Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063782

RESUMO

In this study, we demonstrate the synthesis of carbonized nanogels (CNGs) from an amino acid (lysine hydrochloride) using a simple pyrolysis method, resulting in effective viral inhibition properties against infectious bronchitis virus (IBV). The viral inhibition of CNGs was studied using both in vitro (bovine ephemeral fever virus (BEFV) and pseudorabies virus (PRV)) and in ovo (IBV) models, which indicated that the CNGs were able to prevent virus attachment on the cell membrane and penetration into the cell. A very low concentration of 30 µg mL-1 was found to be effective (>98% inhibition) in IBV-infected chicken embryos. The hatching rate and pathology of IBV-infected chicken embryos were greatly improved in the presence of CNGs. CNGs with distinctive virus-neutralizing activities show great potential as a virostatic agent to prevent the spread of avian viruses and to alleviate the pathology of infected avian species.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Lisina/farmacologia , Nanogéis/administração & dosagem , Substâncias Protetoras/farmacologia , Animais , Linhagem Celular , Galinhas/virologia , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Cricetinae , Vírus da Febre Efêmera Bovina/efeitos dos fármacos , Feminino , Herpesvirus Suídeo 1/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/virologia , Ratos , Ratos Sprague-Dawley , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
2.
Virus Res ; 297: 198383, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705798

RESUMO

Slightly acidic hypochlorous acid waters (SAHWs) with pH of 5.2-5.8 containing different concentrations of free available chlorine - 62, 119, 220, 300, and 540 ppm (SAHW-62, -119, -220, -300, and -540, respectively) - were evaluated for their virucidal activity toward a low pathogenic H7N1 avian influenza virus (AIV) and an infectious bronchitis virus (IBV) in suspension, abiotic carrier, and direct spray tests, with the presence of organic materials. In the carrier test, the dropping and wiping techniques were performed toward viruses on carriers. In the suspension test, SAHW-62 could decrease the viral titer of both AIV and IBV by more than 1000 times within 30 s. With the dropping technique, IBV on carriers showed high resistance to SAHW, while AIV on plastic carrier was inactivated to an effective level (≧3 log virus reduction) within 1 min. With the wiping technique, SAHW-62 could inactivate both AIV and IBV on wiped plastic carriers to an effective level within 30 s. However, SAHW-220 could not inactivate IBV in the wiping rayon sheet to an effective level. In the direct spray test, sprayed SAHW-300 within 10 min, and SAHW-540 within 20 min, inactivated AIV and IBV on the rayon sheets to undetectable level, respectively. Our study indicates that the usage of wipes with SAHW could remove viruses from plastic carriers, while viruses remained in the wipes. Besides, a small volume of sprayed SAHW was effective against the viruses on the rayon sheets for daily cleaning in the application area. The findings we obtained concerning IBV might basically be applicable in relation to SARS-CoV-2, given the resemblance between the two viruses.


Assuntos
Antivirais/farmacologia , Desinfetantes/farmacologia , Ácido Hipocloroso/farmacologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N1/efeitos dos fármacos , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Cães , Patos , Hepatócitos , Influenza Aviária/prevenção & controle , Células Madin Darby de Rim Canino
3.
Antiviral Res ; 189: 105056, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711336

RESUMO

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Assuntos
Antivirais , Emetina , Vírus da Bronquite Infecciosa/efeitos dos fármacos , RNA Viral/metabolismo , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Embrião de Galinha , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Emetina/farmacologia , Emetina/uso terapêutico , Fator de Iniciação 4E em Eucariotos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Vero
4.
Antiviral Res ; 186: 104998, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340637

RESUMO

Infectious bronchitis virus (IBV) is a coronavirus, causes infectious bronchitis (IB) with high morbidity and mortality, and gives rise to huge economic losses for the poultry industry. Aminopeptidase N (APN) may be one of the IBV functional receptors. In this study, Gallus gallus APN (gAPN) protein was screened by phage-displayed 12-mer peptide library. Two high-affinity peptides H (HDYLYYTFTGNP) and T (TKFSPPSFWYLH) to gAPN protein were selected for in depth characterization of their anti-IBV effects. In vitro, indirect ELISA showed that these two high-affinity ligands could bind IBV S1 antibodies. Quantitative real-time PCR (qRT-PCR) assay, virus yield reduction assay and indirect immunofluorescence assay results revealed 3.125-50 µg/ml of peptide H and 6.25-50 µg/ml of peptide T reduced IBV proliferation in chicken embryo kidney cells (CEKs). In vivo, high-affinity phage-vaccinated chickens were able to induce specific IBV S1 antibodies and IBV neutralizing antibodies. QRT-PCR results confirmed that high-affinity phages reduced virus proliferation in chicken tracheas, lungs and kidneys, and alleviated IBV-induced lesions. By multiple sequence alignment, motif 'YxYY' and 'FxPPxxWxLH' of high-affinity peptides were identified in IBV S1-NTD, while another motif 'YxFxGN' located in S2. These results indicated that high affinity peptides of gAPN could present an alternative approach to IB prevention or treatment.


Assuntos
Antivirais/farmacologia , Antígenos CD13/química , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Oligopeptídeos/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Motivos de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Antivirais/química , Antivirais/uso terapêutico , Antígenos CD13/genética , Antígenos CD13/metabolismo , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Embrião de Galinha , Galinhas , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/fisiologia , Ligantes , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico , Biblioteca de Peptídeos , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Replicação Viral/efeitos dos fármacos
5.
J Vet Med Sci ; 83(1): 48-52, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33229794

RESUMO

Decontamination of pathogens on surfaces of substances is very important for controlling infectious diseases. In the present experiments, we tested various disinfectants in aqueous phase as well as on plastic surface carrying a viral inoculum, through dropping and wiping decontamination techniques, comparatively, so as to evaluate virucidal efficacies of those disinfectants toward an avian coronavirus (infectious bronchitis virus: IBV). We regard this evaluation system applicable to SARS-CoV-2. The disinfectants evaluated were 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, sodium hypochlorite at 500 or 1,000 ppm of total chlorine (NaClO-500 or NaClO-1,000, respectively), NaClO at 500 ppm of total chlorine in 0.17% FdCa(OH)2 (Mix-500) and quaternary ammonium compound (QAC) diluted 500-fold in water (QAC-500). In the suspension test, all solutions inactivated IBV inoculum that contained 5% fetal bovine serum (FBS) under detectable level within 30 sec. In the carrier test, all solutions, except NaClO-500, could inactivate IBV with 0.5% FBS on a carrier to undetectable level in the wiping-sheets and wiped-carriers. We thus conclude that suspension and carrier tests should be introduced to evaluate disinfectants for the field usage, and that this evaluation system is important and workable for resultful selection of the tested disinfectants against avian coronavirus and SARS-CoV-2 on surfaces, particularly on plastic fomite.


Assuntos
Antivirais/farmacologia , Hidróxido de Cálcio/farmacologia , Desinfetantes/farmacologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia , Antivirais/administração & dosagem , Hidróxido de Cálcio/administração & dosagem , Relação Dose-Resposta a Droga , Redução da Medicação , Hipoclorito de Sódio/administração & dosagem
6.
Sci Rep ; 10(1): 20397, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230180

RESUMO

COVID-19 caused by the SARS-CoV-2 is a current global challenge and urgent discovery of potential drugs to combat this pandemic is a need of the hour. 3-chymotrypsin-like cysteine protease (3CLpro) enzyme is the vital molecular target against the SARS-CoV-2. Therefore, in the present study, 1528 anti-HIV1compounds were screened by sequence alignment between 3CLpro of SARS-CoV-2 and avian infectious bronchitis virus (avian coronavirus) followed by machine learning predictive model, drug-likeness screening and molecular docking, which resulted in 41 screened compounds. These 41 compounds were re-screened by deep learning model constructed considering the IC50 values of known inhibitors which resulted in 22 hit compounds. Further, screening was done by structural activity relationship mapping which resulted in two structural clefts. Thereafter, functional group analysis was also done, where cluster 2 showed the presence of several essential functional groups having pharmacological importance. In the final stage, Cluster 2 compounds were re-docked with four different PDB structures of 3CLpro, and their depth interaction profile was analyzed followed by molecular dynamics simulation at 100 ns. Conclusively, 2 out of 1528 compounds were screened as potential hits against 3CLpro which could be further treated as an excellent drug against SARS-CoV-2.


Assuntos
Fármacos Anti-HIV/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Quimioinformática/métodos , Aprendizado Profundo , Reposicionamento de Medicamentos/métodos , HIV-1/efeitos dos fármacos , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Simulação de Acoplamento Molecular , SARS-CoV-2/enzimologia
7.
Viruses ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003350

RESUMO

The Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious and economically important respiratory disease in poultry. In the laboratory, most IBV strains are restricted to replication in ex vivo organ cultures or in ovo and do not replicate in cell culture, making the study of their basic virology difficult. Entry of IBV into cells is facilitated by the large glycoprotein on the surface of the virion, the spike (S) protein, comprised of S1 and S2 subunits. Previous research showed that the S2' cleavage site is responsible for the extended tropism of the IBV Beaudette strain. This study aims to investigate whether protease treatment can extend the tropism of other IBV strains. Here we demonstrate that the addition of exogenous trypsin during IBV propagation in cell culture results in significantly increased viral titres. Using a panel of IBV strains, exhibiting varied tropisms, the effects of spike cleavage on entry and replication were assessed by serial passage cell culture in the presence of trypsin. Replication could be maintained over serial passages, indicating that the addition of exogenous protease is sufficient to overcome the barrier to infection. Mutations were identified in both S1 and S2 subunits following serial passage in cell culture. This work provides a proof of concept that exogenous proteases can remove the barrier to IBV replication in otherwise non-permissive cells, providing a platform for further study of elusive field strains and enabling sustainable vaccine production in vitro.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Bronquite Infecciosa/fisiologia , Tripsina/uso terapêutico , Tropismo Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Gammacoronavirus/efeitos dos fármacos , Vírus da Bronquite Infecciosa/metabolismo , Cinética , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo , Vírion/efeitos dos fármacos , Vírion/metabolismo , Replicação Viral/efeitos dos fármacos
8.
Sci Rep ; 10(1): 16631, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024252

RESUMO

The aim of this study was to test in vitro the ability of a mixture of citrus extract, maltodextrin, sodium chloride, lactic acid and citric acid (AuraShield L) to inhibit the virulence of infectious bronchitis, Newcastle disease, avian influenza, porcine reproductive and respiratory syndrome (PRRS) and bovine coronavirus viruses. Secondly, in vivo, we have investigated its efficacy against infectious bronchitis using a broiler infection model. In vitro, these antimicrobials had expressed antiviral activity against all five viruses through all phases of the infection process of the host cells. In vivo, the antimicrobial mixture reduced the virus load in the tracheal and lung tissue and significantly reduced the clinical signs of infection and the mortality rate in the experimental group E2 receiving AuraShield L. All these effects were accompanied by a significant reduction in the levels of pro-inflammatory cytokines and an increase in IgA levels and short chain fatty acids (SCFAs) in both trachea and lungs. Our study demonstrated that mixtures of natural antimicrobials, such AuraShield L, can prevent in vitro viral infection of cell cultures. Secondly, in vivo, the efficiency of vaccination was improved by preventing secondary viral infections through a mechanism involving significant increases in SCFA production and increased IgA levels. As a consequence the clinical signs of secondary infections were significantly reduced resulting in recovered production performance and lower mortality rates in the experimental group E2.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Coronavirus Bovino/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Doença de Newcastle/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Humanos , Influenza Aviária/metabolismo , Influenza Aviária/virologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Doença de Newcastle/metabolismo , Doença de Newcastle/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Doenças das Aves Domésticas/virologia , Suínos
9.
Int J Nanomedicine ; 15: 3303-3318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494131

RESUMO

BACKGROUND: Poultry vaccine has limited choices of adjuvants and is facing severe threat of infectious diseases due to ineffective of widely used commercial vaccines. Thus, development of novel adjuvant that offers safe and effective immunity is of urgent need. MATERIALS AND METHODS: The present research engineers a novel chicken adjuvant with potent immune-potentiating capability by incorporating avian toll-like receptor 21 (TLR21) agonist CpG ODN 2007 with a poly(lactic-co-glycolic acid) (PLGA)-based hollow nanoparticle platform (CpG-NP), which subsequently assessed ex vivo and in vivo. RESULTS: CpG-NPs with an average diameter of 164 nm capable of sustained release of CpG for up to 96 hours were successfully prepared. With the ex vivo model of chicken bone marrow-derived dendritic cells (chBMDCs), CpG-NP was engulfed effectively and found to induce DC maturation, promoting dendrite formation and upregulation of CD40, CD80 and CCR7. In addition to enhanced expression of IL-1ß, IL-6, IL-12 and IFN-γ, 53/84 immune-related genes were found to be stimulated in CpG-NP-treated chBMDCs, whereas only 39 of such genes were stimulated in free CpG-treated cells. These upregulated genes suggest immune skewing toward T helper cell 1 bias and evidence of improved mucosal immunity upon vaccination with the CpG-NP. The CpG-NP-treated chBMDCs showed protective effects to DF-1 cells against avian influenza virus H6N1 infection. Upon subsequent coupling with infectious bronchitis virus subunit antigen administration, chickens were immunostimulated to acquire higher humoral immune response and protective response against viral challenge. CONCLUSTION: This work presents a novel hollow CpG-NP formulation, demonstrating effective and long-lasting immunostimulatory ability ex vivo and in vivo for chickens, as systemically compared to free CpG. This enhanced immune stimulation benefits from high stability and controlled release of internal component of nanoparticles that improve cellular delivery, lymphoid organ targeting and sustainable DC activation. CpG-NP has broad application potential in antiviral and vaccine development.


Assuntos
Antivirais/farmacologia , Galinhas/imunologia , Imunidade/efeitos dos fármacos , Nanopartículas/química , Oligodesoxirribonucleotídeos/farmacologia , Polímeros/química , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Cães , Imunidade Humoral/efeitos dos fármacos , Imunização , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Células Madin Darby de Rim Canino , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
10.
Virus Res ; 284: 197989, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360300

RESUMO

Coronaviruses are responsible for a growing economic, social and mortality burden, as the causative agent of diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), avian infectious bronchitis virus (IBV) and COVID-19. However, there is a lack of effective antiviral agents for many coronavirus strains. Naturally existing compounds provide a wealth of chemical diversity, including antiviral activity, and thus may have utility as therapeutic agents against coronaviral infections. The PubMed database was searched for papers including the keywords coronavirus, SARS or MERS, as well as traditional medicine, herbal, remedy or plants, with 55 primary research articles identified. The overwhelming majority of publications focussed on polar compounds. Compounds that show promise for the inhibition of coronavirus in humans include scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins such as griffithsin. Other compounds such as lycorine may be suitable if a therapeutic level of antiviral activity can be achieved without exceeding toxic plasma concentrations. It was noted that the most promising small molecules identified as coronavirus inhibitors contained a conjugated fused ring structure with the majority being classified as being polyphenols.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Animais , COVID-19 , Coronavirus Felino/efeitos dos fármacos , Humanos , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pandemias , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , SARS-CoV-2
11.
Cytokine ; 127: 154961, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31901597

RESUMO

Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.


Assuntos
Antivirais/farmacologia , Galinhas/virologia , Infecções por Coronavirus/tratamento farmacológico , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Animais , Infecções por Coronavirus/virologia , Humanos , Influenza Aviária/virologia , Infecções Respiratórias/virologia
12.
Trop Biomed ; 37(4): 1129-1140, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33612765

RESUMO

Herbal medicines are becoming more popular and acceptable day by day due to their effectiveness, limited side effects, and cost-effectiveness. Cholistani plants are reported as a rich source of antibacterial, antifungal, antiprotozoal, antioxidant, and anticancer agents. The current study has evaluated antiviral potential of selected Cholistani plants. The whole plants were collected, ground and used in extract formation with n-hexane, ethyl acetate and n-butanol. All the extracts were concentrated by using a rotary evaporator and concentrate was finally dissolved in an appropriate vol of the same solvent. All of the extracts were tested for their antiviral potential by using 9-11 days old chick embryonated eggs. Each extract was tested against the Avian Influenza virus H9N2 strain (AIV), New Castle Disease virus Lasoota strain (NDV), Infectious bronchitis virus (IBV) and an Infectious bursal disease virus (IBDV). Hemagglutination test (HA) and Indirect Hemagglutination (IHA) tests were performed for different viruses. The overall order of the antiviral potential of Cholistani plants against viruses was NDV>IBV>IBDV>AIV. In terms of antiviral activity from extracts, the order of activity was n-butanol>ethyl acetate>n-hexane. The medicinal plants Achyranthes aspera, Neuroda procumbens, Panicum antidotale, Ochthochloa compressa and Suaeda fruticose were very effective against all four poultry viruses through their extracts. The low IC50 values of these extracts confirm the high antiviral potential against these viruses. It is worth to mention that Achyranthes aspera was found positive against IBDV through all its extracts which overcome the problem of unavailability of any known drug against IBDV. In short, the study proved that Cholistani plants are rich source of antiviral agent and their extracts can be used as good source of antiviral drugs both in crude and in purified form.


Assuntos
Antivirais/farmacologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Doença Infecciosa da Bursa/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Embrião de Galinha , Testes de Hemaglutinação , Paquistão , Compostos Fitoquímicos/farmacologia , Doenças das Aves Domésticas/virologia
13.
BMC Vet Res ; 15(1): 178, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142304

RESUMO

BACKGROUND: Avian infectious bronchitis (IB) is a disease that can result in huge economic losses in the poultry industry. The high level of mutations of the IB virus (IBV) leads to the emergence of new serotypes and genotypes, and limits the efficacy of routine prevention. Medicinal plants, or substances derived from them, are being tested as options in the prevention of infectious diseases such as IB in many countries. The objective of this study was to investigate extracts of 15 selected medicinal plants for anti-IBV activity. RESULTS: Extracts of S. montana, O. vulgare, M. piperita, M. officinalis, T. vulgaris, H. officinalis, S. officinalis and D. canadense showed anti-IBV activity prior to and during infection, while S. montana showed activity prior to and after infection. M. piperita, O. vulgare and T. vulgaris extracts had > 60 SI. In further studies no virus plaques (plaque reduction rate 100%) or cytopathogenic effect (decrease of TCID50 from 2.0 to 5.0 log10) were detected after IBV treatment with extracts of M. piperita, D. canadense and T. vulgaris at concentrations of extracts ≥0.25 cytotoxic concentration (CC50) (P < 0.05). Both PFU number and TCID50 increased after the use of M. piperita, D. canadense, T. vulgaris and M. officinalis extracts, the concentrations of which were 0.125 CC50 and 0.25 CC50 (P < 0.05). Real-time PCR detected IBV RNA after treatment with all plant extracts using concentrations of 1:2 CC50, 1:4 CC50 and 1:8 CC50. Delta cycle threshold (Ct) values decreased significantly comparing Ct values of 1:2 CC50 and 1:8 CC50 dilutions (P < 0.05). CONCLUSIONS: Many extracts of plants acted against IBV prior to and during infection, but the most effective were those of M. piperita, T. vulgaris and D. canadense .


Assuntos
Antivirais/farmacologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais , Animais , Antivirais/toxicidade , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Células Vero , Ensaio de Placa Viral
14.
Anal Chem ; 91(1): 1080-1088, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30488694

RESUMO

The methodology described in this article will significantly reduce the time required for understanding the relations between chromatographic data and bioactivity assays. The methodology is a hybrid of hypothesis-based and data-driven scientific approaches. In this work, a novel chromatographic data segmentation method is proposed, which demonstrates the capability of finding what volatile substances are responsible for antiviral and cytotoxic effects in the medicinal plant extracts. Up until now, the full potential of the separation methods has not been exploited in the life sciences. This was due to the lack of data ordering methods capable of adequately preparing the chromatographic information. Furthermore, the data analysis methods suffer from multidimensionality, requiring a large number of investigated data points. A new method is described for processing any chromatographic information into a vector. The obtained vectors of highly complex and different origin samples can be compared mathematically. The proposed method, efficient with relatively small sized data sets, does not suffer from multidimensionality. In this novel analytical approach, the samples did not need fractionation and purification, which is typically used in hypothesis-based scientific research. All investigations were performed using crude extracts possessing hundreds of phyto-substances. The antiviral properties of medicinal plant extracts were investigated using gas chromatography-mass spectrometry, antiviral tests, and proposed data analysis methods. The findings suggested that (i) ß- cis-caryophyllene, linalool, and eucalyptol possess antiviral activity, while (ii) thujones do not, and (iii) α-thujone, ß-thujone, cis- p-menthan-3-one, and estragole show cytotoxic effects.


Assuntos
Antivirais/análise , Extratos Vegetais/química , Plantas Medicinais/química , Compostos Orgânicos Voláteis/análise , Animais , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Gasosa-Espectrometria de Massas , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia
15.
Microb Pathog ; 119: 119-124, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29635053

RESUMO

Adjuvant enhancing mucosal immune response is preferred in controlling many pathogens at the portal of entry. Earlier, we reported that a toll-like-receptor 7 (TLR7) agonist, resiquimod (R-848), stimulated the systemic immunity when adjuvanted with the inactivated Newcastle disease virus vaccine in the chicken. Here, we report the effect of R-848 when adjuvanted with live or inactivated avian infectious bronchitis virus (IBV) vaccines with special emphasis on mucosal immunity. Specific pathogen free (SPF) chicks (n = 60) were equally divided into six groups at two weeks of age and immunized with either inactivated or live IBV vaccine adjuvanted with or without R-848. Groups that received either PBS or R-848 served as control. A booster was given on 14 days post-immunization (dpi). R-848 enhanced the antigen specific humoral and cellular immune responses when co-administered with the vaccines as evidenced by an increase in the antibody titre in ELISA and stimulation index in lymphocyte transformation test (LTT) till 35 dpi and increased proportion of CD4+ and CD8+ T cells on 21 dpi in the flow cytometry. Interestingly, it potentiated the IgA responses in the tear and intestinal secretions when used with both live and inactivated IBV vaccines. The combination of IBV vaccine with R-848 significantly up-regulated the transforming growth factor beta 4 (TGFß4) transcripts in the peripheral blood mononuclear cells (PBMCs) than that of the respective vaccine per se. An enhanced secretory IgA response is likely due to the up-regulation of TGFß4, which is responsible for class switching to IgA. In conclusion, co-administration of R-848 with inactivated or live IBV vaccine enhanced the systemic as well as mucosal immune responses in the chicken.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imidazóis/farmacologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Galinhas/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunização , Imunoglobulina A , Vírus da Bronquite Infecciosa/patogenicidade , Leucócitos Mononucleares/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vacinação , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Virais/administração & dosagem
16.
Microb Pathog ; 114: 124-128, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29170045

RESUMO

The avian coronavirus causes infectious bronchitis (IB), which is one of the most serious diseases affecting the avian industry worldwide. However, there are no effective strategies for controlling the IB virus (IBV) at present. Therefore, development of novel antiviral treatment strategies is urgently required. As reported, astragalus polysaccharides (APS) have potential antiviral effects against several viruses; however, the antiviral effect of APS against IBV remains unclear. In this study, we explored whether APS had the potential to inhibit IBV infectionby utilizing several in vitro experimental approaches. To this end, the effect of APS on the replication of IBV was examined in chicken embryo kidney (CEK) cells. Viral titers were calculated by using the plaque formation assay, and the cytotoxicity of APS was tested by utilizing a Cell Counting Kit-8 assay. The expression of viral mRNA and cytokine (IL-1ß, IL-6, IL-8 and TNF-α) mRNA transcripts was determined by real-time quantitative RT-PCR(qRT-PCR). IBV titers in infected CEK cells treated with APS were significantly reduced in a dose-dependent manner, indicating that APS inhibited IBV replication in vitro. We also found that the decreased viral replication after APS treatment was associated with reduced mRNA levels of the cytokines IL-1B, IL-6, IL-8 and TNF-α. In conclusion, these results suggest that APS exhibit antiviral activities against IBV and it may represent a potential therapeutic agent for inhibiting the replication of IBV.


Assuntos
Antivirais/farmacologia , Astrágalo/química , Infecções por Coronavirus/tratamento farmacológico , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Galinhas/virologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Vírus da Bronquite Infecciosa/genética , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Extratos Vegetais/química , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/virologia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral , Ensaio de Placa Viral
17.
Viruses ; 9(8)2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28933760

RESUMO

Avian infectious bronchitis has caused huge economic losses in the poultry industry. Previous studies have reported that infectious bronchitis virus (IBV) infection can produce cytopathic effects (CPE) and apoptosis in some mammalian cells and primary cells. However, there is little research on IBV-induced immune cell apoptosis. In this study, chicken macrophage HD11 cells were established as a cellular model that is permissive to IBV infection. Then, IBV-induced apoptosis was observed through a cell viability assay, morphological changes, and flow cytometry. The activity of caspases, the inhibitory efficacy of caspase-inhibitors and the expression of apoptotic genes further suggested the activation of apoptosis through both intrinsic and extrinsic pathways in IBV-infected HD11 cells. Additionally, ammonium chloride (NH4Cl) pretreated HD11 cells blocked IBV from entering cells and inhibited IBV-induced apoptosis. UV-inactivated IBV also lost the ability of apoptosis induction. IBV replication was increased by blocking caspase activation. This study presents a chicken macrophage cell line that will enable further analysis of IBV infection and offers novel insights into the mechanisms of IBV-induced apoptosis in immune cells.


Assuntos
Apoptose , Vírus da Bronquite Infecciosa/fisiologia , Macrófagos/patologia , Macrófagos/virologia , Replicação Viral , Cloreto de Amônio/farmacologia , Animais , Caspases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Chlorocebus aethiops , Replicação do DNA , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Doenças das Aves Domésticas/virologia , Células Vero
18.
J Biol Chem ; 290(52): 31138-50, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26546678

RESUMO

Cystine knot α-amylase inhibitors are cysteine-rich, proline-rich peptides found in the Amaranthaceae and Apocynaceae plant species. They are characterized by a pseudocyclic backbone with two to four prolines and three disulfides arranged in a knotted motif. Similar to other knottins, cystine knot α-amylase inhibitors are highly resistant to degradation by heat and protease treatments. Thus far, only the α-amylase inhibition activity has been described for members of this family. Here, we show that cystine knot α-amylase inhibitors named alstotides discovered from the Alstonia scholaris plant of the Apocynaceae family display antiviral activity. The alstotides (As1-As4) were characterized by both proteomic and genomic methods. All four alsotides are novel, heat-stable and enzyme-stable and contain 30 residues. NMR determination of As1 and As4 structures reveals their conserved structural fold and the presence of one or more cis-proline bonds, characteristics shared by other cystine knot α-amylase inhibitors. Genomic analysis showed that they contain a three-domain precursor, an arrangement common to other knottins. We also showed that alstotides are antiviral and cell-permeable to inhibit the early phase of infectious bronchitis virus and Dengue infection, in addition to their ability to inhibit α-amylase. Taken together, our results expand membership of cystine knot α-amylase inhibitors in the Apocynaceae family and their bioactivity, functional promiscuity that could be exploited as leads in developing therapeutics.


Assuntos
Alstonia/química , Antivirais , Infecções por Coronavirus/tratamento farmacológico , Vírus da Dengue , Dengue , Inibidores de Glicosídeo Hidrolases , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Proteínas de Plantas , Alstonia/genética , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Vírus da Bronquite Infecciosa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Estrutura Terciária de Proteína , Células Vero
19.
BMC Vet Res ; 10: 24, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24433341

RESUMO

BACKGROUND: Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. RESULTS: Dose-response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining.Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. CONCLUSIONS: These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted.


Assuntos
Vírus da Bronquite Infecciosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sambucus nigra/química , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Frutas/química , Nigella sativa/química , Extratos Vegetais/química , Raízes de Plantas/química , Rhodiola/química , Sementes/química , Células Vero
20.
J Virol ; 87(16): 9223-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23804636

RESUMO

In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide's insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.


Assuntos
Antivirais/farmacologia , Colesterol/metabolismo , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Doença de Newcastle/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Antivirais/administração & dosagem , Embrião de Galinha , Colesterol/química , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Injeções Intramusculares , Doença de Newcastle/tratamento farmacológico , Doença de Newcastle/prevenção & controle , Peptídeos/administração & dosagem , Peptídeos/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA