RESUMO
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Galinhas , Hemaglutininas , Subtipo H7N9 do Vírus da Influenza A/genética , Aerossóis e Gotículas Respiratórios , Aves Domésticas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , FilogeniaRESUMO
Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.
Assuntos
Vetores Artrópodes , Vírus Bluetongue , Bluetongue , Ceratopogonidae , Doenças dos Ovinos , Animais , Vetores Artrópodes/virologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Ceratopogonidae/virologia , Cervos , Fenótipo , Vírus Reordenados/metabolismo , Ovinos , Doenças dos Ovinos/transmissão , Doenças dos Ovinos/virologia , Replicação ViralRESUMO
Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.
Assuntos
COVID-19/transmissão , Engenharia Genética/ética , Mutagênese Sítio-Dirigida/métodos , Vírus Reordenados/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sequência de Bases , COVID-19/patologia , COVID-19/virologia , China , Quirópteros/virologia , Eutérios/virologia , Furina/metabolismo , Humanos , Ligação Proteica , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Human infections with highly pathogenic avian influenza (HPAI) H7N9 virus were detected in late 2016. We examined the drug resistance profile of 30 HPAI H7N9 isolates from Mainland of China (2016-2019). Altogether, 23% (7/30) carried neuraminidase inhibitors (NAIs) - resistance mutations, and 13% (4/30) displayed reduced susceptibility to NAIs in neuraminidase (NA) inhibition test. An HPAI H7N9 reassortment virus we prepared was passaged with NAIs for 10 passages. Passage with zanamivir induced an E119G substitution in NA, whereas passage with oseltamivir induced R292K and E119V substitutions that simulated that seen in oseltamivir -treated HPAI H7N9 cases, indicating that the high frequency of resistant strains in the HPAI H7N9 isolates is related to NAIs use. In presence of NAIs, R238I, A146E, G151E and G234T substitutions were found in HA1 region of HA. No amino acid mutations were found in the internal genes of the recombinant virus.
Assuntos
Farmacorresistência Viral/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Mutação , Neuraminidase/genética , Vírus Reordenados/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Aves/virologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/patologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/patologia , Influenza Humana/transmissão , Influenza Humana/virologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Neuraminidase/metabolismo , Oseltamivir/farmacologia , Conformação Proteica , Vírus Reordenados/efeitos dos fármacos , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Proteínas Virais/metabolismo , Zanamivir/farmacologiaRESUMO
The first documented avian influenza virus subtype H16N3 was isolated in 1975 and is currently detectable in many countries worldwide. However, the prevalence, biological characteristics and threat to humans of the avian influenza virus H16N3 subtype in China remain poorly understood. We performed avian influenza surveillance in major wild bird gatherings across the country from 2017 to 2019, resulting in the isolation of two H16N3 subtype influenza viruses. Phylogenetic analysis showed these viruses belong to the Eurasian lineage, and both viruses presented the characteristics of inter-species reassortment. In addition, the two viruses exhibited limited growth capacity in MDCK and A549 cells. Receptor-binding assays indicated that the two H16N3 viruses presented dual receptor-binding profiles, being able to bind to both human and avian-type receptors, where GBHG/NX/2/2018(H16N3) preferentially bound the avian-type receptor, while GBHG/NX/1/2018(H16N3) showed greater binding to the human-type receptor, even the mice virulence data showed the negative results. Segments from other species have been introduced into the H16N3 avian influenza virus, which may alter its pathogenicity and host tropism, potentially posing a threat to animal and human health in the future. Consequently, it is necessary to increase monitoring of the emergence and spread of avian influenza subtype H16N3 in wild birds.
Assuntos
Aves/virologia , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Vírus Reordenados/isolamento & purificação , Animais , Animais Selvagens/virologia , China/epidemiologia , Fezes/virologia , Feminino , Genes Virais , Genoma Viral , Humanos , Vírus da Influenza A/metabolismo , Influenza Aviária/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , RNA Viral , Vírus Reordenados/metabolismo , Receptores Virais/metabolismo , Ensaio de Placa ViralRESUMO
The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 µm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 µm/s at 16 hpi compared to 0.22 µm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.
Assuntos
Vírus da Doença Infecciosa da Bursa/genética , Vírus Reordenados/genética , Replicação Viral/genética , Animais , Linhagem Celular , Coinfecção/metabolismo , Citoplasma , Vírus de RNA/genética , Vírus Reordenados/metabolismo , Proteínas Estruturais Virais/genéticaRESUMO
Paramyxoviruses are negative-polarity RNA viruses of major clinical importance. The dynamic interaction of the RNA-dependent RNA polymerase (RdRP) complex with the encapsidated RNA genome is mechanistically and structurally poorly understood. Having generated recombinant measles (MeV) and canine distemper (CDV) viruses with truncated nucleocapsid (N) protein showing defects in replication kinetics, we have applied a viral evolution approach to the problem. Passaging of recombinants resulted in long-range compensatory mutations that restored RdRP bioactivity in minigenome assays and efficient replication of engineered viruses. Compensatory mutations clustered at an electronically compatible acidic loop in N-core and a basic face of the phosphoprotein X domain (P-XD). Co-affinity precipitations, biolayer interferometry, and molecular docking revealed an electrostatic-driven transiently forming interface between these domains. The compensatory mutations reduced electrostatic compatibility of these microdomains and lowered coprecipitation efficiency, consistent with a molecular checkpoint function that regulates paramyxovirus polymerase mobility through modulation of conformational stability of the P-XD assembly.
Assuntos
Vírus da Cinomose Canina/genética , Vírus do Sarampo/genética , Proteínas do Nucleocapsídeo/química , Fosfoproteínas/química , RNA Polimerase Dependente de RNA/química , Vírus Reordenados/genética , Replicação Viral/genética , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Cricetulus , Vírus da Cinomose Canina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vírus do Sarampo/metabolismo , Simulação de Acoplamento Molecular , Mutação , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Células VeroRESUMO
Previous studies revealed that certain avian influenza A viruses (IAVs), including zoonotic H5N1 and H7N9 IAVs, infect cultured human lung microvascular endothelial cells (HULEC) more efficiently than other IAVs and that tropism to HULEC is determined by viral hemagglutinin (HA). To characterize mechanisms of HA-mediated endotheliotropism, we used 2:6 recombinant IAVs harboring HAs from distinctive avian and human viruses and found that efficient infection of HULEC correlated with low conformational stability of the HA. We next studied effects on viral infectivity of single-point amino acid substitutions in the HA of 2:6 recombinant virus A/Vietnam/1203/2004-PR8 (H5N1). Substitutions H8Q, H103Y, T315I, and K582I (K58I in the HA2 subunit), which increased stability of the HA, markedly reduced viral infectivity for HULEC, whereas substitutions K189N and K218Q, which altered typical H5N1 virus-like receptor specificity and reduced binding avidity of the HA, led to only marginal reduction of infectivity. None of these substitutions affected virus infection in MDCK cells. We confirmed the previous observation of elevated basal expression of IFITM3 protein in HULEC and found that endosomal acidification is less efficient in HULEC than in MDCK cells. In accord with these findings, counteraction of IFITM3-mediated restriction by amphotericin B and reduction of endosomal pH by moderate acidification of the extracellular medium enhanced infectivity of viruses with stable HA for HULEC without significant effect on infectivity for MDCK cells. Collectively, our results indicate that relatively high pH optimum of fusion of the HA of zoonotic H5N1 and H7N9 IAVs allows them to overcome antiviral effects of inefficient endosomal acidification and IFITM3 in human endothelial cells.IMPORTANCE Receptor specificity of the HA of IAVs is known to be a critical determinant of viral cell tropism. Here, we show that fusion properties of the HA may also play a key role in the tropism. Thus, we demonstrate that IAVs having a relatively low pH optimum of fusion cannot efficiently infect human endothelial cells owing to their relatively high endosomal pH and increased expression of fusion-inhibiting IFITM3 protein. These restrictions can be overcome by IAVs with elevated pH of fusion, such as zoonotic H5N1 and H7N9. Our results illustrate that the infectivity of IAVs depends on an interplay between HA conformational stability, endosomal acidification and IFITM3 expression in target cells, and the extracellular pH. Given significant variation of levels of HA stability among animal, human, and zoonotic IAVs, our findings prompt further studies on the fusion-dependent tropism of IAVs to different cell types in humans and its role in viral host range and pathogenicity.
Assuntos
Endossomos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Vírus Reordenados/genética , Substituição de Aminoácidos , Animais , Cães , Endossomos/virologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Regulação da Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Concentração de Íons de Hidrogênio , Virus da Influenza A Subtipo H5N1/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Relação Estrutura-Atividade , Tropismo Viral/genética , Replicação ViralRESUMO
Efficient human-to-human transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission are still not fully understood. In this study, we compared the respiratory droplet transmissibilities of four H7N9 viruses that are genetic closely related and found that these viruses have dissimilar transmissibilities in guinea pigs: A/Anhui/1/2013 (AH/1) transmitted efficiently, whereas the other three viruses did not transmit. The three nontransmissible viruses have one to eight amino acid differences compared with the AH/1 virus. To investigate which of these amino acids is important for transmission, we used reverse genetics to generate a series of reassortants and mutants in the AH/1 background and tested their transmissibility in guinea pigs. We found that the neuraminidase (NA) of the nontransmissible virus A/chicken/Shanghai/S1053/2013 had low enzymatic activity that impaired the transmission of AH/1 virus, and three amino acid mutations-V292I and K627E in PB2 and D156E in M1-independently abolished the transmission of the AH/1 virus. We further found that an NA reassortant and three single-amino-acid mutants replicated less efficiently than the AH/1 virus in A549 cells and that the amino acid at position 156 of M1 affected the morphology of H7N9 viruses. Our study identifies key amino acids in PB2 and M1 that play important roles in H7N9 inï¬uenza virus transmission and provides new insights into the transmissibility of inï¬uenza virus.IMPORTANCE Efficient transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission remain poorly understood. H7N9 influenza viruses, which emerged in 2013 in China, have caused over 1,560 human infection cases, showing clear pandemic potential. Previous studies have shown that the H7N9 viruses differ in their transmissibility in animal models. In this study, we found two amino acids in PB2 (292V and 627K) and one in M1 (156D) that are extremely important for H7N9 virus transmission. Of note, PB2 292V and M1 156D appear in most H7N9 viruses, and the PB2 627K mutation could easily occur when the H7N9 virus replicates in humans. Our study thus identifies new amino acids that are important for influenza virus transmission and suggests that just a few key amino acid changes can render the H7N9 virus transmissible in mammals.
Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Neuraminidase/genética , Infecções por Orthomyxoviridae/transmissão , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/genética , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Células A549 , Substituição de Aminoácidos , Animais , Expressão Gênica , Cobaias , Humanos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Mutação , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Genética Reversa , Relação Estrutura-Atividade , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Replicação ViralRESUMO
Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.
Assuntos
Epistasia Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Influenza Humana/virologia , Proteínas Virais/genética , Animais , Embrião de Galinha , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/genética , Vacinas contra Influenza/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/metabolismo , Temperatura , Proteínas Virais/metabolismoRESUMO
Live bird market surveillance for avian influenza viruses in Cambodia in 2015 has led to the detection of two 7:1 reassortant influenza A(H5N1) clade 2.3.2.1c viruses. These reassortant strains, designated A/duck/Cambodia/Z564W35M1/2015 and A/chicken/Cambodia/Z850W49M1/2015, both contained a single gene (PB1 and matrix gene, respectively) from concurrently circulating A(H9N2) influenza viruses. All other viral genes from both isolates clustered with A(H5N1) clade 2.3.2.1 viruses. Continued and prolonged co-circulation of influenza A(H5N1) and A(H9N2) viruses in Cambodian live bird markets may present a risk for the emergence of novel influenza reassortant viruses with negative agricultural and/or public health implications.
Assuntos
Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Vírus Reordenados/genética , Animais , Camboja/epidemiologia , Galinhas , Patos , Monitoramento Epidemiológico , Expressão Gênica , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/metabolismo , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/transmissão , Influenza Aviária/virologia , Filogenia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Influenza virus infections can be complicated by bacterial superinfections, which are medically relevant because of a complex interaction between the host, the virus, and the bacteria. Studies to date have implicated several influenza virus genes, varied host immune responses, and bacterial virulence factors, however, the host-pathogen interactions that predict survival versus lethal outcomes remain undefined. Previous work by our group showed that certain influenza viruses could yield a survival phenotype (A/swine/Texas/4199-2/98-H3N2, TX98), whereas others were associated with a lethal phenotype (A/Puerto Rico/8/34-H1N1, PR8). Based on this observation, we developed the hypothesis that individual influenza virus genes could contribute to a superinfection, and that the host response after influenza virus infection could influence superinfection severity. The present study analyzes individual influenza virus gene contributions to superinfection severity using reassortant viruses created using TX98 and PR8 viral genes. Host and pathogen interactions, relevant to survival and lethal phenotypes, were studied with a focus on pathogen clearance, host cellular infiltrates, and cytokine levels after infection. Specifically, we found that the hemagglutinin gene expressed by an influenza virus can contribute to the severity of a secondary bacterial infection, likely through modulation of host proinflammatory responses. Altogether, these results advance our understanding of molecular mechanisms underlying influenza virus-bacteria superinfections and identify viral and corresponding host factors that may contribute to morbidity and mortality.
Assuntos
Alphainfluenzavirus/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/imunologia , Vírus Reordenados/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Superinfecção/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/diagnóstico , Influenza Humana/mortalidade , Influenza Humana/virologia , Alphainfluenzavirus/metabolismo , Camundongos Endogâmicos BALB C , Vírus Reordenados/metabolismo , Índice de Gravidade de Doença , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/mortalidade , Superinfecção/microbiologia , Superinfecção/mortalidade , Fatores de Virulência/imunologiaRESUMO
The reassortment of two highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses presents a potential challenge to human health. The hemagglutinins (HAs) and neuraminidases (NAs) of these simultaneously circulating avian influenza viruses were evaluated using the pseudoparticle (pp) system. Native and mismatched virus pps were generated to investigate their biological characteristics. The HAs and NAs of the two viruses reassorted successfully to generate infectious viral particles. H7 was demonstrated to have the ability to reassort with NA from the H5N1 viruses, resulting in the generation of virions that were highly infectious to bronchial epithelial cells. Although the Anhui H5+Anhui N9 combination showed an moderate infectivity to the four cell lines, it was most sensitive to oseltamivir. The H7 in the pps was found to be predominantly HA0. Further, H5 in the pps primarily presented as HA1, owing to the particular mechanisms underlying its maturation. All NAs predominantly existed in monomer form. In our study, HAs/NAs, in all combinations, were functional and able to perform their corresponding function in the viral life cycle. Our data suggest that HAs/NAs from the (HPAI) H5N1 and H7N9 viruses are capable of assembly into infectious virions, posing a threat topublic health.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Neuraminidase/metabolismo , Vírus Reordenados/metabolismo , Vírion/metabolismo , Animais , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Neuraminidase/genética , Doenças das Aves Domésticas/virologia , Vírus Reordenados/enzimologia , Vírus Reordenados/genética , Recombinação Genética , Vírion/enzimologia , Vírion/genética , Vírion/patogenicidade , VirulênciaRESUMO
Recombination occurs frequently between enteroviruses (EVs) which are classified within the same species of the Picornaviridae family. Here, using viral metagenomics, the genomes of two recombinant EV-Gs (strains EVG 01/NC_CHI/2014 and EVG 02/NC_CHI/2014) found in the feces of pigs from a swine farm in China are described. The two strains are characterized by distinct insertion of a papain-like protease gene from toroviruses classified within the Coronaviridae family. According to recent reports the site of the torovirus protease insertion was located at the 2C/3A junction region in EVG 02/NC_CHI/2014. For the other variant EVG 01/NC_CHI/2014, the inserted protease sequence replaced the entire viral capsid protein region up to the VP1/2A junction. These two EV-G strains were highly prevalent in the same pig farm with all animals shedding the full-length genome (EVG 02/NC_CHI/2014) while 65% also shed the capsid deletion mutant (EVG 01/NC_CHI/2014). A helper-defective virus relationship between the two co-circulating EV-G recombinants is hypothesized.
Assuntos
Infecções por Enterovirus/veterinária , Enterovirus Suínos/genética , Genoma Viral , Vírus Reordenados/genética , Doenças dos Suínos/epidemiologia , Infecções por Torovirus/veterinária , Torovirus/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , China/epidemiologia , Endopeptidases/genética , Endopeptidases/metabolismo , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus Suínos/classificação , Enterovirus Suínos/metabolismo , Fazendas , Fezes/virologia , Deleção de Genes , Variação Genética , Metagenômica/métodos , Filogenia , Prevalência , Vírus Reordenados/classificação , Vírus Reordenados/metabolismo , Recombinação Genética , Suínos , Doenças dos Suínos/virologia , Torovirus/classificação , Torovirus/metabolismo , Infecções por Torovirus/epidemiologia , Infecções por Torovirus/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.
Assuntos
Epidemias , Genoma Viral , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/genética , Vírus Reordenados/genética , Doenças dos Suínos/genética , Animais , Vírus da Influenza A/metabolismo , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/metabolismo , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologiaRESUMO
The outbreak of a pandemic influenza H1N1 in 2009 required the rapid generation of high-yielding vaccines against the A/California/7/2009 virus, which were achieved by either addition or deletion of a glycosylation site in the influenza proteins hemagglutinin and neuraminidase. In this report, we have systematically evaluated the glycan composition, structural distribution and topology of glycosylation for two high-yield candidate reassortant vaccines (NIBRG-121xp and NYMC-X181A) by combining various enzymatic digestions with high performance liquid chromatography and multiple-stage mass spectrometry. Proteomic data analyses of the full-length protein sequences determined 9 N-glycosylation sites of hemagglutinin, and defined 6 N-glycosylation sites and the glycan structures of low abundance neuraminidase, which were occupied by high-mannose, hybrid and complex-type N-glycans. A total of ~300 glycopeptides were analyzed and manually validated by tandem mass spectrometry. The specific N-glycan structure and topological location of these N-glycans are highly correlated to the spatial protein structure and the residential ligand binding. Interestingly, sulfation, fucosylation and bisecting N-acetylglucosamine of N-glycans were also reliably identified at the specific glycosylation sites of the two influenza proteins that may serve a crucial role in regulating the protein structure and increasing the protein abundance of the influenza virus reassortants.
Assuntos
Hemaglutininas/química , Vírus da Influenza A Subtipo H1N1/metabolismo , Neuraminidase/química , Proteômica/métodos , Vírus Reordenados/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Glicosilação , Hemaglutininas/análise , Hemaglutininas/genética , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vacinas contra Influenza/química , Vacinas contra Influenza/metabolismo , Modelos Moleculares , Neuraminidase/análise , Polissacarídeos/análise , Polissacarídeos/química , Conformação Proteica , Vírus Reordenados/química , Espectrometria de Massas em Tandem , Proteínas Virais/análiseRESUMO
This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detected in several Danish pig herds during the last 2-3 years and may possess a challenge for human as well as animal health.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Influenza Humana/virologia , Neuraminidase/genética , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/genética , Doenças dos Suínos/virologia , Proteínas Virais/genética , Animais , Dinamarca , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/imunologia , Vírus Reordenados/metabolismo , Recombinação Genética , Estações do Ano , Suínos , Proteínas Virais/metabolismoRESUMO
T-705 (favipiravir) is a new antiviral agent in advanced clinical development for influenza therapy. It is supposed to act as an alternative substrate for the viral polymerase, causing inhibition of viral RNA synthesis or virus mutagenesis. These mechanisms were also proposed for ribavirin, an established and broad antiviral drug that shares structural similarity with T-705. We here performed a comparative analysis of the effects of T-705 and ribavirin on influenza virus and host cell functions. Influenza virus-infected cell cultures were exposed to T-705 or ribavirin during single or serial virus passaging. The effects on viral RNA synthesis and infectious virus yield were determined and mutations appearing in the viral genome were detected by whole-genome virus sequencing. In addition, the cellular nucleotide pools as well as direct inhibition of the viral polymerase enzyme were quantified. We demonstrate that the anti-influenza virus effect of ribavirin is based on IMP dehydrogenase inhibition, which results in fast and profound GTP depletion and an imbalance in the nucleotide pools. In contrast, T-705 acts as a potent and GTP-competitive inhibitor of the viral polymerase. In infected cells, viral RNA synthesis is completely inhibited by T-705 or ribavirin at ≥50 µM, whereas exposure to lower drug concentrations induces formation of noninfectious particles and accumulation of random point mutations in the viral genome. This mutagenic effect is 2-fold higher for T-705 than for ribavirin. Hence, T-705 and ribavirin both act as purine pseudobases but profoundly differ with regard to the mechanism behind their antiviral and mutagenic effects on influenza virus.
Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Regulação Viral da Expressão Gênica , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Pirazinas/farmacologia , Vírus Reordenados/efeitos dos fármacos , Ribavirina/farmacologia , Células A549 , Amidas/química , Animais , Antivirais/química , Embrião de Galinha , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Cães , Humanos , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Mutação/efeitos dos fármacos , Pirazinas/química , RNA Viral/antagonistas & inibidores , RNA Viral/biossíntese , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/metabolismo , Ribavirina/química , Análise de Sequência de RNA , Relação Estrutura-Atividade , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
In 2013, the first case of human infection with an avian influenza A virus (H7N9) was reported in China, and the human infection with this virus has continued as of 2016. At the request of the WHO, we have successfully developed candidate reassortant vaccine virus using A/Anhui/1/2013 and the high egg-growth master virus A/PR/8/1934. Recent plans regarding influenza vaccine production include using cell-cultured systems in Japan and several other countries. However, egg-based vaccine viruses are not always suitable for cell-cultured vaccine production due to potential issues with growth, protein yield and antigenic stability. Therefore, in this study, we have developed a high-growth master virus (hg-PR8) adapted to qualified NIID-MDCK cells that are competent for vaccine production. The virus hg-PR8 was obtained after 20 serial passages of A/Puerto Rico/8/1934 (PR8) in NIID-MDCK cells. The viral titer of hg-PR8 was 108.6 plaque-forming units per milliliter (PFU/mL). Seven amino acid substitutions were identified in the amino acid sequences of PB2, PB1, PA, NA, M and NS of hg-PR8 compared to the sequence of the original PR8 (org-PR8) strain. The growth capacities of the reassortant viruses, which possess heterologous internal genes from hg-PR8 or org-PR8, indicated that the amino acid changes in PB2 and NS2 similarly affected growth capacity in NIID-MDCK cells. To assess the suitability of hg-PR8 as a master virus, we generated 6:2 reassortant viruses possessing the HA and NA segments from A/Anhui/1/2013 (H7N9) and the remaining segments from hg-PR8. The virus titers of the reassortant strains were 107-108 PFU/mL. The antigenicity of the viruses was stable during ten passages of the viruses in NIID-MDCK cells. In comparison with the egg-based reassortant vaccine viruses with identical HA and NA segments, the hg-PR8-based viruses showed 1.5- to 2-fold higher protein yields in NIID-MDCK cells.
Assuntos
Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Vírus Reordenados/imunologia , Adaptação Biológica , Substituição de Aminoácidos , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Linhagem Celular , Células Cultivadas , Cães , Genes Virais , Glicosilação , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Mutação , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Replicação Viral/genéticaRESUMO
The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV) is associated with the inability of FMDV to grow in bovine cells and attenuated virulence in cattle.Whereas, a previously reported FMDV strain O/HKN/21/70 harboring 93-102 deletion in 3A protein grew equally well in bovine and swine cells. This suggests that changes inFMDV genome sequence, in addition to 93-102 deletion in 3A, may also affectthe viral growth phenotype in bovine cellsduring infection and replication.However, it is nuclear that changes in which region (inside or outside of 3A region) influences FMDV growth phenotype in bovine cells.In this study, to determine the region in FMDV genomeaffecting viral growth phenotype in bovine cells, we constructed chimeric FMDVs, rvGZSB-HKN3A and rvHN-HKN3A, by introducing the 3A coding region of O/HKN/21/70 into the context of O/SEA/Mya-98 strain O/GZSB/2011 and O Cathay topotype strain O/HN/CHA/93, respectively, since O/GZSB/2011 containing full-length 3A protein replicated well in bovine and swine cells, and O/HN/CHA/93 harboring 93-102 deletion in 3A protein grew poorly in bovine cells.The chimeric virusesrvGZSB-HKN3A and rvHN-HKN3A displayed growth properties and plaque phenotypes similar to those of the parental virus rvGZSB and rv-HN in BHK-21 and primary fetal porcine kidney (FPK) cells. However, rvHN-HKN3A and rv-HN replicated poorly in primary fetal bovine kidney (FBK) cells with no visible plaques, and rvGZSB-HKN3A exhibited lower growth rate and smaller plaque size phenotypes than those of the parental virus in FBK cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the difference present in FMDV genome sequence outside the 3A coding region also have influence on FMDV replication ability in bovine cells.