RESUMO
The pS273R protease of the African swine fever virus (ASFV) is responsible for the processing of the viral polyproteins pp220 and pp62, precursors of the internal capsid of the virus. The protease is essential for a productive viral infection and is an attractive target for antiviral therapy. This work presents a method for the production of pS273R in E. coli cells by fusing the protease with the SlyD chaperone. The chimeric protein pS273R protease, during expression, is formed in a soluble form possessing enzymatic activity. Subsequently, pS273R separates from SlyD through autocatalytic cleavage at the TEV protease site in vivo. This work devised a straightforward protocol for chromatographic purification, resulting in the production of a highly purified viral protease. Additionally, we suggest using a fluorescence method to assess the activity of pS273R. This method is predicated on a shift in the chimeric protein thioredoxin-EGFP's electrophoretic mobility following its protease cleavage. It was shown that thioredoxin-EGFP substrate is effectively and selectively cleaved by the pS273R protease, even in complex protein mixtures such as mammalian cell lysates.
Assuntos
Vírus da Febre Suína Africana , Escherichia coli , Proteínas Recombinantes de Fusão , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , Escherichia coli/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Animais , Proteases Virais/metabolismo , Proteases Virais/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Suínos , Endopeptidases/metabolismo , Endopeptidases/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismoRESUMO
African swine fever virus (ASFV) is one of the most important causative agents of animal diseases and can cause highly fatal diseases in swine. ASFV DNA polymerase (DNAPol) is responsible for genome replication and highly conserved in all viral genotypes showing an ideal target for drug development. Here, we systematically determined the structures of ASFV DNAPol in apo, replicating and editing states. Structural analysis revealed that ASFV DNAPol had a classical right-handed structure and showed the highest similarity to the structure of human polymerase delta. Intriguingly, ASFV DNAPol has a much longer fingers subdomain, and the thumb and palm subdomain form a unique interaction that has never been seen. Mutagenesis work revealed that the loss of this unique interaction decreased the enzymatic activity. We also found that the ß-hairpin of ASFV DNAPol is located below the template strand in the editing state, which is different from the editing structures of other known B family DNAPols with the ß-hairpin above the template strand. It suggests that B family DNAPols have evolved two ways to facilitate the dsDNA unwinding during the transition from replicating into editing state. These findings figured out the working mechanism of ASFV DNAPol and will provide a critical structural basis for the development of antiviral drugs.
Assuntos
Vírus da Febre Suína Africana , Microscopia Crioeletrônica , DNA Polimerase Dirigida por DNA , Modelos Moleculares , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Suínos , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/genética , Febre Suína Africana/virologia , Sequência de AminoácidosRESUMO
The African swine fever virus (ASFV) type II topoisomerase (Topo II), pP1192R, is the only known Topo II expressed by mammalian viruses and is essential for ASFV replication in the host cytoplasm. Herein, we report the structures of pP1192R in various enzymatic stages using both X-ray crystallography and single-particle cryo-electron microscopy. Our data structurally define the pP1192R-modulated DNA topology changes. By presenting the A2+-like metal ion at the pre-cleavage site, the pP1192R-DNA-m-AMSA complex structure provides support for the classical two-metal mechanism in Topo II-mediated DNA cleavage and a better explanation for nucleophile formation. The unique inhibitor selectivity of pP1192R and the difunctional mechanism of pP1192R inhibition by m-AMSA highlight the specificity of viral Topo II in the poison binding site. Altogether, this study provides the information applicable to the development of a pP1192R-targeting anti-ASFV strategy.
Assuntos
Vírus da Febre Suína Africana , Microscopia Crioeletrônica , DNA Topoisomerases Tipo II , Vírus da Febre Suína Africana/enzimologia , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química , Animais , Cristalografia por Raios X , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/química , Sítios de Ligação , Modelos Moleculares , Antivirais/farmacologia , Antivirais/químicaRESUMO
African swine fever virus (ASFV) is the causal agent of African swine fever (ASF), which is contagious and highly lethal to domestic pigs and wild boars. The genome of ASFV encodes many proteins important for ASFV life cycle. The functional importance of topoisomerase AsfvTopII has been confirmed by in vivo and in vitro assays, but the structure of AsfvTopII is poorly studied. Here, we report four AsfvTopII complex structures. The ATPase domain structures reveal the detailed basis for ATP binding and hydrolysis, which is shared by AsfvTopII and eukaryotic TopIIs. The DNA-bound structures show that AsfvTopII follows conserved mechanism in G-DNA binding and cleavage. Besides G-DNA, a T-DNA fragment is also captured in one AsfvTopII structure. Mutagenesis and in vitro assays confirm that Pro852 and the T-DNA-binding residue Tyr744 are important for the function of AsfvTopII. Our study not only advances the understanding on the biological function of AsfvTopII, but also provides a solid basis for the development of AsfvTopII-specific inhibitors.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/enzimologia , Animais , Suínos , Febre Suína Africana/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Ligação Proteica , DNA Viral/genética , DNA Viral/metabolismo , Cristalografia por Raios XRESUMO
To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/µL sodium heparin, 0.8 ng/µL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/µL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.
Assuntos
Vírus da Febre Suína Africana , DNA Polimerase Dirigida por RNA , DNA Polimerase Dirigida por RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/enzimologia , Animais , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Suínos , Técnicas de Amplificação de Ácido Nucleico/métodos , Domínios Proteicos , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , COVID-19/virologia , RNA Viral/genéticaRESUMO
Type II topoisomerases are ubiquitous enzymes that play a pivotal role in modulating the topological configuration of double-stranded DNA. These topoisomerases are required for DNA metabolism and have been extensively studied in both prokaryotic and eukaryotic organisms. However, our understanding of virus-encoded type II topoisomerases remains limited. One intriguing example is the African swine fever virus, which stands as the sole mammalian-infecting virus encoding a type II topoisomerase. In this work, we use several approaches including cryo-EM, X-ray crystallography, and biochemical assays to investigate the structure and function of the African swine fever virus type II topoisomerase, pP1192R. We determine the structures of pP1192R in different conformational states and confirm its enzymatic activity in vitro. Collectively, our results illustrate the basic mechanisms of viral type II topoisomerases, increasing our understanding of these enzymes and presenting a potential avenue for intervention strategies to mitigate the impact of the African swine fever virus.
Assuntos
Vírus da Febre Suína Africana , Microscopia Crioeletrônica , DNA Topoisomerases Tipo II , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química , Animais , Cristalografia por Raios X , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Modelos Moleculares , Conformação Proteica , Febre Suína Africana/virologiaRESUMO
African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. Although it has been extensively studied in the past, no vaccine or other useful treatment against ASFV is available. The genome of ASFV encodes more than 170 proteins, but the structures and functions for the majority of the proteins remain elusive, which hindered our understanding on the life cycle of ASFV and the development of ASFV-specific inhibitors. Here, we report the structural and biochemical studies of the highly conserved C962R protein of ASFV, showing that C962R is a multidomain protein. The N-terminal AEP domain is responsible for the DNA polymerization activity, whereas the DNA unwinding activity is catalyzed by the central SF3 helicase domain. The middle PriCT2 and D5_N domains and the C-terminal Tail domain all contribute to the DNA unwinding activity of C962R. C962R preferentially works on forked DNA, and likely functions in Base-excision repair (BER) or other repair pathway in ASFV. Although it is not essential for the replication of ASFV, C962R can serve as a model and provide mechanistic insight into the replicative primase proteins from many other species, such as nitratiruptor phage NrS-1, vaccinia virus (VACV) and other viruses.
Assuntos
Vírus da Febre Suína Africana , Proteínas Virais , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/enzimologia , Suínos , Proteínas Virais/química , Proteínas Virais/metabolismo , DNA Topoisomerases Tipo I/química , Replicação do DNARESUMO
Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.
Assuntos
Vírus da Febre Suína Africana , Grânulos de Estresse , Proteínas Virais , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos de Estresse/metabolismo , Suínos , Replicação Viral/fisiologia , Chlorocebus aethiops , Humanos , Células HEK293 , Células Cultivadas , Macrófagos Alveolares/virologia , Proteínas Virais/metabolismo , ProteóliseRESUMO
The African Swine Fever virus (ASFV) causes an infectious viral disease in pigs of all ages. The development of antiviral drugs primarily aimed at inhibition of proteases required for the proteolysis of viral polyproteins. In this study, the conformation of the pS273R protease in physiological states were investigated, virtually screened the multi-protein conformation of pS273R target proteins, combined various molecular docking scoring functions, and identified five potential drugs from the Food and Drug Administration drug library that may inhibit pS273R. Subsequent validation of the dynamic interactions of pS273R with the five putative inhibitors was achieved using molecular dynamics simulations and binding free energy calculations using the molecular mechanics/Poison-Boltzmann (Generalized Born) (MM/PB(GB)SA) surface area. These findings demonstrate that the arm domain and Thr159-Lys167 loop region of pS273R are significantly more flexible compared to the core structural domain, and the Thr159-Lys167 loop region can serve as a "gatekeeper" in the substrate channel. Leucovorin, Carboprost, Protirelin, Flavin Mononucleotide, and Lovastatin Acid all have Gibbs binding free energies with pS273R that were less than -20 Kcal/mol according to the MM/PBSA analyses. In contrast to pS273R in the free energy landscape, the inhibitor and drug complexes of pS273R showed distinct structural group distributions. These five drugs may be used as potential inhibitors of pS273R and may serve as future drug candidates for treating ASFV.
Assuntos
Vírus da Febre Suína Africana , Antivirais , Inibidores de Proteases , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/enzimologia , Endopeptidases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Conformação Proteica , Suínos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Antivirais/química , Antivirais/farmacologiaRESUMO
Removal of 5' cap on cellular mRNAs by the African swine fever virus (ASFV) decapping enzyme g5R protein (g5Rp) is beneficial to viral gene expression during the early stages of infection. As the only nucleoside diphosphate-linked moiety X (Nudix) decapping enzyme encoded in the ASFV genome, g5Rp works in both the degradation of cellular mRNA and the hydrolyzation of the diphosphoinositol polyphosphates. Here, we report the structures of dimeric g5Rp and its complex with inositol hexakisphosphate (InsP6). The two g5Rp protomers interact head to head to form a dimer, and the dimeric interface is formed by extensive polar and nonpolar interactions. Each protomer is composed of a unique N-terminal helical domain and a C-terminal classic Nudix domain. As g5Rp is an mRNA-decapping enzyme, we identified key residues, including K8, K94, K95, K98, K175, R221, and K243 located on the substrate RNA binding interfaces of g5Rp which are important to RNA binding and decapping enzyme activity. Furthermore, the g5Rp-mediated mRNA decapping was inhibited by InsP6. The g5Rp-InsP6 complex structure showed that the InsP6 molecules occupy the same regions that primarily mediate g5Rp-RNA interaction, elucidating the roles of InsP6 in the regulation of the viral decapping activity of g5Rp in mRNA degradation. Collectively, these results provide the structural basis of interaction between RNA and g5Rp and highlight the inhibitory mechanism of InsP6 on mRNA decapping by g5Rp. IMPORTANCE ASF is a highly contagious hemorrhagic viral disease in domestic pigs which causes high mortality. Currently, there are still no effective vaccines or specific drugs available against this particular virus. The protein g5Rp is the only viral mRNA-decapping enzyme, playing an essential role in the machinery assembly of mRNA regulation and translation initiation. In this study, we solved the crystal structures of g5Rp dimer and complex with InsP6. Structure-based mutagenesis studies revealed critical residues involved in a candidate RNA binding region, which also play pivotal roles in complex with InsP6. Notably, InsP6 can inhibit g5Rp activity by competitively blocking the binding of substrate mRNA to the enzyme. Our structure-function studies provide the basis for potential anti-ASFV inhibitor designs targeting the critical enzyme.
Assuntos
Vírus da Febre Suína Africana , Endorribonucleases , Ácido Fítico , Febre Suína Africana , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/enzimologia , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ácido Fítico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SuínosRESUMO
African swine fever (ASF) is a viral hemorrhagic disease that affects domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). The ASFV virion contains a long double-stranded DNA genome, which encodes more than 150 proteins. However, the immune escape mechanism and pathogenesis of ASFV remain poorly understood. Here, we report that the pyroptosis execution protein gasdermin D (GSDMD) is a new binding partner of ASFV-encoded protein S273R (pS273R), which belongs to the SUMO-1 cysteine protease family. Further experiments demonstrated that ASFV pS273R-cleaved swine GSDMD in a manner dependent on its protease activity. ASFV pS273R specifically cleaved GSDMD at G107-A108 to produce a shorter N-terminal fragment of GSDMD consisting of residues 1 to 107 (GSDMD-N1-107). Interestingly, unlike the effect of GSDMD-N1-279 fragment produced by caspase-1-mediated cleavage, the assay of LDH release, cell viability, and virus replication showed that GSDMD-N1-107 did not trigger pyroptosis or inhibit ASFV replication. Our findings reveal a previously unrecognized mechanism involved in the inhibition of ASFV infection-induced pyroptosis, which highlights an important function of pS273R in inflammatory responses and ASFV replication.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Cisteína Proteases , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Proteínas Virais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/metabolismo , Animais , Cisteína Proteases/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sus scrofa , Suínos , Proteínas Virais/metabolismoRESUMO
African swine fever virus (ASFV) is an acute and persistent swine virus with a high economic burden that encodes multiple genes to evade host immune response. In this work, we have revealed that early viral protein UBCv1, the only known conjugating enzyme encoded by a virus, modulates innate immune and inflammatory signaling. Transient overexpression of UBCv1 impaired activation of NF-κB and AP-1 transcription factors induced by several agonists of these pathways. In contrast, activation of IRF3 and ISRE signaling upon stimulation with TRIFΔRIP, cGAS/STING or RIG-I-CARD remained unaltered. Experiments aimed at mapping UBCv1 inhibitory activity indicated that this viral protein acts upstream or at the level step of IKKß. In agreement with this, UBCv1 was able to block p65 nuclear translocation upon cytokine stimulation, a key event in NF-ĸB signaling. Additionally, A549 stably transduced for UBCv1 showed a significant decrease in the levels of NF-ĸB dependent genes. Interestingly, despite the well-defined capacity of UBCv1 to conjugate ubiquitin chains, a mutant disabled for ubiquitylation activity retained similar immunomodulatory activity as the wild-type enzyme, suggesting that the two functions are segregated. Altogether these data suggest that ASFV UBCv1 manipulates the innate immune response targeting the NF-κB and AP-1 pathways and opens new questions about the multifunctionality of this enzyme.
Assuntos
Vírus da Febre Suína Africana/enzimologia , Imunidade Inata , Imunomodulação , NF-kappa B/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologia , Células A549 , Vírus da Febre Suína Africana/imunologia , Animais , Células HEK293 , Humanos , Interferon Tipo I/imunologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Suínos , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
African swine fever (ASF) is a viral disease in swine that results in high mortality in domestic pigs and causes considerable economic losses. Currently, there is no effective vaccine or drugs available for treatment. Identification of new anti-ASFV drugs is urgently needed. Here, the pS273R protein of the African swine fever virus (ASFV) is a specific SUMO-1-like cysteine protease that plays an important role in its replication process. To inhibit virus replication and improve treatment options, a set of small-molecule compounds, targeted inhibitors against the ASFV pS273R protease, were obtained through molecular screening by homology modeling and molecular docking based on structural information of pS273R. Our results clearly demonstrated that the 14th carbon atom of the cysteinase inhibitor E-64 could form one CS covalent bond with the Cys 232 amino acid of the pS273R protease and seven additional hydrogen bonds to maintain a stable binding state. Simultaneously, cell viability, immunophenotyping, and in vitro enzyme activity inhibition assays were performed to comprehensively evaluate E-64 characteristics. Our findings demonstrated that 4 mmol/L E-64 could effectively inhibit the enzyme activity center of the pS273R protease by preventing pS273R protease from lysing pp62, while promoting the upregulation of immune-related cytokines at the transcription level. Moreover, cell viability results revealed that 4 mmol/L E-64 was not cytotoxic. Taken together, we identified a novel strategy to potentially prevent ASFV infection in pigs by blocking the activity of pS273R protease with a small-molecule inhibitor.
Assuntos
Vírus da Febre Suína Africana/enzimologia , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/antagonistas & inibidores , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Suínos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal ß-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 µM) and with some selectivity (â¼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.
Assuntos
Vírus da Febre Suína Africana/enzimologia , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/química , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Sequência de Aminoácidos , Animais , Antivirais/química , Domínio Catalítico , Cristalografia por Raios X , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/química , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Plasmodium falciparum/enzimologia , Conformação Proteica , Suínos , Replicação Viral/efeitos dos fármacosRESUMO
The DNA polymerase from african swine fever virus (ASFV Pol X), lacking both 8 kDa and thumb domains, is the smallest enzyme featuring competence in DNA extension. Here we show that ASFV Pol X features poor filling activity of DNA gaps consisting of 15 bases, and exerts a more efficient action at the expense of DNA substrates containing a recessed end of equal length. We also show that shortening the recessed end of DNA substrates decreases the rate of DNA elongation catalysed by ASFV Pol X. Finally, by means of stopped-flow experiments we were able to determine that DNA binding is a step responsible for restraining the efficiency of ASFV Pol X catalytic action.
Assuntos
Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/enzimologia , Animais , DNA Viral/química , DNA Polimerase Dirigida por DNA/química , Modelos Moleculares , Especificidade por Substrato , Suínos/virologia , Proteínas Virais/químicaRESUMO
African swine fever (ASF) caused by the ASF virus (ASFV) is the most hazardous swine disease. Since a huge number of pigs have been slaughtered to avoid a pandemic spread, intense studies on the disease should be followed quickly. Recent studies reported that flavonoids have various antiviral activity including ASFV. In this report, ASFV protease was selected as an antiviral target protein to cope with ASF. With a FRET (Fluorescence resonance energy transfer) method, ASFV protease was assayed with a flavonoid library which was composed of sixty-five derivatives classified based on ten different scaffolds. Of these, the flavonols scaffold contains a potential anti-ASFV protease activity. The most prominent flavonol was myricetin with IC50 of 8.4 µM. Its derivative, myricitrin, with the rhamnoside moiety was also showed the profound inhibitory effect on ASFV protease. These two flavonols apparently provide a way to develop anti-ASFV agents based on their scaffold.
Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Antivirais/farmacologia , Endopeptidases/metabolismo , Flavonoides/farmacologia , Proteínas Virais/antagonistas & inibidores , Vírus da Febre Suína Africana/enzimologia , Antivirais/química , Relação Dose-Resposta a Droga , Endopeptidases/genética , Flavonoides/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.
Assuntos
Vírus da Febre Suína Africana/enzimologia , Cisteína Endopeptidases/química , Proteínas Virais/química , Febre Suína Africana/virologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Simulação de Dinâmica Molecular , Poliproteínas/química , Conformação Proteica , Domínios Proteicos , Proteína SUMO-1 , Alinhamento de Sequência , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
E165R, a highly specific dUTP nucleotidohydrolase (dUTPase) encoded by the African swine fever virus (ASFV) genome, is required for productive replication of ASFV in swine macrophages. Here, we solved the high-resolution crystal structures of E165R in its apo state and in complex with its product dUMP. Structural analysis explicitly defined the architecture of the active site of the enzyme as well as the interaction between the active site and the dUMP ligand. By comparing the ASFV E165R structure with dUTPase structures from other species, we found that the active site of E165R is highly similar to those of dUTPases from Mycobacterium tuberculosis and Plasmodium falciparum, against which small-molecule chemicals have been developed, which could be the potential drug or lead compound candidates for ASFV. Our results provide important basis for anti-ASFV drug design by targeting E165R.IMPORTANCE African swine fever virus (ASFV), an Asfivirus affecting pigs and wild boars with up to 100% case fatality rate, is currently rampaging throughout China and some other countries in Asia. There is an urgent need to develop therapeutic and preventive reagents against the virus. Our crystallographic and biochemical studies reveal that ASFV E165R is a member of trimeric dUTP nucleotidohydrolase (dUTPase) family that catalyzes the hydrolysis of dUTP into dUMP. Our apo-E165R and E165R-dUMP structures reveal the constitutive residues and the configuration of the active center of this enzyme in rich detail and give evidence that the active center of E165R is very similar to that of dUTPases from Plasmodium falciparum and Mycobacterium tuberculosis, which have already been used as targets for designing drugs. Therefore, our high-resolution structures of E165R provide useful structural information for chemotherapeutic drug design.
Assuntos
Vírus da Febre Suína Africana/enzimologia , Pirofosfatases/química , Pirofosfatases/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Animais , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Plasmodium falciparum , Conformação Proteica , Pirofosfatases/classificação , Pirofosfatases/genética , Alinhamento de Sequência , SuínosRESUMO
Animal diseases constitute a continuing threat to animal health, food safety, national economy, and the environment. Among those, African swine fever (ASF) is one of the most devastating viruses affecting pigs and wild suids due to the lack of vaccine or effective treatment. ASF is endemic in countries in sub-Saharan Africa, but since its introduction to the Caucasus region in 2007, a highly virulent strain of ASF virus (ASFV) has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. Given the importance of this disease, this review will highlight recent discoveries in basic virology with special focus on proteomic analysis, replication cycle, and some recent data on genes involved in cycle progression and viral-host interactions, such as I215L (E2 ubiquitin-conjugating enzyme), EP402R (CD2v), A104R (histone-like protein), QP509L, and Q706L (RNA helicases) or P1192R (Topoisomerase II). Taking into consideration the large DNA genome of ASFV and its complex interactions with the host, more studies and new approaches are to be taken to understand the basic virus-host interaction for ASFV. Proteomic studies are just paving the way for future research.
Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Interações Hospedeiro-Patógeno , Proteômica , RNA Helicases/genética , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/enzimologia , Substituição de Aminoácidos , Animais , Suínos , Proteínas Virais/genéticaRESUMO
African swine fever virus is complex DNA virus that infects pigs with mortality rates up to 100% leading to devastating socioeconomic effected in the affected countries. There is neither a vaccine nor a treatment to control ASF. African swine fever virus genome encodes two putative SF2 RNA helicases (QP509L and Q706L). In the present study, we found that these two RNA helicases do not share a common ancestral besides sharing a sequence overlap. Although, our phylogenetic studies revealed that they are conserved among virulent and non-virulent isolates, it was possible to observe a degree of variation between isolates corresponding to different genotypes occurring in distinct geographic regions. Further experiments showed that QP509L and Q706L are actively transcribed from 4â h post infection. The immunoblot analysis revealed that both protein co-localized in the viral factories at 12â h post infection, however, QP509L was also detected in the cell nucleus. Finally, siRNA assays uncover the relevant role of these proteins during viral cycle progression, in particular, for the late transcription, genome replication, and viral progeny (a reduction of infectious particles up to 99.4% when siRNA against QP509L was used and 98.4% for siRNA against Q706L). Thus, our results suggest that both helicases are essential during viral infection, highlighting the potential use of these enzymes as target for drug and vaccine development against African swine fever.