Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
3.
J Med Virol ; 96(6): e29730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860570

RESUMO

Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.


Assuntos
Endocitose , Proteínas de Ligação ao GTP , Vírus Hantaan , Internalização do Vírus , Humanos , Actinas/metabolismo , Linhagem Celular , Dinamina II/metabolismo , Dinamina II/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Vírus Hantaan/fisiologia , Células HEK293 , Febre Hemorrágica com Síndrome Renal/virologia , Interações Hospedeiro-Patógeno
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 385-394, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38790094

RESUMO

Objective To confirm that Hantaan virus (HTNV) can infect BEAS-2B human normal lung epithelial cells and examine the host immune response and metabolic changes induced by HTNV infection by transcriptomic analysis. Methods Western blotting, quantitative real-time PCR and immunofluorescence assay were used to assess the viral load in BEAS-2B cells, and RNA sequencing was employed for transcriptomic analysis. Results Following the infection of BEAS-2B cells with HTNV, there was an increase in the expression of HTNV nucleocapsid protein (NP) and small segment (S) over time. A transcriptomic analysis of these infected cells at 48-hour mark identified 328 genes that were differentially expressed. GO and KEGG enrichment analysis revealed that these differences were primarily associated with interferon response and innate immune pattern recognition receptor pathways. Protein-protein interaction network analysis identified several genes related to innate immune responses, including four genes encoding disintegrin and metalloproteinase with thrombospondin motifs. Metabolic pathway analysis showed three genes related to terpenoid backbone biosynthesis, two genes related to glycolysis/gluconeogenesis and two genes related to steroid hormone biosynthesis. Subcellular localization analysis indicated that many of the differentially expressed genes were located in mitochondria. Conclusion HTNV is capable of effectively infecting BEAS-2B cells, making them a suitable in vitro model for studying HTNV infection in human lung epithelial. By utilizing bioinformatics methods to screen for differentially expressed genes and metabolic pathways associated with HTNV infection, researchers can establish a theoretical foundation for investigating the molecular mechanisms underling HTNV infection.


Assuntos
Células Epiteliais , Vírus Hantaan , Imunidade Inata , Pulmão , Humanos , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Vírus Hantaan/fisiologia , Vírus Hantaan/imunologia , Pulmão/virologia , Pulmão/imunologia , Pulmão/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas
5.
Virus Res ; 346: 199394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735439

RESUMO

Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.


Assuntos
Linfócitos T CD4-Positivos , Vírus Hantaan , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Vírus Hantaan/imunologia , Vírus Hantaan/fisiologia , Células Jurkat , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Replicação Viral , Endocitose , Febre Hemorrágica com Síndrome Renal/virologia , Febre Hemorrágica com Síndrome Renal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tropismo Viral
6.
Nat Commun ; 15(1): 2256, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480734

RESUMO

Hantaan virus is a dangerous human pathogen whose segmented negative-stranded RNA genome is replicated and transcribed by a virally-encoded multi-functional polymerase. Here we describe the complete cryo-electron microscopy structure of Hantaan virus polymerase in several oligomeric forms. Apo polymerase protomers can adopt two drastically different conformations, which assemble into two distinct symmetric homodimers, that can themselves gather to form hexamers. Polymerase dimerization induces the stabilization of most polymerase domains, including the C-terminal domain that contributes the most to dimer's interface, along with a lariat region that participates to the polymerase steadying. Binding to viral RNA induces significant conformational changes resulting in symmetric oligomer disruption and polymerase activation, suggesting the possible involvement of apo multimers as protecting systems that would stabilize the otherwise flexible C-terminal domains. Overall, these results provide insights into the multimerization capability of Hantavirus polymerase and may help to define antiviral compounds to counteract these life-threatening viruses.


Assuntos
Vírus Hantaan , Humanos , Microscopia Crioeletrônica , RNA Viral/genética , Nucleotidiltransferases , Dimerização
7.
Viral Immunol ; 37(1): 44-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324005

RESUMO

Hantaan virus (HTNV) is prevalent in Eurasia. It causes hemorrhagic fever with renal syndrome (HFRS). Long noncoding RNAs (lncRNAs) play key roles in regulating innate immunity. Among these, lncRNA negative regulator of interferon response (NRIR) was reported as an inhibitor of several interferon (IFN)-stimulated genes. Our results showed that: NRIR expression was upregulated by HTNV infection in a type I IFN-dependent manner. The expression of NRIR in CD14+ monocytes from HFRS patients in acute phase was significantly higher than that in convalescent phase and healthy controls. HTNV infection in some HTNV-compatible cells was promoted by NRIR. NRIR negatively regulated innate immunity, especially IFITM3 expression. Localized in the nucleus, NRIR bound with HNRNPC, and knockdown of HNRNPC significantly weakened the effect of NRIR in promoting HTNV infection and restored IFITM3 expression. These results indicated that NRIR regulates the innate immune response against HTNV infection possibly through its interaction with HNRNPC and its influence on IFITM3.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Interferon Tipo I , RNA Longo não Codificante , Humanos , Vírus Hantaan/genética , RNA Longo não Codificante/genética , Imunidade Inata , Proteínas de Membrana , Proteínas de Ligação a RNA/genética
8.
J Med Virol ; 96(1): e29346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178580

RESUMO

Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Animais , Filogenia , Vírus Hantaan/genética , Orthohantavírus/genética , Roedores , Mamíferos , República da Coreia/epidemiologia
9.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(1): 117-122, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38228533

RESUMO

Objective: To explore the characteristics of natural foci of hemorrhagic fever with renal syndrome (HFRS) in Gansu Province. Methods: The information of HFRS case data and rodent density monitoring data from 2012 to 2022 in Gansu Province were collected and epidemiological methods were used to analyze and investigate the characteristics of the epidemic focus. Results: A total of 869 cases of HFRS were reported, and four patients died from 2012 to 2022. The annual incidence rate is between 0.05 per 100 000 and 1.21 per 100 000. The cases were mainly distributed in the eastern, southeast, southern, and south of the central region of Gansu Province. Most cases were distributed between age 20-60, and the sex ratio was 1.85∶1 (564∶305). Most cases were farmers (61.80%, 537/869), herdsmen (19.79%,172/869) and students (6.33%, 55/869). In a wild rat-type epidemic focus,the incidence peak was from November to January of the following year. The natural rodent hosts of HFRS were Rattus norvegicus, Apodemus agrarius, and Mus musculus. The hantaan virus carriage rates were 2.79% (21/754), 0.42% (5/1 179) and 0.31% (2/643),respectively. Three epidemic foci were defined: two derived from the Pingliang and Gannan prefecture new outbreaks epidemic foci, respectively, while the other was the residue of the Dingxi epidemic focus. Conclusions: The southern, south of the central region and eastern part of Gansu Province are current key HFRS epidemic foci dominated by Rattus norvegicus, Apodemus agrarius, and Mus musculus, respectively. The virus genotype is hantaan virus. Case reporting areas should strengthen epidemic monitoring; the key epidemic areas should strengthen and implement various prevention and control measures to reduce the harm caused by HFRS.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Camundongos , Humanos , Ratos , Animais , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Febre Hemorrágica com Síndrome Renal/epidemiologia , Surtos de Doenças , Estações do Ano , Murinae , China/epidemiologia
10.
Virology ; 589: 109942, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048647

RESUMO

Hantaan virus (HTNV) is responsible for hemorrhagic fever with renal syndrome (HFRS), primarily due to its ability to inhibit host innate immune responses, such as type I interferon (IFN-I). In this study, we conducted a transcriptome analysis to identify host factors regulated by HTNV nucleocapsid protein (NP) and glycoprotein. Our findings demonstrate that NP and Gc proteins inhibit host IFN-I production by manipulating the retinoic acid-induced gene I (RIG-I)-like receptor (RLR) pathways. Further analysis reveals that HTNV NP and Gc proteins target upstream molecules of MAVS, such as RIG-I and MDA-5, with Gc exhibiting stronger inhibition of IFN-I responses than NP. Mechanistically, NP and Gc proteins interact with tripartite motif protein 25 (TRIM25) to competitively inhibit its interaction with RIG-I/MDA5, suppressing RLR signaling pathways. Our study unveils a cross-talk between HTNV NP/Gc proteins and host immune response, providing valuable insights into the pathogenic mechanism of HTNV.


Assuntos
Vírus Hantaan , Interferon Tipo I , Interferon Tipo I/metabolismo , Vírus Hantaan/genética , Vírus Hantaan/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Transdução de Sinais , Imunidade Inata , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo
11.
Vaccine ; 41(49): 7482-7490, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37953099

RESUMO

BACKGROUND: Hantaan virus (HTNV, Orthohantavirus hantanensae species, Hantaviridae family) is the main etiological agent responsible for hemorrhagic fever with renal syndrome (HFRS). The novel HTNV may pose a potential danger to the control and prevention of HFRS in China, which highlights the importance of vaccine development in public health management. In previous studies, our laboratory discovered and successfully isolated a new HTNV strain, HV004 strain, from Apodemus agrarius captured in an epidemic area in Hubei, China. METHODS: An initial biological and pathogenicity characterization of HTNV 76-118 (standard train), HV114 strain (a clinical isolate from Hubei province in 1986), and the novel isolate HV004 strain from the epidemic areas of Hubei province were performed in susceptible cells and in vivo. An experimental HV004 strain inactivated vaccine was prepared, and its corresponding immunogenicity was analyzed in BALB/c mice. RESULTS: HV004 strain had a similar but higher pathogenicity than HTNV 76-118 and HV114 in suckling mice. A subcutaneous vaccination (s.c.) with the inactivated HTNV vaccine adjuvanted with aluminum, followed by a challenge intraperitoneally with 106 FFU/ml HTNV, afforded full protection against an HTNV challenge. All immunized mice in every group elicited serum neutralizing antibodies with increasing dosages, which may protect mice from HTNV infection. A dose-dependent stimulation index of splenocytes was also observed in immunized mice. The percentage of IFN-γ-producing CD3+CD8+ T cells was significantly higher in the spleens of immunized mice than in those of control mice. CONCLUSIONS: These findings suggest that the inactivated HTNV vaccine may stimulate mice to produce high levels of antibodies with neutralization activity and elicit specific anti-HTNV humoral and cellular immune responses in BALB/c mice against the prevalent strain of HTNV in south central China.


Assuntos
Doenças Transmissíveis , Vírus Hantaan , Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Camundongos , Animais , Febre Hemorrágica com Síndrome Renal/prevenção & controle , Febre Hemorrágica com Síndrome Renal/epidemiologia , Virulência , Vacinas de Produtos Inativados , Linfócitos T CD8-Positivos , Anticorpos Antivirais , Infecções por Hantavirus/prevenção & controle
12.
Viruses ; 15(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37632012

RESUMO

Diseases induced by infection with pathogenic orthohantaviruses are characterized by a pronounced organ-specific manifestation. Pathogenic Eurasian orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) with often massive proteinuria. Therefore, the use of a relevant kidney cell culture would be favorable to analyze the underlying cellular mechanisms of orthohantavirus-induced acute kidney injury (AKI). We tested different human tubular epithelial cell lines for their suitability as an in vitro infection model. Permissiveness and replication kinetics of highly pathogenic Hantaan virus (HTNV) and non-/low-pathogenic Tula virus (TULV) were analyzed in tubular epithelial cell lines and compared to human primary tubular epithelial cells. Ana-lysis of the cell line HK-2 revealed the same results for viral replication, morphological and functional effects as observed for HTNV in primary cells. In contrast, the cell lines RPTEC/TERT1 and TH1 demonstrated only poor infection rates after inoculation with HTNV and are unusable as an infection model. While pathogenic HNTV infects primary tubular and HK-2 cells, non-/low-pathogenic TULV infects neither primary tubular cells nor the cell line HK-2. Our results show that permissiveness of renal cells varies between orthohantaviruses with differences in pathogenicity and that HK-2 cells demonstrate a suitable in vitro model to study viral tropism and pathogenesis of orthohantavirus-induced AKI.


Assuntos
Injúria Renal Aguda , Vírus Hantaan , Orthohantavírus , Vírus de RNA , Humanos , Células Epiteliais , Rim
13.
Virol Sin ; 38(5): 741-754, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633447

RESUMO

Hantaan virus (HTNV) is a rodent-borne virus that causes hemorrhagic fever with renal syndrome (HFRS), resulting in a high mortality rate of 15%. Interferons (IFNs) play a critical role in the anti-hantaviral immune response, and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFN-stimulated genes (ISGs) through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT) pathway. However, the tremendous amount of IFNs produced during late infection could not restrain HTNV replication, and the mechanism remains unclear. Here, we demonstrated that receptor-interacting protein kinase 3 (RIPK3), a crucial molecule that mediates necroptosis, was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation. RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection, with RIPK3 identified as a key modulator of viral replication. RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication, without affecting the expression of pattern recognition receptors (PRRs) or the production of type I IFNs. Conversely, exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication. RIPK3-/- mice also maintained a robust ability to clear HTNV with enhanced innate immune responses. Mechanistically, we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain (PKD) of RIPK3 but not its kinase activity. Overall, these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.


Assuntos
Vírus Hantaan , Infecções por Hantavirus , Interferon Tipo I , Orthohantavírus , Animais , Camundongos , Imunidade Inata , Necroptose , Replicação Viral
14.
Cytokine ; 170: 156340, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37607412

RESUMO

Hantavirus, which causes hemorrhagic fever with renal syndrome (HFRS) is almost prevalent worldwide. While Hantaan virus (HTNV) causes the most severe form of HFRS with typical clinical manifestations of thrombocytopenia, increased vascular permeability, and acute kidney injury. Although the knowledge of the pathogenesis of HFRS is still limited, immune dysfunction and pathological damage caused by disorders of immune regulation are proposed to play a vital role in the development of the disorder, and the endothelium is considered to be the primary target of hantaviruses. Here, we reviewed the production and function of multiple molecules, mainly focusing on their role in immune response, endothelium, vascular permeability regulation, and platelet and coagulation activation which are closely related to the pathogenesis of HTNV infection. meanwhile, the relationship between these molecules and characteristics of HTNV infection including the hospital duration, immune dysfunction, thrombocytopenia, leukocytosis, and acute kidney injury are also presented, to provide a novel insight into the potential role of these molecules as monitoring markers for HTNV infection.


Assuntos
Injúria Renal Aguda , Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Trombocitopenia , Humanos , Febre Hemorrágica com Síndrome Renal/diagnóstico , Injúria Renal Aguda/diagnóstico , Coagulação Sanguínea
15.
Ann Med ; 55(2): 2247000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585670

RESUMO

BACKGROUND: Hantaan virus (HTNV) infection can cause severe hemorrhagic fever with renal syndrome (HFRS). Inflammatory monocytes (iMOs) are involved in early antiviral responses. Previous studies have found that blood iMOs numbers increase in the acute phase of HFRS. Here, we further identified the phenotypic characteristics of iMOs in HFRS and explored whether phenotypic changes in iMOs were associated with HFRS severity. MATERIALS AND METHODS: Blood samples from 85 HFRS patients were used for phenotypic analysis of iMOs by flow cytometry. Plasma HTNV load was determined using RT-PCR. THP-1 cells overexpressing CD226 were used to investigate the effects of CD226 on HLA-DR/DP/DQ and CD80 expression. A mouse model was used to test macrophage phenotype following HTNV infection. RESULTS: The proportion of CD226- iMOs in the acute phase of HFRS was 66.83 (35.05-81.72) %, which was significantly higher than that in the convalescent phase (5.32 (1.36-13.52) %) and normal controls (7.39 (1.15-18.11) %) (p < 0.0001). In the acute phase, the proportion of CD226- iMOs increased more in patients with more severe HFRS and correlated positively with HTNV load and negatively with platelet count. Notably, CD226- iMOs expressed lower levels of HLA-DR/DP/DQ and CD80 than CD226+ iMOs, and overexpression CD226 could enhance the expression of HLA-DR/DP/DQ and CD80. In a mouse model, HTNV also induced the expansion of CD226- macrophages, with decreased expression of I-A/I-E and CD80. CONCLUSIONS: CD226- iMOs increased during HTNV infection and the decrease in CD226 hampered the expression of HLA-DR/DP/DQ and CD80, which may promote the immune escape of HTNV and exacerbate clinical symptoms.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Animais , Camundongos , Humanos , Monócitos/metabolismo , Contagem de Plaquetas , Antígenos HLA-DR
16.
Front Immunol ; 14: 1131647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492567

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.


Assuntos
Vírus Hantaan , Infecções por Hantavirus , Orthohantavírus , Humanos , Orthohantavírus/genética , Uso do Códon , Proteínas do Nucleocapsídeo
17.
Virol Sin ; 38(4): 568-584, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355006

RESUMO

Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.


Assuntos
Vírus Hantaan , Infecções por Hantavirus , Interferon Tipo I , Orthohantavírus , Animais , Camundongos , Vírus Hantaan/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Camundongos Nus
18.
Virus Res ; 334: 199149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329903

RESUMO

Due to the global resurgence of hemorrhagic fever with renal syndrome (HFRS), more attention is being focused on this dangerous illness. In China and Korea, the only vaccines available are the virus-inactivated vaccine against Hantaan virus (HTNV) or Seoul virus (SEOV), but their efficacy and safety are inadequate. Therefore, it is important to develop new vaccines that are safer and more efficient to neutralize and regulate areas with a high prevalence of HFRS. We employed bioinformatics methods to design a recombinant protein vaccine based on conserved regions of protein consensus sequences in HTNV and SEOV membranes. The S2 Drosophila expression system was utilized to enhance protein expression, solubility and immunogenicity. After the Gn and Gc proteins of HTNV and SEOV were successfully expressed, mice were immunized, and the humoral immunity, cellular immunity, and in vivo protection of the HFRS universal subunit vaccine were systematically evaluated in mouse models. These results indicated that the HFRS subunit vaccine generated elevated levels of binding and neutralizing antibodies, particularly IgG1, compared to that of the traditional inactivated HFRS vaccine. Additionally, the spleen cells of immunized mice secreted IFN-r and IL-4 cytokines effectively. Moreover, the HTNV-Gc protein vaccine successfully protected suckling mice from HTNV infection and stimulated GC responses. In this research, a new scientific approach is investigated to develop a universal HFRS subunit protein vaccine that is capable of producing effective humoral and cellular immunity in mice. The results suggest that this vaccine could be a promising candidate for preventing HFRS in humans.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Vírus Seoul , Humanos , Animais , Camundongos , Vírus Hantaan/genética , Febre Hemorrágica com Síndrome Renal/prevenção & controle , Anticorpos Antivirais , Glicoproteínas , Vacinas de Subunidades Antigênicas/genética
19.
Viruses ; 15(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37243121

RESUMO

China is one of the main epidemic areas for hemorrhagic fever with renal syndrome (HFRS). Currently, there is no human antibody specific to Hantaan virus (HTNV) for the emergency prevention and treatment of HFRS. To prepare human antibodies with neutralizing activity, we established an anti-HTNV phage antibody library using phage display technology by transforming peripheral blood mononuclear cells (PBMCs) of patients with HFRS into B lymphoblastoid cell lines (BLCLs) and extracting cDNA from BLCLs that secreted neutralizing antibodies. Based on the phage antibody library, we screened HTNV-specific Fab antibodies with neutralizing activities. Our study provides a potential way forward for the emergency prevention of HTNV and specific treatment of HFRS.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Humanos , Vírus Hantaan/genética , Leucócitos Mononucleares , Anticorpos Antivirais , Anticorpos Neutralizantes
20.
Nat Commun ; 14(1): 2954, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221161

RESUMO

Hantaviruses are causing life-threatening zoonotic infections in humans. Their tripartite negative-stranded RNA genome is replicated by the multi-functional viral RNA-dependent RNA-polymerase. Here we describe the structure of the Hantaan virus polymerase core and establish conditions for in vitro replication activity. The apo structure adopts an inactive conformation that involves substantial folding rearrangement of polymerase motifs. Binding of the 5' viral RNA promoter triggers Hantaan virus polymerase reorganization and activation. It induces the recruitment of the 3' viral RNA towards the polymerase active site for prime-and-realign initiation. The elongation structure reveals the formation of a template/product duplex in the active site cavity concomitant with polymerase core widening and the opening of a 3' viral RNA secondary binding site. Altogether, these elements reveal the molecular specificities of Hantaviridae polymerase structure and uncover the mechanisms underlying replication. They provide a solid framework for future development of antivirals against this group of emerging pathogens.


Assuntos
Vírus Hantaan , Vírus de RNA , Humanos , Nucleotidiltransferases , RNA Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA