Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2399945, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39230190

RESUMO

African swine fever (ASF), caused by African swine fever virus (ASFV), is a devastating infectious disease of domestic pigs and wild boar, which threatens the global pig industry. Endoplasmic reticulum (ER) is a multifunctional signaling organelle in eukaryotic cells that is involved in protein synthesis, processing, posttranslational modification and quality control. As intracellular parasitic organisms, viruses have evolved several strategies to modulate ER functions to favor their life cycles. We have previously demonstrated that the differentially expressed genes associated with unfolded protein response (UPR), which represents a response to ER stress, are significantly enriched upon ASFV infection. However, the correlation between the ER stress or UPR and ASFV replication has not been illuminated yet. Here, we demonstrated that ASFV infection induces ER stress both in target cells and in vivo, and subsequently activates the activating transcription factor 6 (ATF6) branch of the UPR to facilitate viral replication. Mechanistically, ASFV infection disrupts intracellular calcium (Ca2+) homeostasis, while the ATF6 pathway facilitates ASFV replication by increasing the cytoplasmic Ca2+ level. More specifically, we demonstrated that ASFV infection triggers ER-dependent Ca2+ release via the inositol triphosphate receptor (IP3R) channel. Notably, we showed that the ASFV B117L protein plays crucial roles in ER stress and the downstream activation of the ATF6 branch, as well as the disruption of Ca2+ homeostasis. Taken together, our findings reveal for the first time that ASFV modulates the ER stress-ATF6-Ca2+ axis to facilitate viral replication, which provides novel insights into the development of antiviral strategies for ASFV.


Assuntos
Fator 6 Ativador da Transcrição , Vírus da Febre Suína Africana , Febre Suína Africana , Cálcio , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Replicação Viral , Animais , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/genética , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Células Vero , Chlorocebus aethiops
2.
Trop Anim Health Prod ; 56(8): 278, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316231

RESUMO

African swine fever (ASF) is caused by Asfivirus and has become one of the most important diseases of swine in recent years. ASF was an endemic disease of the sub-Saharan Africa but later spread to various parts of the world. The infection in ticks and wild swine, alongside global pork trade, drives its spread and persistence. Once introduced to an area, the disease is difficult to eliminate due to sylvatic, domestic, and tick-swine transmission cycles. Because of the existence of various modes of transmission of the ASF virus, biosecurity measures have not been very successful. The line of treatment is not of much use and the outcome of this disease is usually fatal. The prognosis or the recovery of the animal depends on the virulence of the strain involved. Development of vaccines has been attempted but to date has not been very successful. This review focuses on the basic context of ASF, the challenges associated with it, and the options that might be available to prevent its occurrence which includes the different vaccine development strategies tried and tested till now.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Febre Suína Africana/epidemiologia , Animais , Suínos , Vírus da Febre Suína Africana/fisiologia , Vacinas Virais
3.
Viruses ; 16(9)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39339953

RESUMO

The African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal disease in swine, for which no antiviral drugs or vaccines are currently available. Studying viral-host protein-protein interactions advances our understanding of the molecular mechanisms underlying viral replication and pathogenesis and can facilitate the discovery of antiviral therapeutics. In this study, we employed affinity tagging and purification mass spectrometry to characterize the interactome of VPS39, an important cellular factor during the early phase of ASFV replication. The interaction network of VPS39 revealed associations with mitochondrial proteins involved in membrane contact sites formation and cellular respiration. We show that the ASFV proteins CP204L and A137R target VPS39 by interacting with its clathrin heavy-chain functional domain. Furthermore, we elaborate on the potential mechanisms by which VPS39 may contribute to ASFV replication and prioritize interactions for further investigation into mitochondrial protein function in the context of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Replicação Viral , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Interações Hospedeiro-Patógeno , Chlorocebus aethiops , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Células Vero , Humanos , Ligação Proteica
4.
Antiviral Res ; 230: 105973, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39168188

RESUMO

African swine fever virus (ASFV) infection causes a frequently fatal disease in domestic swine that has affected more than 50 countries worldwide since 2021, with a major impact on animal welfare and economy. The development of effective vaccines or antivirals against this disease are urgently required for its effective control. Live detection of viral replication has been used as a tool for the screening and characterization of antiviral compounds in other dsDNA genome containing viruses. Here, we have adapted the ANCHOR fluorescent DNA labelling system to ASFV by constructing and characterizing a novel recombinant virus. We show that this virus is viable and effectively tags viral DNA replication sites, which can be detected and quantified in real time. Further, we have used high content cell microscopy to test the antiviral activity of bisbenzimide compounds and show that Hoechst 33342 has specific anti-ASFV activity. We expect this novel tool to be useful both in the further study of ASFV replication as in the screening of new specific antiviral compounds.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzimidazóis , DNA Viral , Replicação Viral , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/genética , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Benzimidazóis/farmacologia , Suínos , DNA Viral/genética , Replicação do DNA/efeitos dos fármacos , Febre Suína Africana/virologia , Chlorocebus aethiops , Coloração e Rotulagem/métodos , Células Vero , Linhagem Celular
5.
Virol J ; 21(1): 180, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113041

RESUMO

The spread of the African swine fever virus (ASF virus) genotype ii in the Eurasian region has been very successful and often inexplicable. The virus spreads rapidly and persists in areas with wild boar populations, but areas without feral pig populations are also affected. The virus has shown the ability to survive for a long time in the environment without a population of susceptible hosts, both pigs and Ornithodoros soft ticks. Published data indicated that ASF viruses persist significantly longer in an environment with some freshwater snails (especially Pomacea bridgesii, Tarebia granifera, Asolene spixii, Melanoides tuberculate, and Physa fontinalis), compared to freshwater without snails. Data obtained in this study suggest that gastropods theoretically can be the hosts of the ASF virus. Also, we have proven the possibility of long-term existence of an infectious virus when infected in vitro.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/isolamento & purificação , Suínos , Febre Suína Africana/virologia , Gastrópodes/virologia , Ornithodoros/virologia
6.
J Virol ; 98(8): e0032724, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39082785

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available. This study evaluated the anti-ASFV activities in porcine alveolar macrophages, 3D4/21 cells, and PK-15 cells of four bis-benzylisoquinoline alkaloids (BBAs): cepharanthine (CEP), tetrandrine, fangchinoline, and iso-tetrandrine. Furthermore, we demonstrated that CEP, which exhibited the highest selectivity index (SI = 81.31), alkalized late endosomes/lysosomes, hindered ASFV endosomal transport, disrupted virus uncoating signals, and thereby inhibited ASFV internalization. Additionally, CEP disrupted ASFV DNA synthesis, leading to the inhibition of viral replication. Moreover, berbamine was labeled with NBD to synthesize a fluorescent probe to study the cellular location of these BBAs. By co-staining with Lyso-Tracker and lysosome-associated membrane protein 1, we demonstrated that BBAs target the endolysosomal compartments for the first time. Our data together indicated that BBAs are a class of natural products with significant inhibitory effects against ASFV infection. These findings suggest their potential efficacy as agents for the prevention and control of ASF, offering valuable references for the identification of potential drug targets.IMPORTANCEThe urgency and severity of African swine fever (ASF) underscore the critical need for effective interventions against this highly infectious disease, which poses a grave threat to domestic pigs and wild boars. Our study reveals the potent anti-African swine fever virus (ASFV) efficacy of bis-benzylisoquinoline alkaloids (BBAs), particularly evident in the absence of progeny virus production under a 5 µM concentration treatment. The structural similarity among cepharanthine, tetrandrine, fangchinoline, and iso-tetrandrine, coupled with their analogous inhibitory stages and comparable selectivity indexes, strongly suggests a shared antiviral mechanism within this drug category. Further investigation revealed that BBAs localize to lysosomes and inhibit the internalization and replication of ASFV by disrupting the endosomal/lysosomal function. These collective results have profound implications for ASF prevention and control, suggesting the potential of the investigated agents as prophylactic and therapeutic measures. Furthermore, our study offers crucial insights into identifying drug targets and laying the groundwork for innovative interventions.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzilisoquinolinas , Endossomos , Lisossomos , Internalização do Vírus , Replicação Viral , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Internalização do Vírus/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Replicação Viral/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Suínos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/virologia , Antivirais/farmacologia , Linhagem Celular , Febre Suína Africana/virologia , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo , Guanina/análogos & derivados , Guanina/farmacologia , Alcaloides/farmacologia , Macrófagos Alveolares/virologia , Macrófagos Alveolares/efeitos dos fármacos , Benzodioxóis
7.
Virus Res ; 348: 199434, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004284

RESUMO

African Swine Fever (ASF) is caused by a DNA virus (AFSV) maintained and transmitted by the Argasid ticks. The re-emergence of the disease in Africa coupled with its rapid spread globally is a threat to the pig industry, food security and livelihoods. The ecology and epidemiology of the ASFV sylvatic cycle, especially in the face of changing land use and land cover, further compounds the menace and impacts of this disease in Kenya. The study aimed to determine the occurrence and distribution of ASFV seroprevalence in warthog populations, the tick vectors and extent of tick infestation of warthog burrows, and the genotypes of ASFV in soft ticks in Kenya. Warthogs from different parts of Kenya were captured and venous blood was centrifuged to harvest sera. Warthog burrows were examined for their conditions and to extract ticks. Sera were analyzed for antibodies against ASFV using a commercial ELISA kit coated with p32 ASFV recombinant protein. Ticks were pooled, DNA extracted and the p72 gene of the ASFV was amplified by qPCR and conventional PCR. The overall seroprevalence of ASFV in warthogs was 87.5 %. A total of 228 warthog burrows were examined and 2154 argasid ticks were extracted from the burrows. Tick pools from Kigio Farm and Lewa Wildlife Conservancies were ASFV-positive by qPCR and conventional PCR. ASFV was further confirmed by the Twist Comprehensive Viral Research Panel (TCVRP), which also identified the argasid ticks as Ornithodoros porcinus. The ticks were infected with virus genotype IX, and their occurrence overlaps with regions of previous ASF outbreaks in domestic pigs. Further, Viruses that could be tick endosymbionts/commensals or due to bloodmeal were detected in ticks by TCVRP; Porcine type-C oncovirus; Pandoravirus neocaledonia; Choristoneura fumiferana granulovirus; Enterobacteria phage p7; Leporid herpesvirus 4 isolate; 5; Human Lymphotropic virus; Human herpesvirus 5. In conclusion, our results suggest that infected Ornithodoros spp. seems to have a rich virome, which has not been explored but could be exploited to inform ASF control in Kenya. Further, the ecology of Ornithodoros spp. and burrow-use dynamics are complex and more studies are needed to understand these dynamics, specifically in the spread of ASFV at the interface of wild and domestic pigs. Further, our results provide evidence of genotype IX ASFV sylvatic cycle which through O. porcinus tick transmission has resulted in high exposure of adult common warthogs. Finally, the co-circulation of ASFV genotype IX in the same location with past ASF outbreaks in domestic pigs and presently in ticks brings to focus the role of the interface and ticks on virus transmission to pigs and warthogs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Anticorpos Antivirais , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Quênia/epidemiologia , Suínos , Estudos Soroepidemiológicos , Anticorpos Antivirais/sangue , Genótipo , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Vetores Aracnídeos/virologia
8.
PLoS Pathog ; 20(7): e1012256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024394

RESUMO

African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Endossomos , Proteínas de Membrana , Internalização do Vírus , Replicação Viral , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Febre Suína Africana/genética , Endossomos/metabolismo , Endossomos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Técnicas de Inativação de Genes
9.
Virulence ; 15(1): 2375550, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38973077

RESUMO

African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/fisiologia , Animais , Febre Suína Africana/virologia , Febre Suína Africana/imunologia , Suínos , Virulência
10.
Vet Res ; 55(1): 89, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010163

RESUMO

Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genótipo , Sus scrofa , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Suínos , Eliminação de Partículas Virais , Viremia/veterinária , Viremia/virologia , Carga Viral/veterinária , Virulência
11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000284

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzilisoquinolinas , Macrófagos Alveolares , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Replicação Viral , Animais , Macrófagos Alveolares/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Benzilisoquinolinas/farmacologia , Antivirais/farmacologia , Febre Suína Africana/virologia , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo
12.
Vet Res ; 55(1): 73, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849962

RESUMO

African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genótipo , Sus scrofa , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Suínos , Itália , Febre Suína Africana/virologia , Genoma Viral , Fenótipo , Deleção de Sequência , Macrófagos/virologia
13.
Emerg Microbes Infect ; 13(1): 2366406, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847223

RESUMO

African swine fever, caused by African swine fever virus (ASFV), is a highly contagious and fatal disease that poses a significant threat to the global pig industry. The limited information on ASFV pathogenesis and ASFV-host interactions has recently prompted numerous transcriptomic studies. However, most of these studies have focused on elucidating the transcriptome profiles of ASFV-infected porcine alveolar macrophages in vitro. Here, we analyzed dynamic transcriptional patterns in vivo in nine organ tissues (spleen, submandibular lymph node, mesenteric lymph node, inguinal lymph node, tonsils, lungs, liver, kidneys, and heart) obtained from pigs in the early stages of ASFV infection (1 and 3 d after viremia). We observed rapid spread of ASFV to the spleen after viremia, followed by broad transmission to the liver and lungs and subsequently, the submandibular and inguinal lymph nodes. Profound variations in gene expression patterns were observed across all organs and at all time-points, providing an understanding of the distinct defence strategies employed by each organ against ASFV infection. All ASFV-infected organs exhibited a collaborative response, activating immune-associated genes such as S100A8, thereby triggering a pro-inflammatory cytokine storm and interferon activation. Functional analysis suggested that ASFV exploits the PI3K-Akt signalling pathway to evade the host immune system. Overall, our findings provide leads into the mechanisms underlying pathogenesis and host immune responses in different organs during the early stages of infection, which can guide further explorations, aid the development of efficacious antiviral strategies against ASFV, and identify valuable candidate gene targets for vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Transcriptoma , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Suínos , Febre Suína Africana/virologia , Perfilação da Expressão Gênica , Linfonodos/virologia , Baço/virologia , Baço/metabolismo , Viremia , Pulmão/virologia , Fígado/virologia , Fígado/metabolismo
14.
Virol Sin ; 39(3): 469-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789040

RESUMO

Virus replication relies on complex interactions between viral proteins. In the case of African swine fever virus (ASFV), only a few such interactions have been identified so far. In this study, we demonstrate that ASFV protein p72 interacts with p11.5 using co-immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). It was found that protein p72 interacts specifically with p11.5 â€‹at sites amino acids (aa) 1-216 of p72 and aa 1-68 of p11.5. To assess the importance of p11.5 in ASFV infection, we developed a recombinant virus (ASFVGZΔA137R) by deleting the A137R gene from the ASFVGZ genome. Compared with ASFVGZ, the infectious progeny virus titers of ASFVGZΔA137R were reduced by approximately 1.0 logs. In addition, we demonstrated that the growth defect was partially attributable to a higher genome copies-to-infectious virus titer ratios produced in ASFVGZΔA137R-infected MA104 â€‹cells than in those infected with ASFVGZ. This finding suggests that MA104 â€‹cells infected with ASFVGZΔA137R may generate larger quantities of noninfectious particles. Importantly, we found that p11.5 did not affect virus-cell binding or endocytosis. Collectively, we show for the first time the interaction between ASFV p72 and p11.5. Our results effectively provide the relevant information of the p11.5 protein. These results extend our understanding of complex interactions between viral proteins, paving the way for further studies of the potential mechanisms and pathogenesis of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Proteínas Virais , Replicação Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Chlorocebus aethiops , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Linhagem Celular , Ligação Proteica , Cromatografia Líquida , Células Vero , Espectrometria de Massas
15.
Trop Anim Health Prod ; 56(5): 166, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758410

RESUMO

African Swine Fever (ASF) disease transmission parameters are crucial for making response and control decisions when faced with an outbreak, yet they are poorly quantified for smallholder and village contexts within Southeast Asia. Whilst disease-specific factors - such as latent and infectious periods - should remain reasonably consistent, host, environmental and management factors are likely to affect the rate of disease spread. These differences are investigated using Approximate Bayesian Computation with Sequential Monte-Carlo methods to provide disease parameter estimates in four naïve pig populations in villages of Lao People's Democratic Republic. The villages represent smallholder pig farmers of the Northern province of Oudomxay and the Southern province of Savannakhet, and the model utilised field mortality data to validate the transmission parameter estimates over the course of multiple model generations. The basic reproductive number between-pigs was estimated to range from 3.08 to 7.80, whilst the latent and infectious periods were consistent with those published in the literature for similar genotypes in the region (4.72 to 6.19 days and 2.63 to 5.50 days, respectively). These findings demonstrate that smallholder village pigs interact similarly to commercial pigs, however the spread of disease may occur slightly slower than in commercial study groups. Furthermore, the findings demonstrated that despite diversity across the study groups, the disease behaved in a consistent manner. This data can be used in disease control programs or for future modelling of ASF in smallholder contexts.


Assuntos
Febre Suína Africana , Teorema de Bayes , Animais , Febre Suína Africana/transmissão , Febre Suína Africana/epidemiologia , Suínos , Laos/epidemiologia , Número Básico de Reprodução , Criação de Animais Domésticos/métodos , Método de Monte Carlo , Sus scrofa , Vírus da Febre Suína Africana/fisiologia , Surtos de Doenças/veterinária
16.
Viruses ; 16(5)2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793635

RESUMO

Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78-99.80%.


Assuntos
Febre Suína Africana , Infecções por Circoviridae , Circovirus , Coinfecção , Doenças dos Suínos , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/fisiologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/genética , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Genoma Viral , Filogenia , Polônia/epidemiologia , Prevalência , Sus scrofa/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia
17.
Microbes Infect ; 26(5-6): 105348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697277

RESUMO

African swine fever virus (ASFV) infection causes African swine fever (ASF), a highly contagious and fatal disease that poses severe threat to swine production. To gain insights into the host responses to ASFV, we generated recombinant adenovirus Ad5 expressing viral membrane proteins p54, p17, and pB117L individually and infected an alveolar cell line, 3D4/21, with these recombinant viruses. Then, the cell lysates were analyzed using label-free quantification proteomic analysis method. A total of 2158 differentially expressed proteins (DEPs) were identified, of which 817, 466, and 875 proteins were from Ad5-p54-, Ad5-p17-, Ad5-pB117L-infected 3D4/21 cells, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed distinct yet interconnecting patterns of protein interaction networks. Specifically, the Ad5-p54 virus infection enriched the DEPs primarily involved in the metabolic pathways, endocytosis, adherens junction, and SNARE interactions in vesicular transport. The Ad5-p17 virus infection enriched the DEPs in endocytosis, ubiquitin-mediated proteolysis, N-Glycan biosynthesis, and apoptosis, while the Ad5-pB117L virus infection enriched the DEPs in metabolic pathways, endocytosis, oxidative phosphorylation, and focal adhesion. In summary, these results provide a comprehensive proteinomics analysis of the cellular responses to three ASFV membrane proteins, thus facilitating our understanding of ASFV pathogenesis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteômica , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/metabolismo , Animais , Suínos , Proteômica/métodos , Linhagem Celular , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Interações Hospedeiro-Patógeno , Mapas de Interação de Proteínas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética
18.
Front Biosci (Landmark Ed) ; 29(4): 164, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682190

RESUMO

BACKGROUND: The African swine fever (ASF) virus (ASFV) and ASF-like viral sequences were identified in human samples and sewage as well as in different water environments. Pigs regularly experience infections by the ASFV. The considerable stability of the virus in the environment suggests that there is ongoing and long-term contact between humans and the ASFV. However, humans exhibit resistance to the ASFV, and the decisive factor in developing infection in the body is most likely the reaction of target macrophages to the virus. Therefore, this study aimed to characterize the responses of human macrophages to the virus and explore the distinct features of the viral replication cycle within human macrophages. METHODS: The ASFV Armenia/07 strain was used in all experiments. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the ASFV gene expression; flow cytometry analysis was performed to evaluate the effects of the inactive and active ASFV (inASFV and aASFV) treatments on the phenotype of THP-1-derived macrophages (Mφ0) and inflammatory markers. Moreover, other methods such as cell viability and apoptosis assays, staining techniques, phagocytosis assay, lysosome-associated membrane protein (LAMP-1) cytometry, and cytokine detection were used during experiments. RESULTS: Our findings showed that the virus initiated replication by entering human macrophages. Subsequently, the virus shed its capsid and initiated the transcription of numerous viral genes, and at least some of these genes executed their functions. In THP-1-derived macrophages (Mφ0), the ASFV implemented several functions to suppress cell activity, although the timing of their implementation was slower compared with virus-sensitive porcine alveolar macrophages (PAMs). Additionally, the virus could not complete the entire replication cycle in human Mφ0, as indicated by the absence of viral factories and a decrease in infectious titers of the virus with each subsequent passage. Overall, the infection of Mφ0 with the ASFV caused significant alterations in their phenotype and functions, such as increased TLR2, TLR3, CD80, CD36, CD163, CXCR2, and surface LAMP-1 expression. Increased production of the tumor necrosis factor (TNF) and interleukin (IL)-10 and decreased production of interferon (IFN)-α were also observed. Taken together, the virus enters human THP-1-derived macrophages, starts transcription, and causes immunological responses by target cells but cannot complete the replicative cycle. CONCLUSION: These findings suggest that there may be molecular limitations within human macrophages that at least partially restrict the complete replication of the ASFV. Understanding the factors that hinder viral replication in Mφ0 can provide valuable insights into the host-virus interactions and the mechanisms underlying the resistance of human macrophages to the ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Macrófagos , Replicação Viral , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/genética , Humanos , Macrófagos/virologia , Macrófagos/metabolismo , Animais , Febre Suína Africana/virologia , Febre Suína Africana/imunologia , Febre Suína Africana/metabolismo , Apoptose , Suínos , Fagocitose , Células THP-1 , Sobrevivência Celular , Citocinas/metabolismo , Citocinas/genética
19.
Viruses ; 16(4)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675978

RESUMO

African swine fever (ASF) is a disease that is a growing threat to the global swine industry. Regulations and restrictions are placed on swine movement to limit the spread of the virus. However, these are costly and time-consuming. Therefore, this study aimed to determine if high-pressure processing (HPP) sanitization techniques would be effective against the ASF virus. Here, it was hypothesized that HPP could inactivate or reduce ASF virus infectivity in tissue homogenates. To test this hypothesis, 30 aliquots of each homogenate (spleen, kidney, loin) were challenge-infected with the Turin/83 strain of ASF, at a 10 7.20 median hemadsorption dose (HAD)50/mL. Subsequently, eight aliquots of each homogenate were treated with 600 millipascal (600 MPa) HPP for 3, 5, and 7 min. Six untreated aliquots were used as the controls. Virological results showed a reduction in the viral titer of more than 7-log. These results support the validity of the study hypothesis since HPP treatment was effective in inactivating ASFV in artificially prepared samples. Overall, this study suggests the need for further investigation of other ASFV-contaminated meat products.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/fisiologia , Suínos , Febre Suína Africana/virologia , Pressão , Rim/virologia , Carga Viral , Inativação de Vírus , Baço/virologia
20.
Virol J ; 21(1): 95, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664855

RESUMO

BACKGROUND: African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS: Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS: Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.


Assuntos
Vírus da Febre Suína Africana , Anti-Inflamatórios , Antivirais , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Antivirais/farmacologia , Suínos , Anti-Inflamatórios/farmacologia , Chlorocebus aethiops , Células Vero , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Macrófagos/imunologia , Febre Suína Africana/virologia , Replicação Viral/efeitos dos fármacos , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Efeito Citopatogênico Viral/efeitos dos fármacos , Citocinas/metabolismo , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA