Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.201
Filtrar
1.
Nat Commun ; 15(1): 8708, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379362

RESUMO

The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.


Assuntos
Vírus da Hepatite Murina , SARS-CoV-2 , Animais , Humanos , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Complexo de Golgi/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Células HEK293 , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Inflamação/metabolismo , Pulmão/virologia , Pulmão/metabolismo , Pulmão/imunologia
2.
Int J Nanomedicine ; 19: 9009-9033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246425

RESUMO

Background: The high infectivity of coronaviruses has led to increased interest in developing new strategies to prevent virus spread. Silver nanoparticles (AgNPs) and graphene oxide (GO) have attracted much attention in the antiviral field. We investigated the potential antiviral activity of GO and AgNPs combined in the nanocomposite GO-Ag against murine betacoronavirus MHV using an in vitro model. Methods: GO, AgNPs, and GO-Ag characterization (size distribution, zeta potential, TEM visualization, FT-IR, and EDX analysis) and XTT assay were performed. The antiviral activity of GO-Ag nanocomposites was evaluated by RT-qPCR and TCID50 assays. The results were compared with free AgNPs and pure GO. Cell growth and morphology of MHV-infected hepatocytes treated with GO-Ag composites were analyzed by JuLI™Br. Immunofluorescence was used to visualize the cell receptor used by MHV. Ultrastructural SEM analysis was performed to examine cell morphology after MHV infection and GO-Ag composite treatment. Results: A significant reduction in virus titer was observed for all nanocomposites tested, ranging from 3.2 to 7.3 log10 TCID50. The highest titer reduction was obtained for GO 5 µg/mL - Ag 25 µg/mL in the post-treatment method. These results were confirmed by RT-qPCR analysis. The results indicate that GO-Ag nanocomposites exhibited better antiviral activity compared to AgNPs and GO. Moreover, the attachment of AgNPs to the GO flake platform reduced their cytotoxicity. In addition, the GO-Ag composite modulates the distribution of the Ceacam1 cell receptor and can modulate cell morphology. Conclusion: Graphene oxide sheets act as a stabilizing agent, inhibiting the accumulation of AgNPs and reducing their cellular toxicity. The GO-Ag composite can physically bind and inhibit murine betacoronavirus from entering cells. Furthermore, the constant presence of GO-Ag can inhibit MHV replication and significantly limit its extracellular release. In conclusion, GO-Ag shows promise as an antiviral coating on solid surfaces to minimize virus transmission and spread.


Assuntos
Antivirais , Grafite , Nanopartículas Metálicas , Nanocompostos , Prata , Grafite/farmacologia , Grafite/química , Prata/química , Prata/farmacologia , Animais , Nanocompostos/química , Antivirais/farmacologia , Antivirais/química , Camundongos , Nanopartículas Metálicas/química , Vírus da Hepatite Murina/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Linhagem Celular
3.
Viruses ; 16(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39205235

RESUMO

The innate immune system serves as the first line of defense against ß-coronaviruses (ß-CoVs), a family of viruses that includes SARS-CoV-2. Viral sensing via pattern recognition receptors triggers inflammation and cell death, which are essential components of the innate immune response that facilitate viral clearance. However, excessive activation of the innate immune system and inflammatory cell death can result in uncontrolled release of proinflammatory cytokines, resulting in cytokine storm and pathology. PANoptosis, innate immune, inflammatory cell death initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes, has been implicated in the pathology of viral infections. Therefore, understanding the molecular mechanisms regulating PANoptosis in response to ß-CoV infection is critical for identifying new therapeutic targets that can mitigate disease severity. In the current study, we analyzed findings from a cell death-based CRISPR screen with archetypal ß-CoV mouse hepatitis virus (MHV) as the trigger to characterize host molecules required for inflammatory cell death. As a result, we identified SMARCA4, a chromatin regulator, as a putative host factor required for PANoptosis in response to MHV. Furthermore, we observed that gRNA-mediated deletion of Smarca4 inhibited MHV-induced PANoptotic cell death in macrophages. These findings have potential translational and clinical implications for the advancement of treatment strategies for ß-CoVs and other infections.


Assuntos
Morte Celular , Vírus da Hepatite Murina , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imunidade Inata , Inflamação/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Humanos , Cromatina/metabolismo , Cromatina/genética , Macrófagos/virologia , Macrófagos/imunologia , Macrófagos/metabolismo , Necroptose , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Interações Hospedeiro-Patógeno
4.
J Neuroophthalmol ; 44(3): 319-329, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39164897

RESUMO

BACKGROUND: Optic neuritis (ON), one of the clinical manifestations of the human neurological disease multiple sclerosis (MS), was also reported in patients with COVID-19 infection, highlighting one potential neurological manifestation of SARS-CoV-2. However, the mechanism of ON in these patients is poorly understood. EVIDENCE ACQUISITION: Insight may be gained by studying the neurotropic mouse hepatitis virus (MHV-A59), a ß-coronavirus that belongs to the same family as SARS-CoV-2. RESULTS: Mouse hepatitis virus-A59, or its isogenic spike protein recombinant strains, inoculation in mice provides an important experimental model to understand underpinning mechanisms of neuroinflammatory demyelination in association with acute stage optic nerve inflammation and chronic stage optic nerve demyelination concurrent with axonal loss. Spike is a surface protein that mediates viral binding and entry into host cells, as well as cell-cell fusion and viral spread. Studies have implicated spike-mediated mechanisms of virus-induced neuroinflammatory demyelination by comparing naturally occurring demyelinating (DM) and nondemyelinating (NDM) MHV strains. CONCLUSIONS: Here, we summarize findings in MHV-induced experimental ON and myelitis, using natural DM and NDM strains as well as engineered recombinant strains of MHV to understand the role of spike protein in inducing ON and demyelinating disease pathology. Potential parallels in human coronavirus-mediated ON and demyelination, and insight into potential therapeutic strategies, are discussed.


Assuntos
COVID-19 , Modelos Animais de Doenças , Vírus da Hepatite Murina , Neurite Óptica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Neurite Óptica/virologia , Neurite Óptica/etiologia , Neurite Óptica/metabolismo , Neurite Óptica/fisiopatologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Camundongos , COVID-19/complicações , Vírus da Hepatite Murina/fisiologia , Humanos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/fisiopatologia , Betacoronavirus 1/metabolismo
5.
J Virol ; 98(9): e0068024, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39158347

RESUMO

Betacoronaviruses encode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as "I" for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV. Whether MHV I is an innate immune antagonist or has other functions has not been evaluated. In this report, we show that the I protein of the neurotropic JHM strain of MHV (JHMV) lacks a N terminal domain present in other MHV strains, has immunoevasive properties, and is a component of the virion. Genetic deletion of JHMV I (rJHMVIΔ57-137) resulted in a highly attenuated virus both in vitro and in vivo that displayed a post RNA replication/transcription defect that ultimately resulted in fewer infectious virions packaged compared with wild-type virus. This phenotype was only seen for rJHMVIΔ57-137, suggesting the structural changes predicted for A59 I altered its function, as genetic deletion of A59 I did not change viral replication or pathogenicity. Together, these data show that JHMV I both acts as a mild innate immune antagonist and aids in viral assembly and infectious virus production, and suggest that the internal N proteins from different betacoronaviruses have both common and virus strain-specific properties.IMPORTANCECoV accessory genes are largely studied in overexpression assays and have been identified as innate immune antagonists. However, functions identified after overexpression are often not confirmed in the infected animal host. Furthermore, some accessory proteins are components of the CoV virion, but their role in viral replication and release remains unclear. Here, we utilized reverse genetics to abrogate expression of a conserved CoV accessory gene, the internal N ("I") gene, of the neurotropic JHMV strain of MHV and found that loss of the I gene resulted in a post replication defect that reduced virion assembly and ultimately infectious virus production, while also increasing some inflammatory molecule expression. Thus, the JHMV I protein has roles in virion assembly that were previously underappreciated and in immunoevasion.


Assuntos
Vírus da Hepatite Murina , Proteínas Virais , Replicação Viral , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/patogenicidade , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/fisiologia , Animais , Camundongos , Virulência , Proteínas Virais/metabolismo , Proteínas Virais/genética , Vírion/metabolismo , Imunidade Inata , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Linhagem Celular , Fases de Leitura Aberta , Humanos
6.
Int Immunopharmacol ; 141: 112963, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159560

RESUMO

Fulminant viral hepatitis (FH) represents a significant clinical challenge, with its pathogenesis not yet fully elucidated. Heat shock protein (HSP)70, a molecular chaperone protein with a broad range of cytoprotective functions, is upregulated in response to stress. However, the role of HSP70 in FH remains to be investigated. Notably, HSP70 expression is upregulated in the livers of coronavirus-infected mice and patients. Therefore, we investigated the mechanistic role of HSP70 in coronavirus-associated FH pathogenesis. FH was induced in HSP70-deficient (HSP70 KO) mice or in WT mice treated with the HSP70 inhibitor VER155008 when infected with the mouse hepatitis virus strain A59 (MHV-A59). MHV-A59-infected HSP70 KO mice exhibited significantly reduced liver damage and mortality. This effect was attributed to decreased infiltration of monocyte-macrophages and neutrophils in the liver of HSP70 KO mice, resulting in lower levels of inflammatory cytokines such as IL-1ß, TNFα, and IL-6, and a reduced viral load. Moreover, treatment with the HSP70 inhibitor VER155008 protected mice from MHV-A59-induced liver damage and FH mortality. In summary, HSP70 promotes coronavirus-induced FH pathogenesis by enhancing the infiltration of monocyte-macrophages and neutrophils and promoting the secretion of inflammatory cytokines. Therefore, HSP70 is a potential therapeutic target in viral FH intervention.


Assuntos
Proteínas de Choque Térmico HSP70 , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Hepatite Murina , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Vírus da Hepatite Murina/patogenicidade , Camundongos , Fígado/patologia , Fígado/virologia , Fígado/metabolismo , Citocinas/metabolismo , Humanos , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/patologia , Hepatite Viral Animal/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Masculino , Macrófagos/imunologia , Nucleosídeos de Purina
7.
Microb Pathog ; 193: 106776, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960214

RESUMO

Murine hepatitis virus (MHV) infection is one of the most prevalent types of mice infection in laboratory. MHV could cause death in mice and even interfere with the results in animal experiments. Herein, we developed two isothermal approaches based on the Multienzyme Isothermal Rapid Amplification (MIRA), for rapid detection of MHV in conserved M gene. We designed and screened several pairs of primers and probes and the isothermal fluorescence detector was applied for the exonuclease Ⅲ reverse transcription MIRA (exo-RT-MIRA) assay. To further simplify the workflow, the portable fluorescence visualization instrument, also as a palm-sized handheld system, was used for the naked-eye exo-RT-MIRA assay. The amplification temperature and time were optimized. The assay could be processed well at 42 °C 20 min for the exo-RT-MIRA and the naked-eye exo-RT-MIRA assay. The limit of detection (LoD) of the exo-RT-MIRA assay was 43.4 copies/µL. The LoD of the naked-eye exo-RT-MIRA assay was 68.2 copies/µL. No nonspecific amplifications were observed in the two assays. A total of 107 specimens were examined by qPCR and two assays developed. The experimental results statistical analysis demonstrated that the exo-RT-MIRA assay with the qPCR yielded sufficient agreement with a kappa value of 1.000 (p < 0.0001). The results also exhibited a good agreement (kappa value, 0.961) (p < 0.0001) between the naked-eye exo-RT-MIRA assay and the qPCR assay. In our study, the exo-RT-MIRA assay and the naked-eye exo-RT-MIRA assay presented the possibility of new methods in MHV point-of-testing diagnosis.


Assuntos
Limite de Detecção , Técnicas de Diagnóstico Molecular , Vírus da Hepatite Murina , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Primers do DNA/genética , Temperatura , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Hepatite Viral Animal/diagnóstico , Hepatite Viral Animal/virologia , Fluorescência , RNA Viral/genética
8.
Virology ; 598: 110165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39013305

RESUMO

Epidemics caused by pathogenic viruses are a severe threat to public health worldwide. Electromagnetic waves are a type of noncontact and nonionizing radiation technology that has emerged as an effective tool for inactivating bacterial pathogens. In this study, we used a 9.375 GHz electromagnetic wave to study the inactivation effect and mechanism of electromagnetic waves on MHV-A59, a substitute virus for pathogenic human coronavirus, and to evaluate the inactivation efficiency on different surface materials. We showed that 9.375 GHz electromagnetic waves inactivate MHV-A59 by destroying viral particles, envelopes, or genomes. We also found that 9.375 GHz electromagnetic waves can decrease the infectivity of viruses on the surface of inanimate materials such as plastic, glass, cloth, and wood. In conclusion, our results suggested that the 9.375 GHz electromagnetic wave is a promising disinfection technique for preventing the spread and infection of pathogenic viruses.


Assuntos
Radiação Eletromagnética , Inativação de Vírus , Inativação de Vírus/efeitos da radiação , Desinfecção/métodos , Animais , Vírus da Hepatite Murina/efeitos da radiação , Vírus da Hepatite Murina/fisiologia , Humanos , Linhagem Celular , Vírion/efeitos da radiação
9.
Sci Total Environ ; 944: 173877, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871327

RESUMO

Wastewater-based epidemiology (WBE) has been an important tool for population surveillance during the COVID-19 pandemic and continues to play a key role in monitoring SARS-CoV-2 infection levels following reductions in national clinical testing schemes. Studies measuring decay profiles of SARS-CoV-2 in wastewater have underscored the value of WBE, however investigations have been hampered by high biosafety requirements for SARS-CoV-2 infection studies. Therefore, surrogate viruses with lower biosafety standards have been used for SARS-CoV-2 decay studies, such as murine hepatitis virus (MHV), but few studies have directly compared decay rates of both viruses. We compared the persistence of SARS-CoV-2 and MHV in wastewater, using 50 % tissue culture infectious dose (TCID50) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays to assess infectious virus titre and viral gene markers, respectively. Infectious SARS-CoV-2 and MHV indicate similar endpoints, however observed early decay characteristics differed, with infectious SARS-CoV-2 decaying more rapidly than MHV. We find that MHV is an appropriate infectious virus surrogate for viable SARS-CoV-2, however inconsistencies exist in viral RNA decay parameters, indicating MHV may not be a suitable nucleic acid surrogate across certain temperature regimes. This study highlights the importance of sample preparation and the potential for decay rate overestimation in wastewater surveillance for SARS-CoV-2 and other pathogens.


Assuntos
Vírus da Hepatite Murina , RNA Viral , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , Vírus da Hepatite Murina/fisiologia , COVID-19 , Animais , Estabilidade de RNA
10.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932125

RESUMO

The COVID-19 pandemic, which emerged in early 2020, has had a profound and lasting impact on global health, resulting in over 7.0 million deaths and persistent challenges. In addition to acute concerns, there is growing attention being given to the long COVID health consequences for survivors of COVID-19 with documented cases of cardiovascular abnormalities, liver disturbances, lung complications, kidney issues, and noticeable cognitive deficits. Recent studies have investigated the physiological changes in various organs following prolonged exposure to murine hepatitis virus-1 (MHV-1), a coronavirus, in mouse models. One significant finding relates to the effects on the gastrointestinal tract, an area previously understudied regarding the long-lasting effects of COVID-19. This research sheds light on important observations in the intestines during both the acute and the prolonged phases following MHV-1 infection, which parallel specific changes seen in humans after exposure to SARS-CoV-2. Our study investigates the histopathological alterations in the small intestine following MHV-1 infection in murine models, revealing significant changes reminiscent of inflammatory bowel disease (IBD), celiac disease. Notable findings include mucosal inflammation, lymphoid hyperplasia, goblet cell hyperplasia, and immune cell infiltration, mirroring pathological features observed in IBD. Additionally, MHV-1 infection induces villous atrophy, altered epithelial integrity, and inflammatory responses akin to celiac disease and IBD. SPIKENET (SPK) treatment effectively mitigates intestinal damage caused by MHV-1 infection, restoring tissue architecture and ameliorating inflammatory responses. Furthermore, investigation into long COVID reveals intricate inflammatory profiles, highlighting the potential of SPK to modulate intestinal responses and restore tissue homeostasis. Understanding these histopathological alterations provides valuable insights into the pathogenesis of COVID-induced gastrointestinal complications and informs the development of targeted therapeutic strategies.


Assuntos
COVID-19 , Modelos Animais de Doenças , Vírus da Hepatite Murina , SARS-CoV-2 , Animais , Camundongos , COVID-19/patologia , COVID-19/virologia , COVID-19/imunologia , Vírus da Hepatite Murina/patogenicidade , SARS-CoV-2/patogenicidade , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Intestinos/patologia , Intestinos/virologia , Intestino Delgado/virologia , Intestino Delgado/patologia , Feminino
11.
J Neuroinflammation ; 21(1): 157, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879499

RESUMO

BACKGROUND: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS: Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS: JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS: Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.


Assuntos
Infecções por Coronavirus , Cistatinas , Doenças Desmielinizantes , Camundongos Knockout , Vírus da Hepatite Murina , Animais , Camundongos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/virologia , Doenças Desmielinizantes/imunologia , Vírus da Hepatite Murina/patogenicidade , Cistatinas/genética , Cistatinas/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo
12.
J Neurovirol ; 30(3): 215-228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922550

RESUMO

The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.


Assuntos
Camundongos Endogâmicos C57BL , Microglia , Vírus da Hepatite Murina , Doenças Neuroinflamatórias , Proteínas PrPC , Animais , Vírus da Hepatite Murina/patogenicidade , Camundongos , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/virologia , Microglia/patologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Replicação Viral , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Linhagem Celular , Humanos , Modelos Animais de Doenças , Proteínas Priônicas
13.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L232-L249, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860845

RESUMO

COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the ß-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population (Krt8+ and Cldn4+). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from ß-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.NEW & NOTEWORTHY COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that ß-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.


Assuntos
COVID-19 , Estresse do Retículo Endoplasmático , Endorribonucleases , Homeostase , Vírus da Hepatite Murina , SARS-CoV-2 , Animais , Camundongos , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , COVID-19/complicações , Vírus da Hepatite Murina/patogenicidade , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/patologia , Chaperona BiP do Retículo Endoplasmático , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/complicações , Surfactantes Pulmonares/metabolismo , Resposta a Proteínas não Dobradas , Betacoronavirus , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/virologia , Insuficiência Respiratória/patologia , Modelos Animais de Doenças , eIF-2 Quinase/metabolismo , Humanos
14.
J Neuroimmunol ; 393: 578382, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850674

RESUMO

Virus infections and autoimmune responses are implicated as primary triggers of demyelinating diseases. Specifically, the association of Epstein-Barr virus (EBV) infection with development of multiple sclerosis (MS) has re-ignited an interest in virus induced autoimmune responses to CNS antigens. Nevertheless, demyelination may also be caused by immune mediated bystander pathology in an attempt to control direct infection in the CNS. Tissue damage as a result of anti-viral responses or low level viral persistence may lead to immune activation manifesting in demyelinating lesions, axonal damage and clinical symptoms. This review focuses on the neurotropic mouse coronavirus induced demyelination model to highlight how immune responses activated during the acute phase pave the way to dampen pathology and promote repair. We specifically discuss the role of immune dampening factors programmed cell death ligand 1 (PD-L1) and interleukin (IL)-10, as well as microglia and triggering receptor expressed on myeloid cells 2 (Trem2), in limiting demyelination independent of viral persistence.


Assuntos
Doenças Desmielinizantes , Vírus da Hepatite Murina , Animais , Camundongos , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/virologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/etiologia , Vírus da Hepatite Murina/patogenicidade , Vírus da Hepatite Murina/imunologia , Humanos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/complicações , Modelos Animais de Doenças
15.
J Med Virol ; 96(4): e29587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587204

RESUMO

Obesity has been identified as an independent risk factor for severe outcomes in humans with coronavirus disease 2019 (COVID-19) and other infectious diseases. Here, we established a mouse model of COVID-19 using the murine betacoronavirus, mouse hepatitis virus 1 (MHV-1). C57BL/6 and C3H/HeJ mice exposed to MHV-1 developed mild and severe disease, respectively. Obese C57BL/6 mice developed clinical manifestations similar to those of lean controls. In contrast, all obese C3H/HeJ mice succumbed by 8 days postinfection, compared to a 50% mortality rate in lean controls. Notably, both lean and obese C3H/HeJ mice exposed to MHV-1 developed lung lesions consistent with severe human COVID-19, with marked evidence of diffuse alveolar damage (DAD). To identify early predictive biomarkers of worsened disease outcomes in obese C3H/HeJ mice, we sequenced RNA from whole blood 2 days postinfection and assessed changes in gene and pathway expression. Many pathways uniquely altered in obese C3H/HeJ mice postinfection aligned with those found in humans with severe COVID-19. Furthermore, we observed altered gene expression related to the unfolded protein response and lipid metabolism in infected obese mice compared to their lean counterparts, suggesting a role in the severity of disease outcomes. This study presents a novel model for studying COVID-19 and elucidating the mechanisms underlying severe disease outcomes in obese and other hosts.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Vírus da Hepatite Murina/genética , COVID-19/complicações , Obesidade/complicações , Perfilação da Expressão Gênica
16.
Viruses ; 16(4)2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675984

RESUMO

Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors.


Assuntos
Coronavirus Humano OC43 , Vírus Defeituosos , Evolução Molecular , Genoma Viral , Vírus da Hepatite Murina , Replicação Viral , Animais , Humanos , Vírus Defeituosos/genética , Vírus da Hepatite Murina/genética , Coronavirus Humano OC43/genética , Camundongos , RNA Viral/genética , Linhagem Celular
17.
J Med Chem ; 67(8): 6519-6536, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592023

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.


Assuntos
Antivirais , SARS-CoV-2 , Tiofenos , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Tiofenos/farmacologia , Tiofenos/química , Tiofenos/síntese química , Replicação Viral/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , Animais , Descoberta de Drogas , Camundongos , Cristalografia por Raios X , Tratamento Farmacológico da COVID-19 , Relação Estrutura-Atividade , Vírus da Hepatite Murina/efeitos dos fármacos
18.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474386

RESUMO

BACKGROUND: Coronaviral infection-induced acute lung injury has become a major threat to public health, especially through the ongoing pandemic of COVID-19. Apta-1 is a newly discovered Aptamer that has anti-inflammatory effects on systemic septic responses. The therapeutic effects of Apta-1 on coronaviral infection-induced acute lung injury and systemic responses were evaluated in the present study. METHODS: Female A/J mice (at 12-14 weeks of age) were challenged with murine hepatitis virus 1 (MHV-1), a coronavirus, at 5000 PFU intranasally, followed by Apta-1 intravenously administered (100 mg/kg, twice) 1.5 h or 2 days after viral delivery. Animals were sacrificed at Day 2 or Day 4. Lung tissues were examined with H&E, immunohistochemistry staining, and western blotting. RT-qPCR was used for cytokine gene expression. Serum and plasma were collected for laboratory assessments. RESULTS: Apta-1 treatment reduced viral titers, prevented MHV-1-induced reduction of circulating blood volume and hemolysis, reduced alveolar space hemorrhage, and protease-activated receptor 1 (PAR-1) cleavage. Apta-1 treatment also significantly reduced chemokine (MKC, MCP-1, and RANTES) levels, as well as AST, ALT, total bilirubin, and reduced unconjugated bilirubin levels in the serum. CONCLUSION: Apta-1 showed therapeutic benefits in coronaviral infection-induced hemorrhage and PAR-1 cleavage in the lung. It also has anti-inflammatory effects systemically.


Assuntos
Lesão Pulmonar Aguda , Vírus da Hepatite Murina , Feminino , Animais , Camundongos , Pulmão , Hemorragia , Bilirrubina , Anti-Inflamatórios
19.
J Reprod Immunol ; 163: 104214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508038

RESUMO

Although several testicular alterations promoted by coronavirus infection have been demonstrated, the extent, causes, and players of testicular pathogenesis are not totally understood. The present study aimed to investigate the short-term effects on male fertility of intranasally administered murine hepatitis virus strain 3 (MHV-3), a member of the genus Betacoronavirus, which causes a severe systemic acute infection. This mouse model might be used as a in vivo prototype for investigating the impact of betacoronavirus on the endocrine and exocrine testicular functions with the advantage to be performed in a biosafety level 2 condition. Herein, we performed virological, histopathological, and molecular studies regarding the testicular spermatogenesis and the spermatic quality analyses in an MHV-3-infected C57BL/6 mice. The main outcomes showed that MHV-3 infects mouse testis and induces a testicular inflammatory state, impairing the steroidogenic pathway. The infection led to several alterations in the testicular parenchyma, such as: seminiferous epithelium sloughing, retention of residual bodies, germ cell apoptosis, alterations in intercellular junction proteins, and worse spermatogenic parameters. Moreover, the levels of plasmatic testosterone as well as the quality of sperm production reduced. Therefore, the present data suggest that the viral/inflammatory impairment of the steroidogenic pathway and the consequent imbalance of androgen levels is critical in testicular pathology, disturbing the SC barrier function and the germ cell differentiation. Our study is important for comprehending the effects of beta coronavirus infections on testis function in order to develop treatments that could prevent virus-mediated male infertility.


Assuntos
Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina , Espermatogênese , Espermatozoides , Testículo , Animais , Masculino , Camundongos , Testículo/virologia , Testículo/patologia , Testículo/imunologia , Espermatozoides/virologia , Espermatozoides/imunologia , Espermatozoides/patologia , Modelos Animais de Doenças , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Infertilidade Masculina/virologia , Infertilidade Masculina/imunologia , Infertilidade Masculina/patologia , Infertilidade Masculina/etiologia , Testosterona/sangue , Humanos
20.
Biometals ; 37(4): 923-941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38502284

RESUMO

Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.


Assuntos
Antivirais , COVID-19 , Cobre , SARS-CoV-2 , Cobre/química , Cobre/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Animais , Antivirais/farmacologia , Antivirais/química , Camundongos , Vírus da Hepatite Murina/efeitos dos fármacos , Humanos , Pandemias , Gatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA