Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.802
Filtrar
1.
Virol J ; 21(1): 217, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277738

RESUMO

Japanese encephalitis is an acute infectious disease of the central nervous system caused by neurotropic Japanese encephalitis virus (JEV). As a member of TAM (Tyro3, Axl and Mertk) family, Mertk has involved in multiple biological processes by engaging with its bridging ligands Gas6 and Protein S, including invasion of pathogens, phagocytosis of apoptotic cells, inflammatory response regulation, and the maintenance of blood brain barrier (BBB) integrity. However, its role in encephalitis caused by JEV infection has not been studied in detail. Here, we found that Mertk-/- mice exhibited higher mortality and more rapid disease progression than wild-type mice after JEV challenge. There were no significant differences in viral load and cytokines expression level in peripheral tissues between Wild type and Mertk-/- mice. Furthermore, the absence of Mertk had little effect on the inflammatory response and immunopathological damage while it can cause an increased viral load in the brain. For the in vitro model of BBB, Mertk was shown to maintain the integrity of the BBB. In vivo, Mertk-/- mice exhibited higher BBB permeability and lower BBB integrity. Taken together, our findings demonstrate that Mertk acts as a protective factor in the development of encephalitis induced by JEV infection, which is mainly associated with its beneficial effect on BBB integrity, rather than its regulation of inflammatory response.


Assuntos
Barreira Hematoencefálica , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Camundongos Knockout , c-Mer Tirosina Quinase , Animais , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Barreira Hematoencefálica/metabolismo , Camundongos , Encefalite Japonesa/virologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Modelos Animais de Doenças , Carga Viral , Citocinas/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Camundongos Endogâmicos C57BL
2.
Microb Pathog ; 195: 106901, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218378

RESUMO

Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , Humanos , Barreira Hematoencefálica/virologia , Animais , Vírus/patogenicidade , Vírus/classificação , Viroses/virologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpesvirus Humano 3/fisiologia , Enterovirus/patogenicidade , Enterovirus/fisiologia
3.
Vet Microbiol ; 297: 110199, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096789

RESUMO

Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic orthoflavivirus causing human encephalitis and reproductive disorders in pigs. Cell-intrinsic antiviral restriction factors are the first line of defense that prevent a virus from establishing a productive infection, while the molecular mechanism of the virus-host interaction is still not fully understood. Our in vitro experiments demonstrated that the Solute Carrier Family 25 Member 12 (SLC25A12) interacted with the JEV nonstructural protein 1 (NS1) and inhibited JEV replication. Furthermore, we showed that knockdown or knockout of SLC25A12 promoted JEV replication, while overexpression of SLC25A12 repressed viral replication. Finally, we demonstrated that SLC25A12 increased IRF7 mRNA levels, which promoted IFN-ß expression and subsequently induced antiviral effects. Collectively, our study revealed that SLC25A12 interacted with NS1, inhibiting viral RNA synthesis and transcription and enhancing type I interferon induction for antiviral effects.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Interferon Tipo I , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vírus da Encefalite Japonesa (Espécie)/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Animais , Humanos , Suínos , Linhagem Celular , Células HEK293 , Encefalite Japonesa/virologia , Encefalite Japonesa/imunologia , Interferon beta/genética , Interferon beta/metabolismo , Interferon beta/imunologia , Interações Hospedeiro-Patógeno
4.
Sci Adv ; 10(32): eadp1657, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121225

RESUMO

Japanese encephalitis virus (JEV) is a major threat to human health. Bangladesh is considering introducing a JEV vaccine; however, the investment case is hampered by a limited understanding of key aspects of JEV ecology. We conducted a seroprevalence study in a high-incidence region using an assay that limits cross-reactivity with dengue virus. We also trapped mosquitoes and collected information about potential host species. We used mathematical models to recover risk factors for infection and underlying probabilities of severe disease and death. We observed 19.0% [95% confidence interval (CI):17.1 to 21.1] of JEV antibodies. On average, 0.7% (95% CI: 0.2 to 2.0) of the susceptible population gets infected yearly, with pig proximity being the main human infection risk factor. Our traps captured 10 different mosquito species that have been linked with JEV transmission. We estimated that 1 in 1000 infections results in severe disease, 1 in 10,000 results in death, and 76% of severe cases are missed by surveillance.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Vacinas contra Encefalite Japonesa , Bangladesh/epidemiologia , Humanos , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/transmissão , Vacinas contra Encefalite Japonesa/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Animais , Estudos Soroepidemiológicos , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Criança , Masculino , Feminino , Adulto Jovem , Pré-Escolar , Pessoa de Meia-Idade , Culicidae/virologia , Mosquitos Vetores/virologia
5.
PLoS Pathog ; 20(8): e1012059, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186783

RESUMO

Japanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in experimentally infected pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higher in vivo viral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar, and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Replicação Viral , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Suínos , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Encefalite Japonesa/veterinária , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Inoculações Seriadas , Aptidão Genética , Adaptação Fisiológica
6.
J Virol ; 98(9): e0079624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39115433

RESUMO

Host cells have evolved an intricate regulatory network to fine tune the type-I interferon responses. However, the full picture of this regulatory network remains to be depicted. In this study, we found that knock out of zinc-finger CCHC-type containing protein 8 (ZCCHC8) impairs the replication of influenza A virus (IAV), Sendai virus (Sev), Japanese encephalitis virus (JEV), and vesicular stomatitis virus (VSV). Further investigation unveiled that ZCCHC8 suppresses the type-I interferon responses by targeting the interferon regulatory factor 3 (IRF3) signaling pathway. Mechanistically, ZCCHC8 associates with phosphorylated IRF3 and disrupts the interaction of IRF3 with the co-activator CREB-binding protein (CBP). Additionally, the direct binding of ZCCHC8 with the IFN-stimulated response element (ISRE) impairs the ISRE-binding of IRF3. Our study contributes to the comprehensive understanding for the negative regulatory network of the type-I interferon responses and provides valuable insights for the control of multiple viruses from a host-centric perspective.IMPORTANCEThe innate immune responses serve as the initial line of defense against invading pathogens and harmful substances. Negative regulation of the innate immune responses plays an essential role in avoiding auto-immune diseases and over-activated immune responses. Hence, the comprehensive understanding of the negative regulation network for innate immune responses could provide novel therapeutic insights for the control of viral infections and immune dysfunction. In this study, we report that ZCCHC8 negatively regulates the type-I interferon responses. We illustrate that ZCCHC8 impedes the IRF3-CBP association by interacting with phosphorylated IRF3 and competes with IRF3 for binding to ISRE. Our study demonstrates the role of ZCCHC8 in the replication of multiple RNA viruses and contributes to a deeper understanding of the negative regulation system for the type-I interferon responses.


Assuntos
Proteína de Ligação a CREB , Imunidade Inata , Fator Regulador 3 de Interferon , Interferon Tipo I , Vírus Sendai , Transdução de Sinais , Replicação Viral , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Humanos , Células HEK293 , Vírus Sendai/fisiologia , Vírus Sendai/genética , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética , Vírus de RNA/fisiologia , Vírus de RNA/imunologia , Vírus de RNA/genética , Animais , Células A549 , Vírus da Influenza A/fisiologia , Vírus da Influenza A/imunologia , Fosforilação , Interações Hospedeiro-Patógeno , Vesiculovirus/fisiologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/imunologia
7.
J Virol ; 98(9): e0063524, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39158346

RESUMO

Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.


Assuntos
Proteínas Quinases Ativadas por AMP , Antivirais , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Metabolismo dos Lipídeos , Replicação Viral , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Camundongos , Antivirais/farmacologia , Humanos , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/virologia , Proteínas Quinases Ativadas por AMP/metabolismo , Chalconas/farmacologia , Triterpenos/farmacologia , Proteínas não Estruturais Virais/metabolismo , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/virologia , Infecções por Flavivirus/metabolismo , Flavivirus/efeitos dos fármacos , Linhagem Celular
8.
Biomed Environ Sci ; 37(7): 716-725, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39198236

RESUMO

Objective: Genotypes (G) 1, 3, and 5 of the Japanese encephalitis virus (JEV) have been isolated in China, but the dominant genotype circulating in Chinese coastal areas remains unknown. We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis (JE) in the coastal provinces of China. Methods: In this study, we collected serum specimens from patients with JE in three coastal provinces of China (Guangdong, Zhejiang, and Shandong) from 2018 to 2020 and conducted JEV cross-neutralization tests against G1, G3, and G5. Results: Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong (92 patients), Zhejiang (192 patients), and Guangdong (77 patients), China, from 2018 to 2020. Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV. Two cases were confirmed to be infected with G1 JEV, 32 with G3 JEV, and two with G5 JEV. Conclusion: G3 was the primary infection genotype among JE cases with a definite infection genotype, and the infection caused by G5 JEV was confirmed serologically in China.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Genótipo , Humanos , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/virologia , China/epidemiologia , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Vírus da Encefalite Japonesa (Espécie)/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Pré-Escolar , Idoso , Anticorpos Antivirais/sangue
9.
Viruses ; 16(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39205176

RESUMO

The common house mosquito (Culex pipiens) is a native vector for West Nile virus (WNV). Invasive species like the tiger mosquito (Aedes albopictus) and Asian bush mosquito (Aedes japonicus) are rapidly spreading through Europe, posing a major threat as vectors for dengue, chikungunya (CHIKV), and Japanese encephalitis virus (JEV). These mosquitoes share a similar ecological niche as larvae, but the carry-over effects of aquatic larval interactions to the terrestrial adult stage remain largely unknown and their medical relevance requires further investigation. This study examines the context dependency of larval interactions among Aedes albopictus, Aedes japonicus, and Culex pipiens. The survival, development time, growth, and energetic storage were measured in different European populations within density-response (intraspecific) experiments and replacement (interspecific) experiments at 20 °C and 26 °C. Overall, Ae. japonicus was the weakest competitor, while competition between Ae. albopictus and Cx. pipiens varied with temperature. Adults emerging from this larval competition were infected as follows: Culex pipiens with WNV, Ae. albopictus with CHIKV, and Ae. japonicus with JEV. While no JEV infection was observed, mosquitoes experiencing interspecific interactions during their larval stages exhibited higher infection rates and viral RNA titers for CHIKV and WNV. This increased susceptibility to viral infection after larval competition suggests a higher risk of arbovirus transmission in co-occurring populations.


Assuntos
Aedes , Culex , Larva , Mosquitos Vetores , Animais , Culex/virologia , Culex/crescimento & desenvolvimento , Aedes/virologia , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Larva/virologia , Mosquitos Vetores/virologia , Mosquitos Vetores/crescimento & desenvolvimento , Infecções por Arbovirus/transmissão , Infecções por Arbovirus/virologia , Arbovírus/fisiologia , Vírus do Nilo Ocidental/fisiologia , Feminino , Vírus Chikungunya/fisiologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia
10.
Viruses ; 16(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39205248

RESUMO

Pigs are the most common amplifying hosts of the Japanese encephalitis virus (JEV). In 2016, four residents on Tsushima Island who did not own pig farms were diagnosed with JE. Therefore, a serosurvey was conducted to estimate the risk and seroprevalence of JEV after the outbreak. Sera collected from 560 Tsushima Island residents between January and September 2017 were tested for neutralizing antibodies against JEV strains JaGAr01 (genotype 3) and Muar (genotype 5). Sera collected from six wild boars between June and July 2022 were tested. The seroprevalence rates of neutralizing antibodies against JaGAr01 and Muar were 38.8% and 24.6%, respectively. High anti-JEV neutralizing antibody titers of ≥320 were identified in 16 residents, including 3 younger than 6 years with prior JEV vaccination, 2 in their 40s, and 11 older than 70. However, no anti-JEV-specific IgM was detected. Residents who engaged in outdoor activities had higher anti-JEV antibody titers. Sera from wild boars were negative for JEV RNA, but four of six samples contained neutralizing antibodies against JEV. Therefore, JEV transmission continues on Tsushima Island, even in the absence of pig farms, and wild boars might serve as the amplifying hosts.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Sus scrofa , Doenças dos Suínos , Animais , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/veterinária , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/virologia , Encefalite Japonesa/imunologia , Suínos , Sus scrofa/virologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Estudos Soroepidemiológicos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Humanos , Masculino , Feminino , Genótipo , Japão/epidemiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38953004

RESUMO

On 12 September 2022, a 10-year-old female in Paracelis municipality, Mountain Province, the Philippines, without travel history outside the municipality, experienced acute onset of fever and a change in mental status with disorientation, an altered level of consciousness and new onset of seizures. She was hospitalized at the district hospital from 1 to 3 October 2022, before being transferred to the regional hospital. As diphtheria was originally suspected, the investigation team reviewed records and reports and interviewed key informants to gather additional information and organize case finding and contact tracing. The patient's condition was laboratory-confirmed for Japanese encephalitis virus infection. An environmental survey was carried out at the patient's residence to check for the presence of vectors and contributing factors. Exemplifying inadequate vaccination coverage for Japanese encephalitis virus in Mountain Province, the patient had not been vaccinated against the disease. It is recommended that vaccination campaigns be immediately implemented in the affected area and the surveillance system be strengthened for early detection and prompt response to the emergence of cases and outbreaks. Overall, the investigation highlighted the importance of strong surveillance and response systems for early detection and control of diseases, such as Japanese encephalitis virus. It also underscores the need for comprehensive vaccination programmes to prevent outbreaks and protect vulnerable populations.


Assuntos
Encefalite Japonesa , Humanos , Filipinas/epidemiologia , Feminino , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/prevenção & controle , Criança , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação
12.
J Virol ; 98(8): e0085824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39078257

RESUMO

Japanese encephalitis virus (JEV) is an arthropod-borne, plus-strand flavivirus causing viral encephalitis in humans with a high case fatality rate. The JEV non-structural protein 5 (NS5) with the RNA-dependent RNA polymerase activity interacts with the viral and host proteins to constitute the replication complex. We have identified the multifunctional protein Nucleolin (NCL) as one of the several NS5-interacting host proteins. We demonstrate the interaction and colocalization of JEV NS5 with NCL in the virus-infected HeLa cells. The siRNA-mediated knockdown of NCL indicated that it was required for efficient viral replication. Importantly, JEV grew to higher titers in cells over-expressing exogenous NCL, demonstrating its pro-viral role. We demonstrated that NS5 interacted with the RRM and GAR domains of NCL. We show that the NCL-binding aptamer AS1411 containing the G-quadruplex (GQ) structure and the GQ ligand BRACO-19 caused significant inhibition of JEV replication. The antiviral effect of AS1411 and BRACO-19 could be overcome in HeLa cells by the overexpression of exogenous NCL. We demonstrated that the synthetic RNAs derived from the 3'-NCR of JEV genomic RNA containing the GQ sequence could bind NCL in vitro. The replication complex binding to the 3'-NCR is required for the viral RNA synthesis. It is likely that NCL present in the replication complex destabilizes the GQ structures in the genomic RNA, thus facilitating the movement of the replication complex resulting in efficient virus replication.IMPORTANCEJapanese encephalitis virus (JEV) is endemic in most parts of South-East Asia and the Western Pacific region, causing epidemics of encephalitis with a high case fatality rate. While a tissue culture-derived JEV vaccine is available, no antiviral therapy exists. The JEV NS5 protein has RNA-dependent RNA polymerase activity. Together with several host and viral proteins, it constitutes the replication complex necessary for virus replication. Understanding the interaction of NS5 with the host proteins could help design novel antivirals. We identified Nucleolin (NCL) as a crucial host protein interactor of JEV NS5 having a pro-viral role in virus replication. The NS5-interacting NCL binds to the G-quadruplex (GQ) structure sequence in the 3'-NCR of JEV RNA. This may smoothen the movement of the replication complex along the genomic RNA, thereby facilitating the virus replication. This study is the first report on how NCL, a host protein, helps in JEV replication through GQ-binding.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Nucleolina , Fosfoproteínas , Proteínas de Ligação a RNA , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células HeLa , Ligação Proteica , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Interações Hospedeiro-Patógeno , Quadruplex G , Animais
13.
Sci Rep ; 14(1): 16573, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020003

RESUMO

Arboviruses transmitted by mosquitoes, including Japanese encephalitis virus (JEV), present a substantial global health threat. JEV is transmitted by mosquitoes in the genus Culex, which are common in both urban and rural areas in Vietnam. In 2020, we conducted a 1-year survey of Culex mosquito abundance in urban, suburban, and peri-urban areas of Hanoi using CDC-light traps. Mosquitoes were identified to species and sorted into pools based on species, sex, and trap location. The mosquito pools were also investigated by RT-qPCR for detection of JEV. In total, 4829 mosquitoes were collected over a total of 455 trap-nights, across 13 months. Collected mosquitoes included Culex, Aedes, Anopheles, and Mansonia species. Culex mosquitoes, primarily Cx. quinquefasciatus, predominated, especially in peri-urban areas. Most Culex mosquitoes were caught in the early months of the year. The distribution and abundance of mosquitoes exhibited variations across urban, suburban, and peri-urban sites, emphasizing the influence of environmental factors such as degree of urbanization, temperature and humidity on Culex abundance. No JEV was detected in the mosquito pools. This study establishes baseline knowledge of Culex abundance and temporal variation, which is crucial for understanding the potential for JEV transmission in Hanoi.


Assuntos
Culex , Mosquitos Vetores , Animais , Vietnã , Culex/virologia , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia , Feminino , Análise Espaço-Temporal , Masculino , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Vírus da Encefalite Japonesa (Espécie)/genética , Estações do Ano
14.
J Microbiol Biotechnol ; 34(8): 1592-1598, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39081248

RESUMO

Genotype V (GV) Japanese encephalitis virus (JEV) has been predominantly reported in the Republic of Korea (ROK) since 2010. GV JEV exhibits higher virulence and distinct antigenicity compared to other genotypes, which results in reduced efficacy of existing vaccines. Research on GV JEV is essential to minimize its clinical impact, but the only available clinical strain in the ROK is K15P38, isolated from the cerebrospinal fluid of a patient in 2015. We obtained this virus from National Culture Collection for Pathogens (NCCP) and isolated a variant forming small plaques during our research. We identified that this variant has one amino acid substitution each in the PrM and NS5 proteins compared to the reported K15P38. Additionally, we confirmed that this virus exhibits delayed propagation in vitro and an attenuated phenotype in mice. The isolation of this variant is a critical reference for researchers intending to study K15P38 obtained from NCCP, and the mutations in the small plaque-forming virus are expected to be useful for studying the pathology of GV JEV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Genótipo , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Vírus da Encefalite Japonesa (Espécie)/classificação , Encefalite Japonesa/virologia , Animais , Humanos , Camundongos , República da Coreia , Virulência , Ensaio de Placa Viral , Substituição de Aminoácidos , Feminino , Mutação , Linhagem Celular , Camundongos Endogâmicos BALB C , Replicação Viral
15.
Int Immunopharmacol ; 140: 112816, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39083930

RESUMO

Vaccines represent a significant milestone in the history of human medical science and serve as the primary means for controlling infectious diseases. In recent years, the geographical distribution of Japanese encephalitis viruses (JEV) of various genotypes has become increasingly complex, which provides a rationale for the development of safer and more effective vaccines. The advent of subunit and nucleic acid vaccines, especially propelled by advancements in genetic engineering since the 1980s, has accelerated the application of novel adjuvants. These novel vaccine adjuvants have diversified into toll-like receptor (TLR) agonists, complex adjuvants, nanoparticles and so on. However, the efficacy of adjuvant combinations can vary depending on the host system, disease model, or vaccine formulation, sometimes resulting in competitive or counteractive effects. In our previous study, we constructed a pJME-LC3 chimeric DNA vaccine aimed at inducing an immune response through autophagy induction. Building on this, we investigated the impact of the TLR7/8 agonist imiquimod (IMQ) and the TLR9 agonist CpG ODN 1826 as adjuvants on the immunogenicity of the Japanese encephalitis chimeric DNA vaccine. Our findings indicate that the combination of the pJME-LC3 vaccine with IMQ and CpG ODN 1826 adjuvants enhanced the innate immune response, promoting the maturation and activation of antigen-presenting cells in the early immune response. Furthermore, it played a regulatory and optimizing role in subsequent antigen-specific immune responses, resulting in effective cellular and humoral immunity and providing prolonged immune protection. The synergistic effect of IMQ and CpG ODN 1826 as adjuvants offers a novel approach for the development of Japanese encephalitis nucleic acid vaccines.


Assuntos
Adjuvantes Imunológicos , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Imiquimode , Vacinas contra Encefalite Japonesa , Oligodesoxirribonucleotídeos , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Vacinas de DNA , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/administração & dosagem , Animais , Adjuvantes Imunológicos/farmacologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vacinas de DNA/imunologia , Receptor Toll-Like 9/agonistas , Camundongos , Vacinas contra Encefalite Japonesa/imunologia , Receptor 7 Toll-Like/agonistas , Feminino , Receptor 8 Toll-Like/agonistas , Humanos , Adjuvantes de Vacinas/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
16.
Eur J Neurosci ; 60(5): 4843-4860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049535

RESUMO

Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Dinâmica Mitocondrial , Músculo Esquelético , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/virologia , Camundongos , Encefalite Japonesa/metabolismo , Dinâmica Mitocondrial/fisiologia , Apoptose/fisiologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Autofagia/fisiologia , Modelos Animais de Doenças
17.
Int J Biol Macromol ; 277(Pt 1): 134151, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059534

RESUMO

Japanese encephalitis (JE), a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV), poses a serious threat to global public health. The low viremia levels typical in JEV infections make RNA detection challenging, necessitating early and rapid diagnostic methods for effective control and prevention. This study introduces a novel one-pot detection method that combines recombinant enzyme polymerase isothermal amplification (RPA) with CRISPR/EsCas13d targeting, providing visual fluorescence and lateral flow assay (LFA) results. Our portable one-pot RPA-EsCas13d platform can detect as few as two copies of JEV nucleic acid within 1 h, without cross-reactivity with other pathogens. Validation against clinical samples showed 100 % concordance with real-time PCR results, underscoring the method's simplicity, sensitivity, and specificity. This efficacy confirms the platform's suitability as a novel point-of-care testing (POCT) solution for detecting and monitoring the JE virus in clinical and vector samples, especially valuable in remote and resource-limited settings.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Técnicas de Amplificação de Ácido Nucleico , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Vírus da Encefalite Japonesa (Espécie)/genética , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/virologia , Técnicas de Diagnóstico Molecular/métodos , Suínos , Sistemas CRISPR-Cas , Sensibilidade e Especificidade , RNA Viral/genética , RNA Viral/análise
18.
Vet Microbiol ; 295: 110150, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861863

RESUMO

Japanese Encephalitis Virus (JEV), the predominant cause of viral encephalitis in many Asian countries, affects approximately 68,000 people annually. Lysosomes are dynamic structures that regulate cellular metabolism by mediating lysosomal biogenesis and autophagy. Here, we showed that lysosome-associated membrane protein 1 (LAMP1) and LAMP2 were downregulated in cells after JEV infection, resulting in a decrease in the quantity of acidified lysosomes and impaired lysosomal catabolism. What's more, JEV nonstructural protein 4B plays key roles in the reduction of LAMP1/2 via the autophagy-lysosome pathway. JEV NS4B also promoted abnormal aggregation of SLA-DR, an important component of the swine MHC-II molecule family involved in antigen presentation and CD4+ cell activation initiation. Mechanistically, NS4B localized to the ER during JEV infection and interacted with GRP78, leading to the activation of ER stress-mediated autophagy. The 131-204 amino acid (aa) region of NS4B is essential for autophagy induction and LAMP1/2 reduction. In summary, our findings reveal a novel pathway by which JEV induces autophagy and disrupts lysosomal function.


Assuntos
Autofagia , Regulação para Baixo , Vírus da Encefalite Japonesa (Espécie) , Proteína 2 de Membrana Associada ao Lisossomo , Lisossomos , Lisossomos/metabolismo , Animais , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Suínos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/genética , Encefalite Japonesa/virologia , Encefalite Japonesa/veterinária , Linhagem Celular , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética
19.
mBio ; 15(7): e0132124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38869276

RESUMO

Japanese encephalitis virus (JEV), a member of the Flaviviridae family, is a leading cause of viral encephalitis in humans. Survivors of this infection often develop lifelong neurological sequelae. Short-chain fatty acids (SCFAs) produced in the gut are vital mediators of the gut-brain axis. We aimed to study microRNA-based mechanisms of SCFAs in an in vitro model of JEV infection. N9 microglial cells were pretreated with SCFA cocktail before JEV infection. Cytokine bead analysis, immunoblotting, and PCR were performed to analyze relevant inflammatory markers. microRNA sequencing was performed using Illumina Hiseq, and bioinformatics tools were used for differentially expressed (DE) miRNAs and weighted gene co-expression network analysis (WGCNA). microRNA mimic/inhibitor experiments and luciferase assay were performed to study miRNA-target interaction. A significant reduction in monocyte chemoattractant protein (MCP1) and tumor necrosis factor alpha (TNFα) along with reduced expression of phospho-nuclear factor kappa B (phospho-NF-κB) was observed in SCFA conditions. Significant attenuation of histone deacetylase activity and protein expression was recorded. miRNA sequencing revealed 160 DE miRNAs in SCFA + JEV-treated cells at 6 h post-infection. WGCNA revealed miR-200a-3p, a hub miRNA significantly upregulated in SCFA conditions. Transcription factor ZBTB20 was bioinformatically predicted and validated as a gene target for miR-200a-3p. Further miRNA mimic/inhibitor assay demonstrated that miR-200-3p regulated ZBTB20 along with Iκßα that possibly dampened NF-κB signal activation downstream. IMPORTANCE: The gut-brain axis plays a pivotal role in the physiological state of an organism. Gut microbiota-derived metabolites are known to play a role in brain disorders including neuroviral infections. Short-chain fatty acids (SCFAs) appear to quench inflammatory markers in Japanese encephalitis virus-infected microglial cells in vitro. Mechanistically, we demonstrate the interaction between miR-200a-3p and ZBTB20 in regulating the canonical nuclear factor kappa B (NF-κB) signaling pathway via transcriptional regulation of Iκßα. Findings of this study pave the way to a better understanding of SCFA mechanisms that can be used to develop strategies against viral neuroinflammation.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Ácidos Graxos Voláteis , Inflamação , MicroRNAs , Microglia , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/genética , Microglia/virologia , Microglia/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Camundongos , Animais , Inflamação/genética , Inflamação/virologia , Encefalite Japonesa/virologia , Encefalite Japonesa/genética , Encefalite Japonesa/metabolismo , Linhagem Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Transdução de Sinais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA