328254

RESUMO

Tetrahedral DNA nanostructure (TDN), as a classical bionanomaterial, which not only has excellent structural stability and rigidity, but also possesses high programmability due to strict base-pairs complementation, is widely used in various biosensing and bioanalysis fields. In this study, we first constructed a novel biosensor based on Uracil DNA glycosylase (UDG) -triggered collapse of TDN and terminal deoxynucleotidyl transferase (TDT)-induced insertion of copper nanoparticles (CuNPs) for fluorescence and visual analysis of UDG activity. In the presence of the target enzyme UDG, the uracil base modified on the TDN were specifically identified and removed to produce an abasic site (AP site). Endonuclease IV (Endo.IV) could cleave the AP site, making the TDN collapse and generating 3'-hydroxy (3'-OH), which were then elongated under the assistance of TDT to produce poly (T) sequences. Finally, Copper (II) sulfate (Cu2+) and l-Ascorbic acid (AA) were added to form CuNPs using poly (T) sequences as templates (T-CuNPs), resulting in a strong fluorescence signal. This method exhibited good selectivity and high sensitivity with a detection limit of 8.6 × 10-5 U/mL. Moreover, the strategy has been successfully applied to the screening of UDG inhibitors and the detection of UDG activity in complex cell lysates, which means that it has promising applications in clinical diagnosis and biomedical research.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , DNA Nucleotidilexotransferase , Uracila-DNA Glicosidase/análise , Cobre , Limite de Detecção , DNA/química , DNA Polimerase Dirigida por DNA , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA