RESUMO
Gout, marked by the deposition of sodium urate crystals in joints and peripheral tissues, presents a considerable health challenge. Recent research has shown a growing interest in nanozyme-based treatments for gout. However, literature on nanozymes that combine uricase-like (UOX) activity for uric acid (UA) degradation with catalase (CAT)-like activity for H2O2 elimination through a self-cascade reaction is limited. Herein, we discovered that two-dimensional Pd@Ir nanosheets (NSs) exhibit UOX and CAT activities effectively. Notably, we observed a size-dependent effect of Pd@Ir on activation energy during UA degradation, with the larger Pd@Ir NSs demonstrating a lower energy barrier. The 46-nm Pd@Ir had activation energy as low as 35.9 kJ/mol, surpassing the efficiency of natural bacterial uricase and most reported nanozymes. Through a tandem self-cascade reaction of Pd@Ir, UA was effectively degraded via UOX activity, while the byproduct H2O2 was simultaneously eliminated by CAT-like activity. Cell experiments revealed that Pd@Ir protect normal cells from oxidative stress and promote cell proliferation, demonstrating an excellent self-cascade effect. Additionally, Pd@Ir substantially alleviated gout symptoms in monosodium urate-induced acute gout mice without causing toxic effects on biological organs and tissues. This study opens new avenues for using nanozyme-based cascade reaction systems in the treatment of metabolic diseases.
Assuntos
Gota , Paládio , Urato Oxidase , Ácido Úrico , Gota/tratamento farmacológico , Gota/patologia , Animais , Camundongos , Urato Oxidase/química , Urato Oxidase/metabolismo , Paládio/química , Paládio/farmacologia , Nanoestruturas/química , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Humanos , Tamanho da Partícula , Catalase/metabolismo , Catalase/química , Estresse Oxidativo/efeitos dos fármacos , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacosRESUMO
Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 µg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 µg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.
Assuntos
Grafite , Ródio , Ácido Úrico , Grafite/química , Ácido Úrico/química , Ácido Úrico/metabolismo , Ródio/química , Urato Oxidase/química , Urato Oxidase/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Oxirredução , Arginina/química , Nanopartículas Metálicas/químicaRESUMO
Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile.
Assuntos
Benchmarking , Espalhamento a Baixo Ângulo , Difração de Raios X , Difração de Raios X/métodos , Funções Verossimilhança , Proteínas/química , Ribonuclease Pancreático/química , Muramidase/química , Conformação Proteica , Urato Oxidase/química , Urato Oxidase/metabolismo , Aldose-Cetose Isomerases/químicaRESUMO
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
Assuntos
Oxirredução , Urato Oxidase , Ácido Úrico , Especificidade por Substrato , Urato Oxidase/química , Urato Oxidase/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismo , Ácido Úrico/urina , Ligantes , Humanos , Níquel/química , Níquel/metabolismo , Sítios de Ligação , Domínio Catalítico , Catálise , Modelos Moleculares , Espectroscopia por Absorção de Raios XRESUMO
Hyperuricemia is associated with an increased risk of gout, hypertension, diabetes, and cardiovascular diseases. Most mammals maintain normal serum uric acid (SUA) via urate oxidase (Uox), an enzyme that metabolizes poorly-soluble UA to highly-soluble allantoin. In contrast, Uox became a pseudogene in humans and apes over the long course of evolution. Here we demonstrate an atavistic strategy for treating hyperuricemia based on endogenous expression of Uox in hepatocytes mediated by mRNA (mUox) loaded with an ionizable lipid nanoparticle termed iLAND. mUox@iLAND allows effective transfection and protein expression in vitro. A single dose of mUox@iLAND lowers SUA levels for several weeks in two female murine models, including a novel long-lasting model, which is also confirmed by metabolomics analysis. Together with the excellent safety profiles observed in vivo, the proposed mRNA agent demonstrates substantial potential for hyperuricemia therapy and the prevention of associated conditions.
Assuntos
Hiperuricemia , Lipossomos , RNA Mensageiro , Urato Oxidase , Ácido Úrico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/genética , Hiperuricemia/metabolismo , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Urato Oxidase/metabolismo , Urato Oxidase/genética , Feminino , Camundongos , Humanos , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Lipossomos/química , Nanopartículas/química , Hepatócitos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown. RESULTS: A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3-/-) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated. CONCLUSION: Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.
Assuntos
Disbiose , Microbioma Gastrointestinal , Hiperuricemia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Disbiose/microbiologia , Inflamassomos/metabolismo , Camundongos , Ratos , Masculino , Modelos Animais de Doenças , Rim , Camundongos Knockout , RNA Ribossômico 16S/genética , Transplante de Microbiota Fecal , Urato Oxidase/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Uricase (EC 1.7.3.3) is an oxidoreductase enzyme that is widely exploited for diagnostic and treatment purposes in medicine. This study focuses on producing recombinant uricase fromE. coliBL21 in a bubble column bioreactor (BCB) and finding the optimal conditions for maximum uricase activity. The three most effective variables on uricase activity were selected through the Plackett-Burman design from eight different variables and were further optimized by the central composite design of the response surface methodology (RSM). The selected variables included the inoculum size (%v/v), isopropylß-d-1-thiogalactopyranoside (IPTG) concentration (mM) and the initial pH of the culture medium. The activity of uricase, the final optical density at 600 nm wavelength (OD600) and the final pH were considered as the responses of this optimization and were modeled. As a result, activity of 5.84 U·ml-1and a final OD600of 3.42 were obtained at optimum conditions of 3% v/v inoculum size, an IPTG concentration of 0.54 mM and a pH of 6.0. By purifying the obtained enzyme using a Ni-NTA agarose affinity chromatography column, 165 ± 1.5 mg uricase was obtained from a 600 ml cell culture. The results of this study show that BCBs can be a highly effective option for large-scale uricase production.
Assuntos
Reatores Biológicos , Urato Oxidase , Urato Oxidase/química , Urato Oxidase/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Concentração de Íons de HidrogênioRESUMO
Uric acid is the end product of purine metabolism in humans due to inactivation of the uricase determined by the mutated uricase gene. Uricase catalyzes the conversion of uric acid into water-soluble allantoin that is easily excreted by the kidneys. Hyperuricemia occurs when the serum concentration of uric acid exceeds its solubility (7 mg/dL). However, modifications to improve the uricase activity is under development for treating the hyperuricemia. Here we designed 7 types of human-porcine chimeric uricase by multiple sequence comparisons and targeted mutagenesis. An optimal human-porcine chimeric uricase mutant (uricase-10) with both high activity (6.33 U/mg) and high homology (91.45 %) was determined by enzyme activity measurement. The engineering uricase was further modified with PEGylation to improve the stability of recombinant protein drugs and reduce immunogenicity, uricase-10 could be more suitable for the treatment of gout and hyperuricemia theoretically.
Assuntos
Polietilenoglicóis , Proteínas Recombinantes de Fusão , Urato Oxidase , Animais , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Polietilenoglicóis/química , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Urato Oxidase/química , Urato Oxidase/genética , Urato Oxidase/metabolismo , Ácido Úrico/metabolismoRESUMO
The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.
Assuntos
Hiperuricemia , Compostos de Manganês , Óxidos , Urato Oxidase , Hiperuricemia/tratamento farmacológico , Urato Oxidase/química , Urato Oxidase/uso terapêutico , Urato Oxidase/metabolismo , Óxidos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Animais , Catálise , Ácido Úrico/química , CamundongosRESUMO
Daily monitoring of serum uric acid levels is very important to provide appropriate treatment according to the constitution and lifestyle of individual hyperuricemic patients. We have developed a suspension-based assay to measure uric acid by adding a sample solution to the suspension containing micro-sized particles immobilized on uricase and horseradish peroxidase (HRP). In the proposed method, the mediator reaction of uricase, HRP, and uric acid produces resorufin from Amplex red. This resorufin is adsorbed onto enzyme-immobilized micro-sized particles simultaneously with its production, resulting in the red color of the micro-sized particles. The concentration of resorufin on the small surface area of the microscopic particles achieves a colorimetric analysis of uric acid with superior visibility. In addition, ethanol-induced desorption of resorufin allowed quantitative measurement of uric acid using a 96-well fluorescent microplate reader. The limit of detection (3σ) and RSD (n = 3) were estimated to be 2.2 × 10-2 µg/mL and ≤ 12.1%, respectively. This approach could also be applied to a portable fluorometer.
Assuntos
Colorimetria , Enzimas Imobilizadas , Fluorometria , Peroxidase do Rábano Silvestre , Urato Oxidase , Ácido Úrico , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Urato Oxidase/química , Urato Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Tamanho da Partícula , Humanos , Suspensões , Oxazinas/químicaRESUMO
Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20. The metal ion-binding site prediction and docking (MIB) web server was employed to identify the metal ion binding sites and their affinities towards mp20 residues. Among the tested metal ions, Cu2+ displayed the highest docking score, indicating its preference for interaction with Thr16 and Asp17 residues of mp20. To assess the catalytic activity of mp20 in the presence of metal ions, uric acid assays was monitored using a colorimetric method. The presence of Cu2+ in the assays promotes the activation of mp20, resulting in a color change based on quinoid production. Furthermore, the encapsulation of the mp20 within zeolitic imidazolate framework-8 (ZIF-8) notably improved the stability of the biomolecule. In comparison to the naked mp20, the encapsulated ZIFs biocomposite (mp20@ZIF-8) demonstrates superior stability, selectivity and sensitivity. ZIF's porous shells provides excellent protection, broad detection (3-100⯵M) with a low limit (4.4⯵M), and optimal function across pH (3.4-11.4) and temperature (20-100°C) ranges. Cost-effective and stable mp20@ZIF-8 surpasses native uricase, marking a significant biosensor technology breakthrough. This integration of metal cofactor optimization and robust encapsulation sets new standards for biosensing applications.
Assuntos
Técnicas Biossensoriais , Cobre , Simulação de Acoplamento Molecular , Urato Oxidase , Ácido Úrico , Urato Oxidase/química , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo , Cobre/química , Cobre/metabolismo , Estruturas Metalorgânicas/química , Sítios de Ligação , Zeolitas/química , Estabilidade Enzimática , Imidazóis/química , Colorimetria/métodosRESUMO
Urate oxidase (Uox)-deficient mice could be an optimal animal model to study hyperuricemia and associated disorders. We develop a liver-specific conditional knockout Uox-deficient (UoxCKO) mouse using the Cre/loxP gene targeting system. These UoxCKO mice spontaneously developed hyperuricemia with accumulated serum urate metabolites. Blocking urate degradation, the UoxCKO mice showed significant de novo purine biosynthesis (DNPB) in the liver along with amidophosphoribosyltransferase (Ppat). Pegloticase and allopurinol reversed the elevated serum urate (SU) levels in UoxCKO mice and suppressed the Ppat up-regulation. Although urate nephropathy occurred in 30-week-old UoxCKO mice, 90 % of Uox-deficient mice had a normal lifespan without pronounced urate transport abnormality. Thus, UoxCKO mice are a stable model of human hyperuricemia. Activated DNPB in the UoxCKO mice provides new insights into hyperuricemia, suggesting increased SU influences purine synthesis.
Assuntos
Hiperuricemia , Nefropatias , Humanos , Animais , Camundongos , Hiperuricemia/genética , Ácido Úrico/metabolismo , Técnicas de Inativação de Genes , Camundongos Knockout , Urato Oxidase/genética , Urato Oxidase/metabolismo , Nefropatias/genética , Modelos Animais de Doenças , Fígado/metabolismoRESUMO
Recent studies in the biopharmaceutical industry have shown an increase in the productivity and production efficiency of recombinant proteins by continuous culture. In this research, a new upstream fermentation process was developed for the production of recombinant uricase in the methylotrophic yeast Pichia pastoris. Expression of recombinant protein in this system is under the control of the AOX1 promoter and therefore requires methanol as an inducing agent and carbon/energy source. Considering the biphasic growth characteristics of conventional fed-batch fermentation, physical separation of the growth and induction stages for better control of the continuous fermentation process resulted in higher dry-cell weight (DCW) and enhanced recombinant urate oxidase activity. The DCW and recombinant uricase activity enzyme for fed-batch fermentation were 79 g/L and 6.8 u/mL. During the continuous process, in the growth fermenter at a constant dilution rate of 0.025 h-1 , DCW increased to 88.39 g/L. In the induction fermenter, at methanol feeding rates of 30, 60, and 80 mL/h, a recombinant uricase activity was 4.13, 7.2, and 0 u/mL, respectively. The optimum methanol feeding regime in continuous fermentation resulted in a 4.5-fold improvement in productivity compared with fed-batch fermentation from 0.04 u/mL/h (0.0017 mg/mL/h) to 0.18 u/mL/h (0.0078 mg/mL/h).
Assuntos
Metanol , Saccharomycetales , Urato Oxidase , Fermentação , Urato Oxidase/genética , Urato Oxidase/metabolismo , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas RecombinantesRESUMO
Uric acid is the main means of nitrogen excretion in uricotelic vertebrates (birds and reptiles) and the end product of purine catabolism in humans and a few other mammals. While uricase is inactivated in mammals unable to degrade urate, the presence of orthologous genes without inactivating mutations in avian and reptilian genomes is unexplained. Here we show that the Gallus gallus gene we name cysteine-rich urate oxidase (CRUOX) encodes a functional protein representing a unique case of cysteine enrichment in the evolution of vertebrate orthologous genes. CRUOX retains the ability to catalyze urate oxidation to hydrogen peroxide and 5-hydroxyisourate (HIU), albeit with a 100-fold reduced efficiency. However, differently from all uricases hitherto characterized, it can also facilitate urate regeneration from HIU, a catalytic property that we propose depends on its enrichment in cysteine residues. X-ray structural analysis highlights differences in the active site compared to known orthologs and suggests a mechanism for cysteine-mediated self-aggregation under H2O2-oxidative conditions. Cysteine enrichment was concurrent with the transition to uricotelism and a shift in gene expression from the liver to the skin where CRUOX is co-expressed with ß-keratins. Therefore, the loss of urate degradation in amniotes has followed opposite evolutionary trajectories: while uricase has been eliminated by pseudogenization in some mammals, it has been repurposed as a redox-sensitive enzyme in the reptilian skin.
Assuntos
Cisteína , Répteis , Pele , Urato Oxidase , Animais , Cisteína/genética , Peróxido de Hidrogênio , Pele/enzimologia , Urato Oxidase/genética , Urato Oxidase/metabolismo , Ácido Úrico , Galinhas/genética , Répteis/genética , Répteis/metabolismoRESUMO
Excessive inflammatory reactions caused by uric acid deposition are the key factor leading to gout. However, clinical medications cannot simultaneously remove uric acid and eliminate inflammation. An M2 macrophage-erythrocyte hybrid membrane-camouflaged biomimetic nanosized liposome (USM[H]L) is engineered to deliver targeted self-cascading bienzymes and immunomodulators to reprogram the inflammatory microenvironment in gouty rats. The cell-membrane-coating endow nanosomes with good immune escape and lysosomal escape to achieve long circulation time and intracellular retention times. After being uptaken by inflammatory cells, synergistic enzyme-thermo-immunotherapies are achieved: uricase and nanozyme degraded uric acid and hydrogen peroxide, respectively; bienzymes improved the catalytic abilities of each other; nanozyme produced photothermal effects; and methotrexate has immunomodulatory and anti-inflammatory effects. The uric acid levels markedly decrease, and ankle swelling and claw curling are effectively alleviated. The levels of inflammatory cytokines and ROS decrease, while the anti-inflammatory cytokine levels increase. Proinflammatory M1 macrophages are reprogrammed to the anti-inflammatory M2 phenotype. Notably, the IgG and IgM levels in USM[H]L-treated rats decrease substantially, while uricase-treated rats show high immunogenicity. Proteomic analysis show that there are 898 downregulated and 725 upregulated differentially expressed proteins in USM[H]L-treated rats. The protein-protein interaction network indicates that the signaling pathways include the spliceosome, ribosome, purine metabolism, etc.
Assuntos
Urato Oxidase , Ácido Úrico , Ratos , Animais , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Urato Oxidase/metabolismo , Urato Oxidase/farmacologia , Biomimética , Proteômica , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Membrana Eritrocítica/metabolismo , ImunoterapiaRESUMO
Mammalian uricases contain four conserved cysteine (Cys) residues, but little is known about their structures and functions. In this study, we first confirmed that all four Cys residues are free and not involved in disulfide bond formation, using canine uricase as a model protein. Cys residues had a greater effect on stability than on activity based on single Cys-to-Ser (serine) substitutions. Circular dichroism (CD) and homology modeling indicated that C188S reduces ß-sheet contents and inter- and intra-subunit hydrophobic interaction, potentially impairing the core tetrameric ß-barrel structure of the tunneling-fold protein, and ultimately decreased the tetrameric stability. Additionally, the inactivation of C188S during the stability tests may be a complex process involving depolymerization followed by irregular aggregation. Double mutations or thiol blockage of Cys188 and Cys195 significantly disrupted the formation and stability of tetrameric uricase, which may be mediated by the free thiols in Cys residues. The present results demonstrated that the free Cys residues are essential for tetrameric formation and stability in mammalian uricase. This implies that free cysteine residues, although not involved in disulfide bonding, may play important structural roles in certain proteins, underscoring the significance of the hydrophobic characteristics of the free thiols in Cys residues. KEY POINTS: ⢠Four Cys residues are not involved in disulfide bonding in mammalian uricase. ⢠The hydrophobicity of free thiols is critical for tetrameric stability in uricase. ⢠Free Cys residues can serve structural roles without involving in disulfide bonds.
Assuntos
Cisteína , Urato Oxidase , Animais , Cães , Cisteína/metabolismo , Urato Oxidase/genética , Urato Oxidase/metabolismo , Sequência de Aminoácidos , Proteínas , Compostos de Sulfidrila , Dissulfetos/química , Mamíferos/metabolismoRESUMO
Soil salinity stress is one of the major bottlenecks for crop production. Although, allantoin is known to be involved in nitrogen metabolism in plants, yet several reports in recent time indicate its involvement in various abiotic stress responses including salinity stress. However, the detail mechanism of allantoin involvement in salinity stress tolerance in plants is not studied well. Moreover, we demonstrated the role of exogenous application of allantoin as well as increased concentration of endogenous allantoin in rendering salinity tolerance in rice and Arabidopsis respectively, via., induction of abscisic acid (ABA) and brassinosteroid (BR) biosynthesis pathways. Exogenous application of allantoin (10 µM) provides salt-tolerance to salt-sensitive rice genotype (IR-29). Transcriptomic data after exogenous supplementation of allantoin under salinity stress showed induction of ABA (OsNCED1) and BR (Oscytochrome P450) biosynthesis genes in IR-29. Further, the key gene of allantoin biosynthesis pathway i.e., urate oxidase of the halophytic species Oryza coarctata was also found to induce ABA and BR biosynthesis genes when over-expressed in transgenic Arabidopsis. Thus, indicating that ABA and BR biosynthesis pathways were involved in allantoin mediated salinity tolerance in both rice and Arabidopsis. Additionally, it has been found that several physio-chemical parameters such as biomass, Na+/K+ ratio, MDA, soluble sugar, proline, allantoin and chlorophyll contents were also associated with the allantoin-mediated salinity tolerance in urate oxidase overexpressed lines of Arabidopsis. These findings depicted the functional conservation of allantoin for salinity tolerance in both plant clades.
Assuntos
Arabidopsis , Oryza , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Alantoína/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Urato Oxidase/genética , Urato Oxidase/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Salinidade , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismoRESUMO
Five mini proteins mimicking uricase comprising 20, 40, 60, 80, and 100 amino acids were designed based on the conserved active site residues within the same dimer, using the crystal structure of tetrameric uricase from Arthrobacter globiformis (PDB ID: 2yzb) as a template. Based on molecular docking analysis, the smallest mini protein, mp20, shared similar residues to that of native uricase that formed hydrogen bonds with uric acid and was chosen for further studies. Although purified recombinant mp20 did not exhibit uricase activity, it showed specific binding towards uric acid and evinced excellent thermotolerance and structural stability at temperatures ranging from 10°C to 100°C, emulating its natural origin. To explore the potential of mp20 as a bioreceptor in uric acid sensing, mp20 was encapsulated within zeolitic imidazolate framework-8 (mp20@ZIF-8) followed by the modification on rGO-screen printed electrode (rGO/SPCE) to maintain the structural stability. An irreversible anodic peak and increased semicircular arcs of the Nyquist plot with an increase of the analyte concentrations were observed by utilizing cyclic voltammetry and electrochemical impedance spectroscopy (EIS), suggesting the detection of uric acid occurred, which is based on substrate-mp20 interaction.
Assuntos
Grafite , Ácido Úrico , Ácido Úrico/análise , Ácido Úrico/química , Urato Oxidase/genética , Urato Oxidase/química , Urato Oxidase/metabolismo , Simulação de Acoplamento MolecularRESUMO
De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-ß-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.
Assuntos
Glycine max , Fixação de Nitrogênio , Glycine max/genética , Glycine max/microbiologia , Fixação de Nitrogênio/genética , Urato Oxidase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Nitrogênio/metabolismo , PurinasRESUMO
AIM: Jian Pi Shen Shi Formula (JPSSF) is a beneficial treatment for hyperuricemia and related tissue damage in the clinical setting. This study was designed to investigate its therapeutic potential and underlying mechanisms in uricase-deficient rats (Uox-/- rats). METHODS: Uox-/- rats were used to assess the therapeutic potential of JPSSF on hyperuricemia. Protein extracts from renal tissues of a Uox-/- group and a JPSSF group were analyzed using tandem mass tag labeling quantitative proteomic workflow. Collagen deposition in Uox-/- rat kidneys was analyzed by Masson trichromatic staining. The gene expression associated with collagen-binding-related signaling pathways in the kidneys was further explored using quantitative polymerase chain reaction assay. The protein expressions of collagen 1a1 (col1a1), col6a1, and α-smooth muscle actin were measured by Western blotting and immunohistochemistry. RESULTS: JPSSF significantly decreased renal function indices and alleviated renal injuries. The action of JPSSF was manifested by down-regulation of col6a1 and interleukin-1 receptor-associated kinase-like 2, which blocked the binding sites on collagen and further prevented kidney injury. The anti-renal fibrosis effect of JPSSF was confirmed by reducing the collagen deposition and hydroxyproline concentrations. JPSSF treatment also intensely down-regulated the mRNA and protein expressions of col6a1, col1a1, and α-smooth muscle actin, which inhibited the function of the collagen-binding-related signaling pathway. CONCLUSION: Our results indicated that JPSSF notably ameliorated hyperuricemia and related renal fibrosis in Uox-/- rats through lowering uric acid and down-regulating the function of the collagen-binding pathway. This suggested that JPSSF is a potential empirical formula for treating hyperuricemia and accompanying renal fibrosis.