Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochemistry ; 62(14): 2216-2227, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37410993

RESUMO

Polymyxins are important last resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. However, pathogens have acquired resistance to polymyxins through a pathway that modifies lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N). Inhibition of this pathway is, therefore, a desirable strategy to combat polymyxin resistance. The first pathway-specific reaction is an NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) catalyzed by the dehydrogenase domain of ArnA (ArnA_DH). We present the crystal structure of Salmonella enterica serovar typhimurium ArnA in complex with UDP-GlcA showing that binding of the sugar nucleotide is sufficient to trigger a conformational change conserved in bacterial ArnA_DHs but absent in its human homologs, as confirmed by structure and sequence analysis. Ligand binding assays show that the conformational change is essential for NAD+ binding and catalysis. Enzyme activity and binding assays show that (i) UDP-GlcA analogs lacking the 6' carboxylic acid bind the enzyme but fail to trigger the conformational change, resulting in poor inhibition, and (ii) the uridine monophosphate moiety of the substrate provides most of the ligand binding energy. Mutation of asparagine 492 to alanine (N492A) disrupts the ability of ArnA_DH to undergo the conformational change while retaining substrate binding, suggesting that N492 is involved in sensing the 6' carboxylate in the substrate. These results identify the UDP-GlcA-induced conformational change in ArnA_DH as an essential mechanistic step in bacterial enzymes, providing a platform for selective inhibition.


Assuntos
NAD , Polimixinas , Humanos , Polimixinas/farmacologia , Polimixinas/química , Ligantes , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Oxirredutases
2.
J Am Chem Soc ; 142(7): 3506-3512, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986016

RESUMO

A highly efficient di-C-glycosyltransferase GgCGT was discovered from the medicinal plant Glycyrrhiza glabra. GgCGT catalyzes a two-step di-C-glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di-C-glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono-C-glycosylation. GgCGT is the first di-C-glycosyltransferase with a crystal structure, and the first C-glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize C-glycosides with medicinal potential.


Assuntos
Glicosiltransferases/química , Glicosiltransferases/metabolismo , Glycyrrhiza/enzimologia , Clonagem Molecular , Cristalografia por Raios X , Glicosilação , Glicosiltransferases/genética , Glycyrrhiza/genética , Ligantes , Modelos Moleculares , Floretina/química , Floretina/metabolismo , Especificidade por Substrato , Transcriptoma , Uridina Difosfato Galactose/química , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismo , Uridina Difosfato Xilose/química , Uridina Difosfato Xilose/metabolismo
3.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726754

RESUMO

In the last decades, interest in medical or cosmetic applications of hyaluronic acid (HA) has increased. Size and dispersity are key characteristics of biological function. In contrast to extraction from animal tissue or bacterial fermentation, enzymatic in vitro synthesis is the choice to produce defined HA. Here we present a one-pot enzyme cascade with six enzymes for the synthesis of HA from the cheap monosaccharides glucuronic acid (GlcA) and N-acetylglucosamine (GlcNAc). The combination of two enzyme modules, providing the precursors UDP-GlcA and UDP-GlcNAc, respectively, with hyaluronan synthase from Pasteurella multocida (PmHAS), was optimized to meet the kinetic requirements of PmHAS for high HA productivity and molecular weight. The Mg2+ concentration and the pH value were found as key factors. The HA product can be tailored by different conditions: 25 mM Mg2+ and 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES)-NaOH pH 8 result into an HA product with high Mw HA (1.55 MDa) and low dispersity (1.05). Whereas with 15 mM Mg2+ and HEPES-NaOH pH 8.5, we reached the highest HA concentration (2.7 g/L) with a yield of 86.3%. Our comprehensive data set lays the basis for larger scale enzymatic HA synthesis.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Bactérias/química , Hialuronan Sintases/química , Ácido Hialurônico/biossíntese , Pasteurella multocida/enzimologia , Cinética , Uridina Difosfato Ácido Glucurônico/química
4.
Plant J ; 99(6): 1127-1143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095780

RESUMO

Glycyrrhizin, a sweet triterpenoid saponin found in the roots and stolons of Glycyrrhiza species (licorice), is an important active ingredient in traditional herbal medicine. We previously identified two cytochrome P450 monooxygenases, CYP88D6 and CYP72A154, that produce an aglycone of glycyrrhizin, glycyrrhetinic acid, in Glycyrrhiza uralensis. The sugar moiety of glycyrrhizin, which is composed of two glucuronic acids, makes it sweet and reduces its side-effects. Here, we report that UDP-glycosyltransferase (UGT) 73P12 catalyzes the second glucuronosylation as the final step of glycyrrhizin biosynthesis in G. uralensis; the UGT73P12 produced glycyrrhizin by transferring a glucuronosyl moiety of UDP-glucuronic acid to glycyrrhetinic acid 3-O-monoglucuronide. We also obtained a natural variant of UGT73P12 from a glycyrrhizin-deficient (83-555) strain of G. uralensis. The natural variant showed loss of specificity for UDP-glucuronic acid and resulted in the production of an alternative saponin, glucoglycyrrhizin. These results are consistent with the chemical phenotype of the 83-555 strain, and suggest the contribution of UGT73P12 to glycyrrhizin biosynthesis in planta. Furthermore, we identified Arg32 as the essential residue of UGT73P12 that provides high specificity for UDP-glucuronic acid. These results strongly suggest the existence of an electrostatic interaction between the positively charged Arg32 and the negatively charged carboxy group of UDP-glucuronic acid. The functional arginine residue and resultant specificity for UDP-glucuronic acid are unique to UGT73P12 in the UGT73P subfamily. Our findings demonstrate the functional specialization of UGT73P12 for glycyrrhizin biosynthesis during divergent evolution, and provide mechanistic insights into UDP-sugar selectivity for the rational engineering of sweet triterpenoid saponins.


Assuntos
Glicosiltransferases/metabolismo , Glycyrrhiza uralensis/enzimologia , Ácido Glicirrízico/metabolismo , Arginina/química , Arginina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glicosiltransferases/química , Glicosiltransferases/genética , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrízico/química , Cinética , Simulação de Acoplamento Molecular , Mutação , Filogenia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/análise , Transcriptoma , Triterpenos/química , Triterpenos/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
5.
Cell ; 175(4): 1045-1058.e16, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388443

RESUMO

Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic "lipid-altered" tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug.


Assuntos
Antibióticos Antituberculose/farmacologia , Defeitos Congênitos da Glicosilação/metabolismo , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/química , Animais , Antibióticos Antituberculose/química , Sítios de Ligação , Defeitos Congênitos da Glicosilação/genética , Inibidores Enzimáticos/química , Feminino , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Camundongos , Simulação de Acoplamento Molecular , Mutação , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Células Sf9 , Spodoptera , Tunicamicina/química , Tunicamicina/farmacologia , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
6.
Carbohydr Res ; 411: 1-5, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25942062

RESUMO

Uridine 5'-diphosphate-glucuronic acid (UDP-GlcA) and UDP-galacturonic acid (UDP-GalA), the unique carboxylic acid-formed sugar nucleotides, are key precursors involved in the biosynthesis of numerous cell components. Limited availability of those components has been hindering the development of efficient ways towards facile synthesis of bioactive glycans such as glycosaminoglycans. In current study, we biochemically characterized two UDP-sugar pyrophosphorylases from Arabidopsis thaliana (AtUSP) and Bifidobacterium infantis ATCC15697 (BiUSP), and compared their activities towards a panel of sugar-1-phosphates and derivatives. Both enzymes showed significant pyrophosphorylation activities towards GlcA-1-phosphate, and AtUSP also exhibited comparable activity towards GalA-1-phosphate. By combining with monosaccharide-1-phosphate kinases, we have developed an efficient and facile one-pot three-enzyme approach to quickly obtain hundreds milligrams of UDP-GlcA and UDP-GalA.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Nucleotidiltransferases/química , Uridina Difosfato Ácido Glucurônico/química , Açúcares de Uridina Difosfato/química , Arabidopsis/enzimologia , Bifidobacterium/enzimologia , Biocatálise , Cinética , Especificidade por Substrato
7.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 687-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760615

RESUMO

The bacterial protein ArnA is an essential enzyme in the pathway leading to the modification of lipid A with the pentose sugar 4-amino-4-deoxy-L-arabinose. This modification confers resistance to polymyxins, which are antibiotics that are used as a last resort to treat infections with multiple drug-resistant Gram-negative bacteria. ArnA contains two domains with distinct catalytic functions: a dehydrogenase domain and a transformylase domain. The protein forms homohexamers organized as a dimer of trimers. Here, the crystal structure of apo ArnA is presented and compared with its ATP- and UDP-glucuronic acid-bound counterparts. The comparison reveals major structural rearrangements in the dehydrogenase domain that lead to the formation of a previously unobserved binding pocket at the centre of each ArnA trimer in its apo state. In the crystal structure, this pocket is occupied by a DTT molecule. It is shown that formation of the pocket is linked to a cascade of structural rearrangements that emerge from the NAD(+)-binding site. Based on these findings, a small effector molecule is postulated that binds to the central pocket and modulates the catalytic properties of ArnA. Furthermore, the discovered conformational changes provide a mechanistic explanation for the strong cooperative effect recently reported for the ArnA dehydrogenase function.


Assuntos
Carboxiliases/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , NAD/química , NAD/genética , NAD/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/genética , Uridina Difosfato Ácido Glucurônico/metabolismo
8.
J Biol Chem ; 287(37): 31349-58, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22810237

RESUMO

UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-D-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD(+) and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-D-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the D-glucuronyl ring accommodated by UXS features a marked (4)C(1) chair to B(O,3) boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C(4) (step 1) by aligning the enzymatic base Tyr(147) with the reactive substrate hydroxyl and it brings the carboxylate group at C(5) into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-D-glucuronic acid in the second chemical step. The protonated side chain of Tyr(147) stabilizes the enolate of decarboxylated C(4) keto species ((2)H(1) half-chair) that is then protonated from the Si face at C(5), involving water coordinated by Glu(120). Arg(277), which is positioned by a salt-link interaction with Glu(120), closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C(4) keto group by NADH, assisted by Tyr(147) as catalytic proton donor, yields UDP-xylose adopting the relaxed (4)C(1) chair conformation (step 3).


Assuntos
Carboxiliases/química , Uridina Difosfato Ácido Glucurônico/química , Carboxiliases/metabolismo , Catálise , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
9.
Carbohydr Res ; 356: 209-14, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22525098

RESUMO

Human UDP-glucose 6-dehydrogenase (hUGDH) catalyzes the biosynthetic oxidation of UDP-glucose into UDP-glucuronic acid. The catalytic reaction proceeds in two NAD(+)-dependent steps via covalent thiohemiacetal and thioester enzyme intermediates. Formation of the thiohemiacetal adduct occurs through attack of Cys(276) on C-6 of the UDP-gluco-hexodialdose produced in the first oxidation step. Because previous studies of the related enzyme from bovine liver had suggested loss of the C-5 hydrogen from UDP-gluco-hexodialdose due to keto-enol tautomerism, we examined incorporation of solvent deuterium into product(s) of UDP-glucose oxidation by hUGDH. We used wild-type enzyme and a slow-reacting Glu(161)→Gln mutant that accumulates the thioester adduct at steady state. In situ proton NMR measurements showed that UDP-glucuronic acid was the sole detectable product of both enzymatic transformations. The product contained no deuterium at C-5 within the detection limit (≤2%). The results are consistent with the proposed mechanistic idea for hUGDH that incipient UDP-gluco-hexodialdose is immediately trapped by thiohemiacetal adduct formation.


Assuntos
Prótons , Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose/química , Água/química , Biocatálise , Deutério , Escherichia coli , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutação , NAD/química , NAD/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Água/metabolismo
10.
J Biol Chem ; 287(10): 7203-12, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22235128

RESUMO

The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (∼65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.


Assuntos
Proteínas de Bactérias/química , Glicosiltransferases/química , Pasteurella multocida/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Pasteurella multocida/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/genética , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo
12.
Biochem Biophys Res Commun ; 403(3-4): 322-8, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21075077

RESUMO

In glycoprotein quality control system in the endoplasmic reticulum (ER), UGGT (UDP-glucose:glycoprotein glucosyltransferase) and glucosidase II (G-II) play key roles. UGGT serves as a glycoprotein folding sensor by virtue of its unique specificity to glucosylate glycoproteins at incompletely folded stage. By using various UDP-Glc analogues, we first analyzed donor specificity of UGGT, which was proven to be rather narrow. However, marginal activity was observed with UDP-galactose and UDP-glucuronic acid as well as with 3-, 4- and 6-deoxy glucose analogues to give corresponding transfer products. Intriguingly, G-II smoothly converted all of them back to Man(9)GlcNAc(2), providing an indication that G-II has a promiscuous activity as a broad specificity hexosidase.


Assuntos
Retículo Endoplasmático/enzimologia , Glucosiltransferases/metabolismo , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , alfa-Glucosidases/metabolismo , Animais , Calnexina/metabolismo , Glucosiltransferases/química , Humanos , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Dobramento de Proteína , Especificidade por Substrato , Uridina Difosfato Galactose/química , Uridina Difosfato Ácido Glucurônico/química , alfa-Glucosidases/química
13.
Biochemistry ; 49(33): 7227-37, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20604544

RESUMO

In recent years, the opportunistic pathogen Pseudomonas aeruginosa has emerged as a major source of hospital-acquired infections. Effective treatment has proven increasingly difficult due to the spread of multidrug resistant strains and thus requires a deeper understanding of the biochemical mechanisms of pathogenicity. The central carbohydrate of the P. aeruginosa PAO1 (O5) B-band O-antigen, ManNAc(3NAc)A, has been shown to be critical for virulence and is produced in a stepwise manner by five enzymes in the Wbp pathway (WbpA, WbpB, WbpE, WbpD, and WbpI). Herein, we present the crystal structure of the aminotransferase WbpE from P. aeruginosa PAO1 in complex with the cofactor pyridoxal 5'-phosphate (PLP) and product UDP-GlcNAc(3NH(2))A as the external aldimine at 1.9 A resolution. We also report the structures of WbpE in complex with PMP alone as well as the PLP internal aldimine and show that the dimeric structure of WbpE observed in the crystal structure is confirmed by analytical ultracentrifugation. Analysis of these structures reveals that the active site of the enzyme is composed of residues from both subunits. In particular, we show that a key residue (Arg229), which has previously been implicated in direct interactions with the alpha-carboxylate moiety of alpha-ketoglutarate, is also uniquely positioned to bestow specificity for the 6''-carboxyl group of GlcNAc(3NH(2))A through a salt bridge. This finding is intriguing because while an analogous basic residue is present in WbpE homologues that do not process 6''-carboxyl-modified saccharides, recent structural studies reveal that this side chain is retracted to accommodate a neutral C6'' atom. This work represents the first structural analysis of a nucleotide sugar aminotransferase with a bound product modified at the C2'', C3'', and C6'' positions and provides insight into a novel target for treatment of P. aeruginosa infection.


Assuntos
Transferases de Grupos Nitrogenados/química , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa/enzimologia , Fosfato de Piridoxal/metabolismo , Bases de Schiff/metabolismo , Uridina Difosfato Ácido Glucurônico/análogos & derivados , Alanina/genética , Cristalografia por Raios X , Modelos Moleculares , Mutação , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , Antígenos O/metabolismo , Ligação Proteica , Fosfato de Piridoxal/química , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Bases de Schiff/química , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
14.
Eur J Pharm Sci ; 39(4): 233-40, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20036738

RESUMO

The three hydroxybenzodiazepines oxazepam, temazepam, and lorazepam used for their anxiolytic, sedative, and anticonvulsant properties are metabolized by glucuronidation, which is the predominant pathway in the clearance mechanism of exogenous and endogenous substances during phase II metabolism. The aim of this study was the synthesis of benzodiazepine-O-glucuronides as analytical reference substances. All benzodiazepines are prescribed clinically as racemic formulations. The resulting conjugates from the coupling reactions with glucuronic acid are epimeric pairs of glucuronides. Due to the importance of stereochemical factors in drug disposition it is necessary to separate the diastereomeric forms after synthesis. An enzyme-assisted synthesis was developed and optimized by using microsomal UGT from fresh swine liver to receive multimilligram amounts of the benzodiazepine glucuronides, which were not accessible by standard synthetic procedures, like the Koenigs-Knorr- and Williamson-ether-synthesis. Swine liver microsomes were prepared by homogenization and differential centrifugation of liver tissue. In the presence of liver microsomes the benzodiazepines and cofactor UDPGA were incubated for 24h. After incubation the microsomes were removed by protein precipitation and the residual benzodiazepines by liquid-liquid extraction (dichloromethane). The epimeric pairs of benzodiazepine glucuronides were separated by preparative high performance liquid chromatography (HPLC) followed by solid phase extraction (SPE) to obtain the pure benzodiazepine glucuronide epimers. The synthesis products were characterized by mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy.


Assuntos
Benzodiazepinas/síntese química , Glucuronídeos/síntese química , Animais , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Cromatografia Líquida de Alta Pressão , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/síntese química , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ratos , Estereoisomerismo , Suínos , Uridina Difosfato Ácido Glucurônico/química
15.
Bioconjug Chem ; 20(8): 1650-9, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19572637

RESUMO

The P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.5-6) of dendrimers (both terminal carboxy and amino). Prosthetic groups, including biotin for avidin complexation, a chelating group for metal complexation (and eventual magnetic resonance imaging), and a fluorescent moiety, also were attached with the eventual goals of molecular detection and characterization of the P2Y(14) receptor. The activities of conjugates were assayed in HEK293 cells stably expressing the human P2Y(14) receptor. A G3 PAMAM conjugate containing 20 bound nucleotide moieties (UDPGA) was 100-fold more potent (EC(50) 2.4 nM) than the native agonist uridine-5'-diphosphoglucose. A molecular model of this conjugate docked in the human P2Y(14) receptor showed that the nucleotide-substituted branches could extend far beyond the dimensions of the receptor and be available for multivalent docking to receptor aggregates. Larger dendrimer carriers and greater loading favored higher potency. A similar conjugate of G6 with 147 out of 256 amino groups substituted with UDPGA displayed an EC(50) value of 0.8 nM. Thus, biological activity was either retained or dramatically enhanced in the multivalent dendrimer conjugates in comparison with monomeric P2Y(14) receptor agonists, depending on size, degree of substitution, terminal functionality, and attached prosthetic groups.


Assuntos
Dendrímeros/farmacologia , Poliaminas/farmacologia , Agonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Ácido Glucurônico/farmacologia , Células Cultivadas , Dendrímeros/química , Humanos , Conformação Molecular , Poliaminas/química , Agonistas do Receptor Purinérgico P2/química , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade , Uridina Difosfato Ácido Glucurônico/química
16.
Drug Metab Dispos ; 36(4): 623-30, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18180271

RESUMO

Polychlorinated biphenylols (OH-PCBs) are potentially toxic polychlorinated biphenyl metabolites that can be eliminated by glucuronidation, catalyzed by UDP-glucuronosyltransferases (UGTs). OH-PCBs with a 3,5-dichloro-4-hydroxy substitution pattern have been detected in blood from humans and wildlife, suggesting slow elimination. In this study we assessed the glucuronidation of 4-OH-PCBs with zero, one, or two chlorine atoms flanking the 4-hydroxyl group and zero to four chlorine atoms in the aphenolic ring in microsomes from channel catfish liver and proximal intestine. Product formation was quantitated with [(14)C]UDP-glucuronic acid (UDPGA). Physiological concentrations of UDPGA were measured in preparations of liver and intestine. When the OH-PCB concentrations were varied in the presence of saturating UDPGA concentrations, glucuronidation V(max) values were higher in hepatic than in intestinal microsomes (0.40-3.4 and 0.12-0.78 nmol/min/mg of protein, respectively), whereas the K(m) values were generally lower for intestine (0.042-0.47 mM) than for liver (0.11-1.64 mM). In both tissues V(max) values with 3,5-dichloro-4-OH-PCBs were lower than with the corresponding 3-chloro-4-OH-PCBs. Varying the UDPGA concentrations in the presence of saturating concentrations of OH-PCB showed that the K(m) for UDPGA was lower in intestine (27 microM) than in liver (690 microM). The measured concentration of UDPGA in catfish liver (246-377 nmol/g) was lower than the K(m) for UDPGA, suggesting that in vivo rates of glucuronidation may be suboptimal, whereas in intestine the measured UDPGA concentration (71-258 nmol/g) was higher than the K(m) for UDPGA. Although liver has a greater glucuronidation capacity than proximal intestine, the properties of intestinal UGTs in channel catfish enable them to efficiently glucuronidate low concentrations of OH-PCBs.


Assuntos
Glucuronídeos/metabolismo , Ictaluridae/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , Animais , Glucuronídeos/química , Intestinos/química , Fígado/química , Microssomos/química , Microssomos/metabolismo , Bifenilos Policlorados/química , Uridina Difosfato Ácido Glucurônico/química
17.
Drug Metab Dispos ; 36(3): 517-22, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18048489

RESUMO

All UDP-glucuronosyltransferase enzymes (UGTs) share a common cofactor, UDP-glucuronic acid (UDP-GlcUA). The binding site for UDP-GlcUA is localized to the C-terminal domain of UGTs on the basis of amino acid sequence homology analysis and crystal structures of glycosyltransferases, including the C-terminal domain of human UGT2B7. We hypothesized that the (393)DQMDNAK(399) region of human UGT1A10 interacts with the glucuronic acid moiety of UDP-GlcUA. Using site-directed mutagenesis and enzymatic analysis, we demonstrated that the D393A mutation abolished the glucuronidation activity of UGT1A10 toward all substrates. The effects of the alanine mutation at Q(394),D(396), and K(399) on glucuronidation activities were substrate-dependent. Previously, we examined the importance of these residues in UGT2B7. Although D(393) (D(398) in UGT2B7) is similarly critical for UDP-GlcUA binding in both enzymes, the effects of Q(394) (Q(399) in UGT2B7) to Ala mutation on activity were significant but different between UGT1A10 and UGT2B7. A model of the UDP-GlcUA binding site suggests that the contribution of other residues to cosubstrate binding may explain these differences between UGT1A10 and UGT2B7. We thus postulate that D(393) is critical for the binding of glucuronic acid and that proximal residues, e.g., Q(394) (Q(399) in UGT2B7), play a subtle role in cosubstrate binding in UGT1A10 and UGT2B7. Hence, this study provides important new information needed for the identification and understanding of the binding sites of UGTs, a major step forward in elucidating their molecular mechanism.


Assuntos
Ácido Aspártico/metabolismo , Glucuronosiltransferase/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Catálise , Clonagem Molecular , Glucuronosiltransferase/química , Glucuronosiltransferase/genética , Humanos , Isoenzimas , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Uridina Difosfato Ácido Glucurônico/química
18.
J Biol Chem ; 283(6): 3507-3518, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18065759

RESUMO

Pseudomonas aeruginosa PAK (serotype O6) produces a single polar, glycosylated flagellum composed of a-type flagellin. To determine whether or not flagellin glycosylation in this serotype requires O-antigen genes, flagellin was isolated from the wild type, three O-antigen-deficient mutants wbpL, wbpO, and wbpP, and a wbpO mutant complemented with a plasmid containing a wild-type copy of wbpO. Flagellin from the wbpO mutant was smaller (42 kDa) than that of the wild type (45 kDa), or other mutants strains, and exhibited an altered isoelectric point (pI 4.8) when compared with PAK flagellin (pI 4.6). These differences were because of the truncation of the glycan moiety in the wbpO-flagellin. Thus, flagellin glycosylation in P. aeruginosa PAK apparently requires a functional WbpO but not WbpP. Because WbpP was previously proposed to catalyze a metabolic step in the biosynthesis of B-band O-antigen that precedes the action of WbpO, these results prompted us to reevaluate the two-step pathway catalyzed by WbpO and WbpP. Results from WbpO-WbpP-coupled enzymatic assays showed that either WbpO or WbpP is capable of initiating the two-step pathway; however, the kinetic parameters favored the WbpO reaction to occur first, converting UDP-N-acetyl-D-glucosamine to UDP-N-acetyl-D-glucuronic acid prior to the conversion to UDP-N-acetyl-D-galacturonic acid by WbpP. This is the first report to show that a C4 epimerase could utilize UDP-N-acetylhexuronic acid as a substrate.


Assuntos
Oxirredutases do Álcool/fisiologia , Proteínas de Bactérias/metabolismo , Flagelina/química , Regulação Bacteriana da Expressão Gênica , Antígenos O/química , Pseudomonas aeruginosa/metabolismo , Oxirredutases do Álcool/genética , Catálise , Flagelina/metabolismo , Teste de Complementação Genética , Glicosilação , Espectroscopia de Ressonância Magnética , Mutação , Plasmídeos/metabolismo , Polissacarídeos/química , Racemases e Epimerases/química , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato N-Acetilglicosamina/química
19.
J Biol Chem ; 282(34): 24615-22, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17599910

RESUMO

Nucleotide sugar transporters have long been assumed to be antiporters that exclusively use nucleoside monophosphates as antiport substrates. Here we present evidence indicating that two other types of nucleotide sugar transporters exist that differ in their antiport substrate specificity. Biochemical studies using microsomes derived from Saccharomyces cerevisiae cells expressing either human (h) UGTrel7 or the Drosophila (d) FRC (Fringe connection) transporter revealed that (i) efflux of preloaded UDP-glucuronic acid from the yeast microsomes expressing hUGTrel7 was strongly enhanced by UDP-GlcNAc added in the external medium, but not by UMP or UDP, suggesting that hUGTrel7 may be described as a UDP-sugar/UDP-sugar antiporter, and (ii) addition of UDP-sugars, UDP, or UMP in the external medium stimulated the efflux of preloaded UDP-GlcNAc from the yeast microsomes expressing dFRC to a comparable extent, suggesting that UDP, as well as UMP, may serve as an antiport substrate of dFRC. Antiport of UDP-sugars with these specific substrates was reproduced and definitively confirmed using proteoliposomes reconstituted from solubilized and purified transporters. Possible physiological implications of these observations are discussed.


Assuntos
Proteínas de Transporte de Monossacarídeos/fisiologia , Proteínas de Transporte de Nucleotídeos/química , Animais , Transporte Biológico , Carboidratos/química , Difosfatos/química , Relação Dose-Resposta a Droga , Drosophila , Proteínas Fúngicas/química , Humanos , Lipossomos/química , Microssomos/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Uridina Difosfato Ácido Glucurônico/química
20.
Biochem J ; 405(1): 123-30, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17346239

RESUMO

The heteropolymeric O-antigen of the lipopolysaccharide from Pseudomonas aeruginosa serogroup O5 as well as the band-A trisaccharide from Bordetella pertussis contain the di-N-acetylated mannosaminuronic acid derivative, beta-D-ManNAc3NAcA (2,3-diacetamido-2,3-dideoxy-beta-D-mannuronic acid). The biosynthesis of the precursor for this sugar is proposed to require five steps, through which UDP-alpha-D-GlcNAc (UDP-N-acetyl-alpha-D-glucosamine) is converted via four steps into UDP-alpha-D-GlcNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid), and this intermediate compound is then epimerized by WbpI (P. aeruginosa), or by its orthologue, WlbD (B. pertussis), to form UDP-alpha-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-mannuronic acid). UDP-alpha-D-GlcNAc3NAcA, the proposed substrate for WbpI and WlbD, was obtained through chemical synthesis. His6-WbpI and His6-WlbD were overexpressed and then purified by affinity chromatography using FPLC. Capillary electrophoresis was used to analyse reactions with each enzyme, and revealed that both enzymes used UDP-alpha-D-GlcNAc3NAcA as a substrate, and reacted optimally in sodium phosphate buffer (pH 6.0). Neither enzyme utilized UDP-alpha-D-GlcNAc, UDP-alpha-D-GlcNAcA (UDP-2-acetamido-2,3-dideoxy-alpha-D-glucuronic acid) or UDP-alpha-D-GlcNAc3NAc (UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucose) as substrates. His6-WbpI or His6-WlbD reactions with UDP-alpha-D-GlcNAc3NAcA produce a novel peak with an identical retention time, as shown by capillary electrophoresis. To unambiguously characterize the reaction product, enzyme-substrate reactions were allowed to proceed directly in the NMR tube and conversion of substrate into product was monitored over time through the acquisition of a proton spectrum at regular intervals. Data collected from one- and two-dimensional NMR experiments showed that His6-WbpI catalysed the 2-epimerization of UDP-alpha-D-GlcNAc3NAcA, converting it into UDP-alpha-D-ManNAc3NAcA. Collectively, these results provide evidence that WbpI and WlbD are UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid 2-epimerases.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis , Carboidratos Epimerases/metabolismo , Pseudomonas aeruginosa , Uridina Difosfato Ácido Glucurônico/metabolismo , Animais , Proteínas de Bactérias/genética , Bordetella pertussis/enzimologia , Bordetella pertussis/patogenicidade , Carboidratos Epimerases/genética , Histidina/metabolismo , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Especificidade por Substrato , Uridina Difosfato Ácido Glucurônico/química , Ácidos Urônicos/química , Ácidos Urônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA