Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.282
Filtrar
1.
PLoS One ; 19(5): e0302865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723016

RESUMO

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A Subtipo H1N1 , Neuraminidase , Neuraminidase/imunologia , Neuraminidase/metabolismo , Neuraminidase/antagonistas & inibidores , Anticorpos Monoclonais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Humanos , Animais , Anticorpos Antivirais/imunologia , Camundongos , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos Endogâmicos BALB C , Antivirais/farmacologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vírus da Influenza A Subtipo H3N2/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia
2.
Sci Rep ; 14(1): 10436, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714669

RESUMO

Influenza (sometimes referred to as "flu") is a contagious viral infection of the airways in the lungs that affects a significant portion of the world's population. Clinical symptoms of influenza virus infections can range widely, from severe pneumonia to moderate or even asymptomatic sickness. If left untreated, influenza can have more severe effects on the heart, brain, and lungs than on the respiratory tract and can necessitate hospitalization. This study was aimed to investigate and characterize all types of influenza cases prevailing in Nepal and to analyze seasonal occurrence of Influenza in Nepal in the year 2019. A cross sectional, retrospective and descriptive study was carried out at National Influenza Center (NIC), National Public Health Laboratory Kathmandu Nepal for the period of one year (Jan-Dec 2019). A total of 3606 throat swab samples from various age groups and sexes were processed at the NIC. The specimens were primarily stored at 4 °C and processed using ABI 7500 RT PCR system for the identification of Influenza virus types and subtypes. Data accessed for research purpose were retrieved from National Influenza Centre (NIC) on 1st Jan 2020. Of the total 3606 patients suspected of having influenza infection, influenza viruses were isolated from 1213 (33.6%) patients with male predominance. The highest number of infection was caused by Influenza A/Pdm09 strain 739 (60.9%) followed by Influenza B 304 (25.1%) and Influenza A/H3 169 (13.9%) and most remarkable finding of this study was the detection of H5N1 in human which is the first ever case of such infection in human from Nepal. Similar to other tropical nations, influenza viruses were detected year-round in various geographical locations of Nepal. The influenza virus type and subtypes that were in circulation in Nepal were comparable to vaccine candidate viruses, which the currently available influenza vaccine may prevent.


Assuntos
Influenza Humana , Humanos , Nepal/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Feminino , Masculino , Criança , Adulto , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Lactente , Estudos Retrospectivos , Adulto Jovem , Estudos Transversais , Idoso , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Estações do Ano , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação
3.
Rev Med Virol ; 34(3): e2542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747622

RESUMO

Influenza in dogs holds considerable public health significance due to their close companionship with humans, yet several facets of this phenomenon remain largely unexplored. This study undertook a systematic review and meta-analysis of observational studies to gauge the global seroprevalence of influenza in dogs. We also assessed whether pet dogs exhibited a higher seroprevalence of influenza compared to non-pet dogs, explored seasonal variations in seroprevalence, scrutinised the design and reporting standards of existing studies, and elucidated the geographical distribution of canine influenza virus (cIV). A comprehensive analysis of 97 studies spanning 27 countries revealed that seroprevalence of various influenza strains in dogs consistently registered below 10% and exhibited relative stability over the past decade. Significantly, we noted that seroprevalence of human influenza virus was notably higher in pet dogs compared to their non-pet counterparts, whereas seroprevalence of other influenza strains remained relatively uniform among both categories of dogs. Seasonal variations in seroprevalence of cIV were not observed. In summary, our findings indicated the global circulation of cIV strains H3N2 and H3N8, with other strains primarily confined to China. Given the lack of reported cases of the transmission of cIV from dogs to humans, our findings suggest a higher risk of reverse zoonosis than zoonosis. Finally, we strongly advocate for standardised reporting guidelines to underpin future canine influenza research endeavours.


Assuntos
Doenças do Cão , Infecções por Orthomyxoviridae , Cães , Animais , Estudos Soroepidemiológicos , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Prevalência , Estações do Ano , Humanos , Saúde Global , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Humana/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação
4.
Influenza Other Respir Viruses ; 18(5): e13295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38744684

RESUMO

BACKGROUND: The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2-13 (and 14-15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. METHODS: End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. METHODS: Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: -6% to 54%). VE for those aged 18-64, who largely received cell-based vaccines, was 47% (95% CI: 37%-56%). Overall VE for 2-17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%-76%). CONCLUSION: The paper provides evidence of moderate influenza VE in 2022/23.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Atenção Primária à Saúde , Eficácia de Vacinas , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Pessoa de Meia-Idade , Adolescente , Adulto , Atenção Primária à Saúde/estatística & dados numéricos , Reino Unido/epidemiologia , Idoso , Adulto Jovem , Criança , Feminino , Masculino , Pré-Escolar , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Estações do Ano , Vacinação/estatística & dados numéricos
5.
Nat Commun ; 15(1): 3833, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714654

RESUMO

Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.


Assuntos
Antígenos Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Aprendizado de Máquina , Estações do Ano , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Antígenos Virais/imunologia , Antígenos Virais/genética , Testes de Inibição da Hemaglutinação , Variação Antigênica/genética , Vacinas contra Influenza/imunologia
6.
Front Immunol ; 15: 1352022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698856

RESUMO

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Assuntos
Fator H do Complemento , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Humana , Ligação Proteica , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/imunologia , Animais , Influenza Humana/imunologia , Influenza Humana/virologia , Influenza Humana/metabolismo , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Sítios de Ligação , Influenza Aviária/virologia , Influenza Aviária/imunologia , Influenza Aviária/metabolismo , Aves/virologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia
7.
Acta Biochim Pol ; 71: 12289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721309

RESUMO

The aim of the study was to determine the level of anti-hemagglutinin antibodies in the serum of patients during the 2021/2022 epidemic season in Poland. A total of 700 sera samples were tested, divided according to the age of the patients into 7 age groups: 0-4 years of age, 5-9 years of age, 10-14 years of age, 15-25 years of age, 26-44 years of age, 45-64 years of age and ≥65 years of age, 100 samples were collected from each age group. Anti-hemagglutinin antibody levels was determined using the haemagglutination inhibition assay (OZHA). The results obtained confirm the presence of anti-hemagglutinin antibodies for the antigens A/Victoria/2570/2019 (H1N1) pdm09, A/Cambodia/e0826360/2020 (H3N2), B/Washington/02/2019 and B/Phuket/3073/2013 recommended by World Health Organization (WHO) for the 2021/2022 epidemic season. The analysis of the results shows differences in the levels of individual anti-hemagglutinin antibodies in the considered age groups. In view of very low percentage of the vaccinated population in Poland, which was 6.90% in the 2021/2022 epidemic season, the results obtained in the study would have to be interpreted as the immune system response in patients after a previous influenza virus infection.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Polônia/epidemiologia , Adulto , Pessoa de Meia-Idade , Adolescente , Influenza Humana/imunologia , Influenza Humana/epidemiologia , Influenza Humana/sangue , Influenza Humana/virologia , Criança , Idoso , Pré-Escolar , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Adulto Jovem , Lactente , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Masculino , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Feminino , Recém-Nascido , Testes de Inibição da Hemaglutinação , Vírus da Influenza B/imunologia , Estações do Ano , Epidemias , Prevalência
8.
Sci Rep ; 14(1): 8472, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605110

RESUMO

With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.


Assuntos
Coinfecção , Coronavirus Humano OC43 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Anticorpos de Cadeia Única , Humanos , RNA/metabolismo , Vírus da Influenza A Subtipo H3N2 , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo
10.
ACS Infect Dis ; 10(5): 1552-1560, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623820

RESUMO

Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.


Assuntos
Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Tirosina , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Tirosina/química , Tirosina/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Camundongos Endogâmicos BALB C , Vírus da Influenza A Subtipo H3N2/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Pulmão/virologia , Pulmão/imunologia , Administração Intranasal , Injeções Intramusculares , Citocinas , Proteção Cruzada , Proteínas Viroporinas
12.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 574-578, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38678355

RESUMO

Objective: To identify a novel reassortant H3N2 avian influenza virus using nanopore sequencing technology and analyze its genetic characteristics. Methods: The positive samples of the H3N2 avian influenza virus, collected from the external environment in the farmers' market of Guangzhou, were cultured in chicken embryos. The whole genome was sequenced by targeted amplification and nanopore sequencing technology. The genetic characteristics were analyzed using bioinformatics software. Results: The phylogenetic trees showed that each gene fragment of the strain belonged to the Eurasian evolutionary branch, and the host source was of avian origin. The HA gene was closely related to the origin of the H3N6 virus. The NA gene was closely related to the H3N2 avian influenza virus from 2017 to 2020. The PB1 gene was closely related to the H5N6 avian influenza virus in Guangxi Zhuang Autonomous Region and Fujian Province from 2016 to 2022 and was not related to the PB1 gene of the H5N6 avian influenza epidemic strain in Guangzhou. The other internal gene fragments had complex sources with significant genetic diversity. Molecular characteristics indicated that the strain exhibited the molecular characteristics of a typical low pathogenic avian influenza virus and tended to bind to the receptors of avian origin. On important protein sites related to biological characteristics, this strain had mutations of PB2-L89V, PB1-L473V, NP-A184K, M1-N30D/T215A, and NS1-P42S/N205S. Conclusions: This study identified a novel reassortant H3N2 avian influenza virus by nanopore sequencing, with the PB1 gene derived from the H5N6 avian influenza virus. The virus had a low ability to spread across species, but further exploration was needed to determine whether its pathogenicity to the host was affected.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Aviária , Sequenciamento por Nanoporos , Filogenia , Vírus Reordenados , Animais , Vírus Reordenados/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Genoma Viral , Embrião de Galinha , Galinhas/virologia , Proteínas Virais/genética , Variação Genética
13.
Analyst ; 149(9): 2556-2560, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38587837

RESUMO

Herein, we developed a gold nanoparticle (GNP)-mediated barcode qPCR strategy with a sensitivity for a single virus particle per reaction for the detection of influenza virus H3N2. The analysis of the results for pure virus and real virus samples show that GNP-mediated barcode qPCR is ∼16 times more sensitive than conventional qPCR, demonstrating the potential to reduce false negatives and improve early diagnosis of viral infections.


Assuntos
Ouro , Vírus da Influenza A Subtipo H3N2 , Nanopartículas Metálicas , Reação em Cadeia da Polimerase em Tempo Real , Ouro/química , Nanopartículas Metálicas/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Humanos
14.
Arch Virol ; 169(5): 99, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625394

RESUMO

H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.


Assuntos
Antígenos de Grupos Sanguíneos , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Aves Domésticas , Vírus da Influenza A Subtipo H9N2/genética , Egito/epidemiologia , Galinhas , Fazendas , Vírus da Influenza A Subtipo H3N2 , Influenza Aviária/epidemiologia , Filogenia
15.
Influenza Other Respir Viruses ; 18(4): e13286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594827

RESUMO

Antigenic drift is a major driver of viral evolution and a primary reason why influenza vaccines must be reformulated annually. Mismatch between vaccine and circulating viral strains negatively affects vaccine effectiveness and often contributes to higher rates of influenza-related hospitalizations and deaths, particularly in years dominated by A(H3N2). Several countries recommend enhanced influenza vaccines for older adults, who are at the highest risk of severe influenza complications and mortality. The immunogenicity of enhanced vaccines against heterologous A(H3N2) strains has been examined in nine studies to date. In six studies, an enhanced, licensed MF59-adjuvanted trivalent inactivated influenza vaccine (aIIV3) consistently increased heterologous antibody titers relative to standard influenza vaccine, with evidence of a broad heterologous immune response across multiple genetic clades. In one study, licensed high-dose trivalent inactivated influenza vaccine (HD-IIV3) also induced higher heterologous antibody titers than standard influenza vaccine. In a study comparing a higher dose licensed quadrivalent recombinant influenza vaccine (RIV4) with HD-IIV3 and aIIV3, no significant differences in antibody titers against a heterologous strain were observed, although seroconversion rates were higher with RIV4 versus comparators. With the unmet medical need for improved influenza vaccines, the paucity of studies especially with enhanced vaccines covering mismatched strains highlights a need for further investigation of cross-protection in older adults.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2/genética , Vacinas de Produtos Inativados , Ensaios Clínicos Controlados Aleatórios como Assunto , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação
16.
Hum Vaccin Immunother ; 20(1): 2330770, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38602539

RESUMO

The immunogenicity and safety of the concomitant administration of recombinant COVID-19 vaccine and quadrivalent inactivated influenza vaccine (Split Virion) (QIIV) in Chinese adults are unclear. In this open-label, randomized controlled trial, participants aged ≥ 18 years were recruited. Eligible healthy adults were randomly assigned (1:1) to receive QIIV at the same time as the first dose of COVID-19 vaccine (simultaneous-group) or 14 days after the second dose of COVID-19 vaccine (non-simultaneous-group). The primary outcome was to compare the difference in immunogenicity of QIIV (H1N1, H3N2, Yamagata, and Victoria) between the two groups. A total of 299 participants were enrolled, 149 in the simultaneous-group and 150 in the non-simultaneous-group. There were no significant differences in geometric mean titer (GMT) [H1N1: 386.4 (95%CI: 299.2-499.0) vs. 497.4 (95%CI: 377.5-655.3); H3N2: 66.9 (95%CI: 56.1-79.8) vs. 81.4 (95%CI: 67.9-97.5); Yamagata: 95.6 (95%CI: 79.0-115.8) vs. 74.3 (95%CI: 58.6-94.0); and Victoria: 48.5 (95%CI: 37.6-62.6) vs. 65.8 (95%CI: 49.0-88.4)] and seroconversion rate (H1N1: 87.5% vs. 90.1%; H3N2: 58.1% vs. 62.0%; Yamagata: 75.0% vs. 64.5%; and Victoria: 55.1% vs. 62.8%) of QIIV antibodies between the simultaneous and non-simultaneous groups. For the seroprotection rate of QIIV antibodies, a higher seroprotection rate of Yamagata antibody was observed only in the simultaneous-group than in the non-simultaneous-group [86.0% vs. 76.0%, p = .040]. In addition, no significant difference in adverse events was observed between the two groups (14.2% vs. 23.5%, p = .053). In conclusion, no immune interference or safety concerns were found for concomitant administration of COVID-19 vaccine with QIIV in adults aged ≥ 18 years.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/efeitos adversos , Anticorpos , China
17.
Antiviral Res ; 225: 105877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561077

RESUMO

The conventional inactivated split seasonal influenza vaccine offers low efficacy, particularly in the elderly and against antigenic variants. Here, to improve the efficacy of seasonal vaccination for the elderly population, we tested whether supplementing seasonal bivalent (H1N1 + H3N2) split (S) vaccine with M2 ectodomain repeat and multi-subtype consensus neuraminidase (NA) proteins (N1 NA + N2 NA + flu B NA) on a virus-like particle (NA-M2e) would induce enhanced cross-protection against different influenza viruses in aged mice. Immunization with split vaccine plus NA-M2e (S + NA-M2e) increased vaccine-specific IgG antibodies towards T-helper type 1 responses and hemagglutination inhibition titers. Aged mice with NA-M2e supplemented vaccination were protected against homologous and heterologous viruses at higher efficacies, as evidenced by preventing weight loss, lowering lung viral loads, inducing broadly cross-protective humoral immunity, and IFN-γ+ CD4 and CD8 T cell responses than those with seasonal vaccine. Overall, this study supports a new strategy of NA-M2e supplemented vaccination to enhance protection against homologous and antigenically different viruses in the elderly.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Idoso , Humanos , Camundongos , Animais , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Anticorpos Antivirais , Proteção Cruzada , Camundongos Endogâmicos BALB C
18.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
19.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673930

RESUMO

Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10-6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans.


Assuntos
Antivirais , Clorófitas , Lectinas , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Clorófitas/química , Antivirais/farmacologia , Antivirais/química , Lectinas/farmacologia , Lectinas/química , Lectinas/metabolismo , Lectinas/isolamento & purificação , Humanos , Animais , Cães , Células Madin Darby de Rim Canino , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos
20.
Respir Res ; 25(1): 186, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678295

RESUMO

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Assuntos
Apoptose , Vírus da Influenza A Subtipo H3N2 , Melatonina , Doença Pulmonar Obstrutiva Crônica , Animais , Melatonina/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Camundongos , Apoptose/efeitos dos fármacos , Células RAW 264.7 , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/imunologia , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Progressão da Doença , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA