Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Virology ; 566: 75-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890893

RESUMO

The infectious bronchitis virus (IBV) 4/91 was one of the common IBV variants isolated in Eastern Canada between 2013 and 2017 from chicken flocks showing severe respiratory and production problems. We designed an in vivo experiment, using specific pathogen free (SPF) chickens, to study the pathogenesis of, and host response to, Canadian (CAN) 4/91 IBV infection. At one week of age, the chickens were infected with 4/91 IBV/Ck/Can/17-038913 isolate. Swab samples were collected at predetermined time points. Five birds from the infected and the control groups were euthanized at 3, 7- and 10-days post-infection (dpi) to collect lung and kidney tissues. The results indicate IBV replication in these tissues at all three time points with prominent histological lesions, significant immune cell recruitment and up regulation of proinflammatory mediators. Overall, our findings add to the understanding of the pathogenesis of 4/91 infection and the subsequent host responses in the lungs and kidneys following experimental infection.


Assuntos
Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Rim/imunologia , Pulmão/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Animais Recém-Nascidos , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Canadá , Movimento Celular , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Rim/virologia , Pulmão/virologia , Macrófagos/imunologia , Macrófagos/virologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Carga Viral , Replicação Viral
2.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960809

RESUMO

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Assuntos
Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , RNA Viral/biossíntese , Animais , Linhagem Celular , Coronavirus/classificação , Coronavirus/crescimento & desenvolvimento , Citoplasma/metabolismo , Humanos , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/metabolismo , RNA de Cadeia Dupla/metabolismo , Compartimentos de Replicação Viral/metabolismo
3.
Microbiol Spectr ; 9(2): e0090821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612687

RESUMO

Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.


Assuntos
Autofagia/fisiologia , Proteínas Sanguíneas/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Coronavirus/crescimento & desenvolvimento , Proteínas de Ligação a Poli(A)/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Hepatite Murina/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Proteólise , Fator de Transcrição Sp1/metabolismo , Suínos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células Vero
4.
Virology ; 550: 1-7, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853833

RESUMO

Avian coronavirus infectious bronchitis virus (IBV) is an important pathogen threatening poultry production worldwide. Here, two recombinant IBVs (rYN-1a-aYN and rYN-1b-aYN) were generated in which ORF1a or ORF1b of the virulent YN genome were replaced by the corresponding regions from the attenuated strain aYN. The pathogenicity and virulence of rIBVs were evaluated in ovo and in vivo. The results revealed that mutations in the ORF1a gene during passage in embryonated eggs caused the decreased pathogenicity of virulent IBV YN strain, proven by determination of virus replication in ECEs and CEK cells, the observation of clinical signs, gross lesions, microscopic lesions, tracheal ciliary activity and virus distribution in chickens following exposure to rIBVs. However, mutations in ORF1b had no obvious effect on virus replication in both ECEs and CEK cells, or pathogenicity in chickens. Our findings demonstrate that the replicase 1a gene of avian coronavirus IBV is a determinant of pathogenicity.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/patologia , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/patogenicidade , Proteínas Virais/genética , Fatores de Virulência/genética , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cricetulus , Células Epiteliais/patologia , Células Epiteliais/virologia , Expressão Gênica , Vida Livre de Germes , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Mutação , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Proteínas Virais/metabolismo , Virulência , Fatores de Virulência/metabolismo , Replicação Viral
5.
Methods Mol Biol ; 2203: 135-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833210

RESUMO

Several techniques are currently available to quickly and accurately quantify the number of virus particles in a sample, taking advantage of advanced technologies improving old techniques or generating new ones, generally relying on partial detection methods or structural analysis. Therefore, characterization of virus infectivity in a sample is often essential, and classical virological methods are extremely powerful in providing accurate results even in an old-fashioned way. In this chapter, we describe in detail the techniques routinely used to estimate the number of viable infectious coronavirus particles in a given sample. All these techniques are serial dilution assays, also known as titrations or end-point dilution assays (EPDA).


Assuntos
Coronavirus/patogenicidade , Ensaio de Placa Viral/métodos , Animais , Células Cultivadas , Coronavirus/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/patogenicidade , Traqueia/citologia
6.
Comp Immunol Microbiol Infect Dis ; 65: 219-225, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31300117

RESUMO

The interaction between a low pathogenic avian influenza virus (A/CK/TUN/145/2012), a H9N2 Tunisian isolate, and a vaccine strain (H120) of avian infectious bronchitis, administered simultaneously or sequentially three days apart to chicks during 20 days, was evaluated using ELISA antibody levels, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses and histopathology examination. First, the in vivo replication interference of avian influenza virus (AIV) and infectious bronchitis virus (IBV) was evaluated using qRT-PCR to detect accurately either AIV or IBV genomes or viral copy numbers during dual infections. Second, we have determined the amount of specific antibodies in sera of chick's infected with AIV alone, IBV alone, mixed AIV + IBV, IBV then AIV or AIV IBV 3 days later using an ELISA test. Finally, histopathological analyses of internal organs from inoculated chicks were realized. Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus. According to our results, vaccine application was safe and do not interfere with AIV H9N2 infection, and does not enhance such infection. In conclusion, co-infection of chicks with AIV and IBV, simultaneously or sequentially, affected the clinical signs, the virus replication dynamics as well as the internal organ integrity. The results proposed that infection with heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated.


Assuntos
Coinfecção/veterinária , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Interferência Viral , Replicação Viral , Animais , Anticorpos Antivirais/sangue , Galinhas/imunologia , Galinhas/virologia , Coinfecção/virologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , RNA Viral/análise , Vacinas Virais/imunologia
7.
J Gen Virol ; 99(12): 1681-1685, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355423

RESUMO

The spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.


Assuntos
Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais/imunologia , Replicação Viral , Animais , Células Cultivadas , Galinhas , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Proteínas Recombinantes/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Células Vero , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
8.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209177

RESUMO

Vaccination regimes against Infectious bronchitis virus (IBV), which are based on a single virus serotype, often induce insufficient levels of cross-protection against serotypes and two or more antigenically diverse vaccines are used in attempt to provide broader protection. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, are associated with poor cross-protection. Here, homologous vaccination trials with recombinant IBVs (rIBVs), based on the apathogenic strain, BeauR, were conducted to elucidate the role of S1 in protection. A single vaccination of specific-pathogen-free chickens with rIBV expressing S1 of virulent strains M41 or QX, BeauR-M41(S1) and BeauR-QX(S1), gave incomplete protection against homologous challenge, based on ciliary activity and clinical signs. There could be conformational issues with the spike if heterologous S1 and S2 are linked, suggesting a homologous S2 might be essential. To address this, a homologous vaccination-challenge trial incorporating rIBVs expressing full spike from M41, BeauR-M41(S), and S2 subunit from M41, BeauR-M41(S2) was conducted. All chimeric viruses grew to similar titers in vitro, induced virus-specific partial protective immunity, evident by cellular infiltrations, reductions in viral RNA load in the trachea and conjunctiva and higher serum anti-IBV titers. Collectively, these findings show that vaccination with rIBVs primed the birds for challenge but the viruses were cleared rapidly from the mucosal tissues in the head. Chimeric S1 and S2 viruses did not protect as effectively as BeauR-M41(S) based on ciliary activity and clinical signs. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.IMPORTANCE Infectious bronchitis virus causes an acute, highly contagious respiratory disease, responsible for significant economic losses to the poultry industry. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, have been associated with poor cross-protection. Available vaccines give poor cross-protection and rationally designed live attenuated vaccines, based on apathogenic BeauR, could address these. Here, to determine the role of S1 in protection, a series of homologous vaccination trials with rIBVs were conducted. Single vaccinations with chimeric rIBVs induced virus-specific partial protective immunity, characterized by reduction in viral load and serum antibody titers. However, BeauR-M41(S) was the only vaccination to improve the level of protection against clinical signs and the loss of tracheal ciliary activity. Growth characteristics show that all of the rIBVs replicated in vitro to similar levels. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Replicação Viral , Animais , Anticorpos Antivirais/imunologia , Galinhas , Infecções por Coronavirus/virologia , DNA Recombinante , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Carga Viral , Vacinas Virais/administração & dosagem
9.
J Virol Methods ; 259: 92-99, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940196

RESUMO

BACKGROUND: Low pathogenic avian influenza (LPAI) H9N2 and infectious bronchitis virus (IBV) are important pathogens of poultry, causing important economic losses for the sector. Replication interference between these two viruses was described using cell cultures (CC) and embryonated chicken eggs (ECE). Chicken embryo lung (CEL) and ECE were simultaneously or sequentially infected with IBV vaccine strain (H120) and LPAIV-H9N2 (A/Ck/TUN/145/2012) to evaluate viral interactionsin vitro and in ovo, respectively. Real-time RT-PCR was developed to specifically quantify both AIV and IBV genomes as well as viral gene copy numbers during mixed infections. The amount of IL-1 beta, in supernatants of co-infected cell cultures, was determined using an ELISA assay. RESULTS: Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus. CONCLUSION: It appears that either AIV or IBV has a negative impact on the other virus growth when they are inoculated simultaneously or sequentially. The ELISA results showed that higher level of secreted IL-1beta varies, depending on the viral interference conditions between both viruses, during mixed infections.


Assuntos
Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Interferência Viral , Replicação Viral , Animais , Embrião de Galinha , Coinfecção/virologia , Meios de Cultura/química , Ensaio de Imunoadsorção Enzimática , Interleucina-1beta/análise , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cultura de Vírus
10.
Vaccine ; 36(28): 4087-4094, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29859801

RESUMO

Avian infectious bronchitis (IB) is a highly contagious disease, and hazardous to the poultry industry. Immune failure often occurs due to the emergence of new serotypes or field strains antigenically different from the vaccine strains. To prepare a candidate vaccine against the prevalent avian infectious bronchitis virus (IBV) in China, the GI-19/QX-like field isolate Sczy3 was selected as the progenitor strain and attenuated via passaging in chicken embryo kidney (CEK) cells for 100 times. The 100th generation of CEK-adapted strain, designated SczyC100, was safe to use on one-day old specific pathogen-free (SPF) chicken as determined by pathogenicity and virulence reversion test. The efficacies of SczyC100 and two commonly used commercial vaccines (H120 and 4/91) against prevalent GI-19/QX and GI-7/TWI type virulent strains were evaluated. Sczy3C100 effectively reduced the morbidity, mortality, mean lesion scores (MLSs), and viral load of trachea of chickens challenged by GI-19/QX and GI-7/TWI strains. CEK-adapted SczyC100 is therefore a potential vaccine candidate for the control of IB in China.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Animais , Linhagem Celular , Galinhas , China , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Células Epiteliais/virologia , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/imunologia , Inoculações Seriadas , Análise de Sobrevida , Traqueia/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/isolamento & purificação , Virulência , Cultura de Vírus/métodos
11.
Arch Virol ; 163(4): 1043-1049, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29302792

RESUMO

To establish an association between mitochondrial dysfunction and apoptosis following infectious bronchitis virus (IBV) infection, HD11 avian macrophage cells were infected with the Massachusetts 41 (M41) strain. Our results show that the M41 strain of IBV induced cytopathic effects followed by the release of new viral particles. Elevated numbers of apoptotic cells were observed at 24, 48 and 72 h post-infection (p.i.). Viral infection was associated with mitochondrial membrane depolarization and reactive oxygen species (ROS) production at all of the examined timepoints p.i. In summary, IBV M41 replication in infected HD11 macrophages seems to induce mitochondrial bioenergy failure, acting as a respiratory chain uncoupler, without compromising viral replication.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/patogenicidade , Macrófagos/virologia , Mitocôndrias/virologia , Vírion/patogenicidade , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Galinhas , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vírion/crescimento & desenvolvimento , Replicação Viral
12.
Virus Res ; 244: 99-109, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141204

RESUMO

In this study, we isolated an infectious bronchitis virus, designated I1101/16, from broiler breeders in China. Analysis of the S1 gene showed that isolate I1101/16 was genetically close to strain ck/CH/LJL/140901, which belongs to the TW I genotype (also known as lineage GI-7 based on the recent IBV classification), however the S2 gene showed genetic diversity comparing to that of S1 gene. Comparison of the genomic sequences showed that the genome of isolate I1101/16 was similar to that of strain ck/CH/LJL/140901 from the 5' end of the genome to the 5' end of the S2 gene and from the 5' end of the 3a gene to the end of the genome, whereas the remaining parts of the genome sequences were more closely related to those of strain 4/91 than those of ck/CH/LJL/140901, thereby suggesting that recombination might have occurred during the origin of the virus. SimPlot and Bootscan analysis of the complete genomic sequence confirmed this hypothesis, where it showed that isolate I1101/16 arose through recombination events between ck/CH/LJL/140901- and 4/91-like viruses. Isolate I1101/16 and strain ck/CH/LJL/140901 shared identical amino acids in almost all five of their B cell epitopes, but the two viruses had a serotype relatedness value of 65, which is well below 80, i.e., the lower cutoff value for viruses of the same serotype. In addition, pathogenicity tests demonstrated that isolate I1101/16 was more pathogenic to 1-day-old specific-pathogen-free chickens than strain ck/CH/LJL/140901, according to analysis of the clinical signs, whereas strain ck/CH/LJL/140901 exhibited prolonged replication and shedding after challenge compared with isolate I1101/16. This study did not provide evidence that recombination can directly alter the antigenicity, virulence, replication, shedding, and tissue tropism of a virus, but it did show that recombination events are likely to be major determinants of viral evolution.


Assuntos
Antígenos Virais/genética , Infecções por Coronavirus/veterinária , Genoma Viral , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/virologia , Vírus Reordenados/genética , Animais , Antígenos Virais/imunologia , Sequência de Bases , Embrião de Galinha , Galinhas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Genótipo , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/patogenicidade , Rim/imunologia , Rim/patologia , Rim/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/patogenicidade , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Sorogrupo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Traqueia/imunologia , Traqueia/patologia , Traqueia/virologia , Tropismo Viral/genética , Tropismo Viral/imunologia , Virulência , Eliminação de Partículas Virais
13.
Avian Dis ; 61(2): 221-228, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28665723

RESUMO

We previously demonstrated that adaptation of an embryo-attenuated infectious bronchitis virus (IBV) Arkansas (Ark) Delmarva Poultry Industry (DPI)-derived vaccine to chicken embryo kidney (CEK) cells (CEKp7) shifted the virus population towards homogeneity in spike (S) and nonstructural protein genes. Moreover, the typical Ark vaccine subpopulations emerging in chickens vaccinated with commercial Ark vaccines were not detected in chickens vaccinated with CEKp7, indicating that kidney-cell adaptation drastically increased the stability of the vaccine virus population in chickens. In the current study both conventional and next-generation sequencing results show that the changes achieved during CEK adaptation remained after five back passages in embryonated chicken egg (ECE). In a first protection study 1-day-old chickens were vaccinated with 104.0 or 105.0 50% embryo infectious doses (EID50)/chicken of the second ECE back passage of CEKp7 (CEKp7e2) and demonstrated protection against Ark virulent (106.0 EID50) challenge. In a second protection trial, protection by CEKp7e2 was compared with protection conferred by an attenuated commercial ArkDPI-derived vaccine different from that which the CEK-adapted virus originated. All vaccinated chicken groups showed a significant reduction of respiratory signs and viral load after Ark virulent challenge compared to unvaccinated-challenged controls. In CEKp7e2 vaccinated chickens viral subpopulations different from the challenge virus were detected after challenge in a marginal number (7%-8%) of chickens. In contrast, IBV S1 sequences that differed from the predominant population in the challenge virus were detected after challenge in a large number (77%) of chickens vaccinated with the commercial Ark attenuated vaccine. The CEK-adapted IBV ArkDPI-derived vaccine is a stable and effective vaccine, which drastically reduces the emergence of Ark-like viruses both at vaccination and after challenge.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/imunologia , Rim/virologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Embrião de Galinha , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Rim/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Inoculações Seriadas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
Virol J ; 14(1): 109, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606144

RESUMO

BACKGROUND: Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for the highly attenuated, cell culture-adapted, IBV strain Beaudette. However, most IBV strains, amongst them virulent field isolates, can only be propagated in embryonated chicken eggs, and not in continuous cell lines. METHODS: We established a reverse genetics system for the IBV strain H52, based on targeted RNA recombination in a two-step process. First, a genomic and a chimeric synthetic, modified IBV RNA were co-transfected into non-susceptible cells to generate a recombinant chimeric murinized (m) IBV intermediate (mIBV). Herein, the genomic part coding for the spike glycoprotein ectodomain was replaced by that of the coronavirus mouse hepatitis virus (MHV), allowing for the selection and propagation of recombinant mIBV in murine cells. In the second step, mIBV was used as the recipient. To this end a recombination with synthetic RNA comprising the 3'-end of the IBV genome was performed by introducing the complete IBV spike gene, allowing for the rescue and selection of candidate recombinants in embryonated chicken eggs. RESULTS: Targeted RNA recombination allowed for the modification of the 3'-end of the IBV genome, encoding all structural and accessory genes. A wild-type recombinant IBV was constructed, containing several synonymous marker mutations. The in ovo growth kinetics and in vivo characteristics of the recombinant virus were similar to those of the parental IBV strain H52. CONCLUSIONS: Targeted RNA recombination allows for the generation of recombinant IBV strains that are not able to infect and propagate in continuous cell lines. The ability to introduce specific mutations holds promise for the development of rationally designed live-attenuated IBV vaccines and for studies into the biology of IBV in general.


Assuntos
Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/genética , RNA Viral/genética , Recombinação Genética , Genética Reversa/métodos , Animais , Linhagem Celular , Galinhas , Marcação de Genes/métodos , Camundongos
15.
Appl Microbiol Biotechnol ; 99(21): 9011-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26142390

RESUMO

The host innate immune response either clears invading viruses or allows the adaptive immune system to establish an effective antiviral response. In this study, both pathogenic (passage 3, P3) and attenuated (P110) infectious bronchitis virus (IBV) strains were used to study the immune responses of chicken to IBV infection. Expression of avian ß-defensins (AvBDs) and Toll-like receptors (TLRs) in 16 tissues of chicken were compared at 7 days PI. The results showed that P3 infection upregulated the expression of AvBDs, including AvBD2, 4, 5, 6, 9, and 12, while P110 infection downregulated the expression of AvBDs, including AvBD3, 4, 5, 6, and 9 in most tissues. Meanwhile, the expression level of several TLRs showed a general trend of upregulation in the tissues of P3-infected chickens, while they were downregulated in the tissues of P110-infected chickens. The result suggested that compared with the P110 strain, the P3 strain induced a more pronounced host innate immune response. Furthermore, we observed that recombinant AvBDs (including 2, 6, and 12) demonstrated obvious anti-viral activity against IBV in vitro. Our findings contribute to the proposal that IBV infection induces an increase in the messenger RNA (mRNA) expression of some AvBDs and TLRs, which suggests that AvBDs may play significant roles in the resistance of chickens to IBV replication.


Assuntos
Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/imunologia , Receptores Toll-Like/biossíntese , beta-Defensinas/biossíntese , Animais , Galinhas , Expressão Gênica , Perfilação da Expressão Gênica , Imunidade Inata , Doenças das Aves Domésticas/virologia , Receptores Toll-Like/genética , beta-Defensinas/genética
16.
J Virol ; 88(21): 12752-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142592

RESUMO

UNLABELLED: The unfolded-protein response (UPR) is a signal transduction cascade triggered by perturbation of the homeostasis of the endoplasmic reticulum (ER). UPR resolves ER stress by activating a cascade of cellular responses, including the induction of molecular chaperones, translational attenuation, ER-associated degradation, and other mechanisms. Under prolonged and irremediable ER stress, however, the UPR can also trigger apoptosis. Here, we report that in cells infected with the avian coronavirus infectious bronchitis virus (IBV), ER stress was induced and the IRE1α-XBP1 pathway of UPR was activated. Knockdown and overexpression experiments demonstrated that IRE1α protects infected cells from IBV-induced apoptosis, which required both its kinase and RNase activities. Our data also suggest that splicing of XBP1 mRNA by IRE1α appears to convert XBP1 from a proapoptotic XBP1u protein to a prosurvival XBP1s protein. Moreover, IRE1α antagonized IBV-induced apoptosis by modulating the phosphorylation status of the proapoptotic c-Jun N-terminal kinase (JNK) and the prosurvival RAC-alpha serine/threonine-protein kinase (Akt). Taken together, the data indicate that the ER stress sensor IRE1α is activated in IBV-infected cells and serves as a survival factor during coronavirus infection. IMPORTANCE: Animal coronaviruses are important veterinary viruses, which could cross the species barrier, becoming severe human pathogens. Molecular characterization of the interactions between coronaviruses and host cells is pivotal to understanding the pathogenicity and species specificity of coronavirus infection. It has been well established that the endoplasmic reticulum (ER) is closely associated with coronavirus replication. Here, we report that inositol-requiring protein 1 alpha (IRE1α), a key sensor of ER stress, is activated in cells infected with the avian coronavirus infectious bronchitis virus (IBV). Moreover, IRE1α is shown to protect the infected cells from apoptosis by modulating the unfolded-protein response (UPR) and two kinases related to cell survival. This study demonstrates that UPR activation constitutes a major aspect of coronavirus-host interactions. Manipulations of the coronavirus-induced UPR may provide novel therapeutic targets for the control of coronavirus infection and pathogenesis.


Assuntos
Apoptose , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Linhagem Celular , Sobrevivência Celular , Humanos
17.
Bing Du Xue Bao ; 30(6): 668-74, 2014 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-25868282

RESUMO

To explore the expression potential of heterogeneous genes using the backbone of infectious bronchitis virus (IBV) Beaudette strain, the ectodomain region of the Spike gene (1,302 bp) of IBV H120 strain was amplified by RT-PCR and replaced into the corresponding location of the IBV Beaudette strain full-length cDNA. This recombinant was designated as BeauR-H120(S1). BeauR-H120(S1) was directly used as the DNA template for the transcription of viral genomic RNA in vitro. Then, the transcription product was transfected into Vero cells by electroporation. At 48 h post-transfection, the transfected Vero cells were harvested, and passaging continued. A syncytium was not observed until the recombinant virus had passed through four passages. The presence of rBeau-H120(S1) was verified by the detection of the replaced ectodomain region of the H120 Spike gene using RT-PCR. Western blot analysis of rBeau-H120 (S1)-infected Vero cell lysates demonstrated that the nucleocapsid (N) protein was expressed, which implied that rBeau-H120(S1) could propagate in Vero cells. The TCIDs0 and EIDs0 data demonstrated that the titer levels of rBeau-H120(S1) reached 10(590+/-0.22)TCID50/mL and 10(6.13+/-0.23)EID50/mL in Vero cells and 9-day-old SPF chicken embryos, respectively. Protection studies showed that the percentage of antibody-positive chickens, which were vaccinated with rBeau-H120(S1) at 7 days after hatching, rose to 90% at 21 days post-inoculation. Inoculation provided an 85% rate of immune protection against a challenge of the virulent IBV M41 strain (103EID50/chicken). This recombinant virus constructed using reverse genetic techniques could be further developed as a novel genetic engineering vaccine against infectious bronchitis.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/metabolismo , Doenças das Aves Domésticas/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Embrião de Galinha , Galinhas , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/química , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Glicoproteína da Espícula de Coronavírus/genética , Transfecção , Células Vero
18.
Vaccine ; 27(34): 4630-40, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19523910

RESUMO

In this study, we attenuated a Chinese LX4-type nephropathogenic infectious bronchitis virus (IBV) strain, CK/CH/LHLJ/04V, by serial passage in embryonated chicken eggs. Based on sequence analysis of the 3'-7kb region, the CK/CH/LHLJ/04V virus population contained subpopulations with a mixture of genetic mutants. The titers of the virus increased gradually during serial passage, but the replication capacity decreased in chickens. The virus was partially attenuated at passage 40 (P40) and P70, and was fully attenuated at P110. It lost immunogenicity and kidney tropism at P110 and P70, respectively. Amino acid substitutions were found in the 3'-7kb region, primarily in the spike (S) protein. Substitutions in the S1 subunit occurred between P3 and P40 and all subpopulations in a virus passage showed the same substitutions. Other substitutions that occurred between P70 and P110, however, were found only in some subpopulations of the virus passages. A 109-bp deletion in the 3'-UTR was observed in most subpopulations of P70 and P110, and might be related to virus replication, transcription and pathogenicity. The changes described in the 3'-7kb region of the virus are possibly responsible for virus attenuation, immunogenicity decrease and tissue tropism changes; however, we cannot exclude the possibility that other parts of the genome may also be involved in those changes.


Assuntos
Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , RNA Viral/genética , Inoculações Seriadas , Substituição de Aminoácidos/genética , Animais , Anticorpos Antivirais/sangue , Embrião de Galinha , Galinhas , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Análise Mutacional de DNA , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência de DNA , Deleção de Sequência , Análise de Sobrevida
19.
Methods Mol Biol ; 454: 103-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19057860

RESUMO

Chicken tracheal organ cultures (TOCs), comprising transverse sections of chick embryo trachea with beating cilia, have proved useful in the isolation of several respiratory viruses and as a viral assay system, using ciliostasis as the criterion for infection. A simple technique for the preparation of chicken tracheal organ cultures in glass test tubes, in which virus growth and ciliostasis can be readily observed, is described.


Assuntos
Galinhas/virologia , Traqueia/virologia , Animais , Coronavirus/crescimento & desenvolvimento , Coronavirus/isolamento & purificação , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/isolamento & purificação , Técnicas de Cultura de Órgãos/métodos
20.
Methods Mol Biol ; 454: 109-17, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19057881

RESUMO

The embryonated egg is a complex structure comprising an embryo and its supporting membranes (chorioallantoic, amniotic, yolk). The developing embryo and its membranes provide the diversity of cell types that are needed for successful replication of a wide variety of different viruses. Within the family Coronaviridae, the embryonated egg has been used as a host system primarily for two group 3 coronaviruses, infectious bronchitis virus (IBV) and turkey coronavirus (TCoV), but it also has been shown to be suitable for pheasant coronavirus. IBV replicates well in the embryonated chicken egg, regardless of the inoculation route; however, the allantoic route is favored as the virus replicates extensively in chorioallantoic membrane and high titers are found in allantoic fluid. TCoV replicates only in embryo tissues, within epithelium of the intestines and bursa of Fabricius; thus amniotic inoculation is required for isolation and propagation of this virus. Embryonated eggs also provide a potential host system for studies aimed at identifying other, novel coronavirus species.


Assuntos
Coronavirus/crescimento & desenvolvimento , Coronavirus/isolamento & purificação , Animais , Embrião de Galinha , Membrana Corioalantoide/virologia , Coronavirus do Peru/crescimento & desenvolvimento , Coronavirus do Peru/isolamento & purificação , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/isolamento & purificação , Mucosa Intestinal/embriologia , Mucosa Intestinal/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA