Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403370

RESUMO

Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.


Assuntos
Efrina-B2/genética , Receptor EphB4/genética , Receptor EphB4/metabolismo , Válvulas Venosas/anormalidades , Válvulas Venosas/embriologia , Animais , Aorta/ultraestrutura , Comunicação Celular , Polaridade Celular , Proliferação de Células , Conexina 43/metabolismo , Conexinas/metabolismo , Endotélio , Efrina-B2/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Ultrassonografia , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/genética , Insuficiência Venosa/diagnóstico por imagem , Válvulas Venosas/diagnóstico por imagem , Proteína alfa-4 de Junções Comunicantes
2.
Cardiovasc Res ; 116(8): 1473-1486, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591643

RESUMO

AIMS: Sinus venous valve (SVV) and sinoatrial node (SAN) develop together at the sinoatrial junction during embryogenesis. SVV ensures unidirectional cardiac input and SAN generates sinus rhythmic contraction, respectively; both functions are essential for embryonic survival. We aim to reveal the potential role of endocardial NOTCH signalling in SVV and SAN formation. METHODS AND RESULTS: We specifically deleted Notch1 in the endocardium using an Nfatc1Cre line. This deletion resulted in underdeveloped SVV and SAN, associated with reduced expression of T-box transcription factors, Tbx5 andTbx18, which are essential for the formation of SVV and SAN. The deletion also led to decreased expression of Wnt2 in myocardium of SVV and SAN. WNT2 treatment was able to rescue the growth defect of SVV and SAN resulted from the Notch1 deletion in whole embryo cultures. Furthermore, the Notch1 deletion reduced the expression of Nrg1 in the SVV myocardium and supplement of NRG1 restored the growth of SVV in cultured Notch1 knockout embryos. CONCLUSION: Our findings support that endocardial NOTCH1 controls the development of SVV and SAN by coordinating myocardial WNT and NRG1 signalling functions.


Assuntos
Seio Coronário/metabolismo , Miocárdio/metabolismo , Receptor Notch1/metabolismo , Nó Sinoatrial/metabolismo , Válvulas Venosas/metabolismo , Animais , Seio Coronário/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Morfogênese , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor Notch1/deficiência , Receptor Notch1/genética , Nó Sinoatrial/embriologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Válvulas Venosas/embriologia , Via de Sinalização Wnt , Proteína Wnt2/genética , Proteína Wnt2/metabolismo
3.
Methods Mol Biol ; 1846: 85-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242754

RESUMO

Lymph collected from throughout the body is exclusively returned to blood circulation via two pairs of bilaterally located lymphovenous valves. Lymphovenous valves share numerous similarities with lymphatic and venous valves and are defective in multiple mouse models of lymphedema or lymphatic dysfunction. Here we describe a protocol that combines the strengths of fluorescence microscopy and scanning electron microscopy to precisely locate and analyze the topography of developing lymphovenous valves at high resolution.


Assuntos
Linfangiogênese , Vasos Linfáticos/metabolismo , Vasos Linfáticos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Válvulas Venosas/metabolismo , Válvulas Venosas/ultraestrutura , Animais , Embrião de Mamíferos , Imunofluorescência , Vasos Linfáticos/embriologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Válvulas Venosas/embriologia
4.
Dev Biol ; 412(2): 173-90, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26953188

RESUMO

Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição NFATC/metabolismo , Válvulas Venosas/metabolismo , Animais , Conexina 43/genética , Conexinas/genética , Fatores de Transcrição Forkhead/genética , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fenótipo , Fatores de Tempo , Válvulas Venosas/embriologia , Válvulas Venosas/crescimento & desenvolvimento , Proteína alfa-4 de Junções Comunicantes
5.
Dev Biol ; 409(1): 218-233, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26542011

RESUMO

Lymph is returned to the blood circulation exclusively via four lymphovenous valves (LVVs). Despite their vital importance, the architecture and development of LVVs is poorly understood. We analyzed the formation of LVVs at the molecular and ultrastructural levels during mouse embryogenesis and identified three critical steps. First, LVV-forming endothelial cells (LVV-ECs) differentiate from PROX1(+) progenitors and delaminate from the luminal side of the veins. Second, LVV-ECs aggregate, align perpendicular to the direction of lymph flow and establish lympho-venous connections. Finally, LVVs mature with the recruitment of mural cells. LVV morphogenesis is disrupted in four different mouse models of primary lymphedema and the severity of LVV defects correlate with that of lymphedema. In summary, we have provided the first and the most comprehensive analysis of LVV development. Furthermore, our work suggests that aberrant LVVs contribute to lymphedema.


Assuntos
Vasos Linfáticos/embriologia , Linfedema/embriologia , Linfedema/patologia , Válvulas Venosas/embriologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Vasos Linfáticos/ultraestrutura , Camundongos Endogâmicos C57BL , Morfogênese , Penetrância , Fenótipo , Válvulas Venosas/ultraestrutura
6.
Genes Dev ; 25(20): 2187-97, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22012621

RESUMO

Arteries, veins, and lymphatic vessels are functionally linked, and their physical interaction is tightly regulated. The lymphatic vessels communicate with the blood vessels only at the junction of the jugular and subclavian veins. Here, we characterize the embryonic lymphovenous valves controlling this vital communication and show that they are formed by the intercalation of lymphatic endothelial cells (LECs) with a subpopulation of venous endothelial cells (ECs) at the junction of the jugular and subclavian veins. We found that unlike LEC progenitors, which move out from the veins and differentiate into mature LECs, these Prox1-expressing ECs remain in the veins and do not acquire LEC features. We demonstrate that the development of this Prox1-expressing venous EC population, and therefore of lymphovenous valves, requires two functional copies of Prox1, as the valves are absent in Prox1 heterozygous mice. We show that this is due to a defect in the maintenance of Prox1 expression in venous ECs and LEC progenitors promoted by a reduction in Coup-TFII/Prox1 complex formation. This is the first report describing the molecular mechanism controlling lymphovenous communication.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Válvulas Venosas/embriologia , Animais , Fator II de Transcrição COUP/metabolismo , Comunicação Celular , Embrião de Mamíferos , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência/genética , Heterozigoto , Linfangiogênese/genética , Camundongos , Células-Tronco/citologia , Veias/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA