Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 80(2): 274-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864686

RESUMO

In an effort to produce processed, soluble Western equine encephalitis virus (WEEV) glycoproteins for subunit therapeutic vaccine studies, we isolated twelve recombinant baculoviruses designed to express four different WEEV glycoprotein constructs under the transcriptional control of three temporally distinct baculovirus promoters. The WEEV glycoprotein constructs encoded full-length E1, the E1 ectodomain, an E26KE1 polyprotein precursor, and an artificial, secretable E2E1 chimera. The three different promoters induced gene expression during the immediate early (ie1), late (p6.9), and very late (polh) phases of baculovirus infection. Protein expression studies showed that the nature of the WEEV construct and the timing of expression both influenced the quantity and quality of recombinant glycoprotein produced. The full-length E1 product was insoluble, irrespective of the timing of expression. Each of the other three constructs yielded soluble products and, in these cases, the timing of expression was important, as higher protein processing efficiencies were generally obtained at earlier times of infection. However, immediate early expression did not yield detectable levels of every WEEV product, and expression during the late (p6.9) or very late (polh) phases of infection provided equal or higher amounts of processed, soluble product. Thus, while earlier foreign gene expression can provide higher recombinant glycoprotein processing efficiencies in the baculovirus system, in the case of the WEEV glycoproteins, earlier expression did not provide larger amounts of high quality, soluble recombinant glycoprotein product.


Assuntos
Baculoviridae/isolamento & purificação , Vírus da Encefalite Equina do Oeste/química , Glicoproteínas/isolamento & purificação , Proteínas do Envelope Viral/isolamento & purificação , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Baculoviridae/patogenicidade , Western Blotting , Linhagem Celular , Clonagem Molecular , Vírus da Encefalite Equina do Oeste/genética , Regulação Viral da Expressão Gênica , Genes Virais , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solubilidade , Spodoptera , Fatores de Tempo , Transcrição Gênica , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
2.
Virology ; 197(1): 375-90, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8105605

RESUMO

The complete nucleotide sequence of a 1982 Florida strain of eastern equine encephalomyelitis (EEE) virus, and partial sequence of the nonstructural protein genes of western equine encephalomyelitis (WEE) virus, were determined. The EEE virus genome was 11,678 nucleotides in length, excluding the cap nucleotide and poly(A) tail, and the nucleotide composition was 28% A, 24% G, 25% C, and 23% U. The organization of both EEE and WEE virus genomes was like that of other alphaviruses and included a termination codon between the nsP3 and nsP4 genes. Codon usage for 10 of 20 amino acids was nonrandom in the EEE genome, and dinucleotide CpG-containing codons were underutilized in both genomes. The slight CpG deficiency was similar to that seen in other alphaviruses and plant viruses in the alphavirus-like group, but less than that of poliovirus and yellow fever virus. This slight deficiency may reflect adaptation for replication in both CpG-deficient vertebrates, as well as insects which do not have CpG-deficient genomes. Phylogenetic analyses using nonstructural protein amino acid sequences indicated that alphaviruses evolved from a common ancestor which existed a few thousand years ago. An intercontinental introduction of an ancestral virus from the Old to New World, or vice versa, probably resulted in two main extant groups: one includes New World (EEE and Venezuelan equine encephalitis) viruses, while the other includes Old World (Sindbis, Middelburg, O'nyong-nyong, Ross River, and Semliki Forest) viruses. The position of WEE virus in the phylogenetic trees indicated that, in addition to its capsid gene (C. S. Hahn et al. (1988) Proc. Natl. Acad. Sci. USA 85, 5997-6001), WEE virus acquired its nonstructural genes from an EEE-like ancestor during recombination.


Assuntos
Alphavirus/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Oeste/genética , Filogenia , Vírus de RNA/genética , RNA Viral/genética , Alphavirus/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Códon/genética , Culicidae/microbiologia , Primers do DNA , Vírus da Encefalite Equina do Leste/química , Vírus da Encefalite Equina do Oeste/química , Genoma Viral , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Vírus de RNA/química , RNA Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA