RESUMO
Antiviral therapy such as oseltamivir has been recommended for hospitalized children with suspected and confirmed influenza for almost 20 years. The therapy is officially authorized for newborns two weeks of age or older, however, questions about its safety and effectiveness still surround it. Our goals were to assess the epidemiological features of two consecutive seasonal influenza cases in children following the COVID-19 pandemic; to observe the clinical effectiveness and tolerability of oseltamivir in hospitalized children who were not vaccinated against influenza and had different influenza subtypes, including A(H1N1), A(H3N2), and B; and to identify specific comorbidities associated with influenza in children. We performed an observational study on 1300 children, enrolled between 1 October 2022 and 30 May 2023 and between 1 October 2023 and 4 May 2024, to the IX Pediatric Infectious Diseases Clinical Section of the National Institute of Infectious Diseases "Prof. Dr. Matei BalÈ". During the 2022-2023 influenza season, 791 pediatric patients tested positive for influenza and received oseltamivir. Of these, 89% (704/791) had influenza A, with 86.4% having subtype A(H1N1) and 13.6% of cases having A(H3N2), and for influenza B, 11% (87/791) of the pediatric patients. Of the total group, 59% were male, and the median age was 2.4 years (1.02-9.28). For the 2023-2024 influenza season, 509 pediatric patients tested positive for influenza, with 56.9% being of the male gender and who were treated with oseltamivir. Of these patients, 81.6% had influenza A and 18.4% had influenza B. Treatment with neuraminidase inhibitors, specifically oseltamivir, 2 mg/kg/dose administered twice daily for 5 days, was well tolerated by the children, and we recorded no deaths. The duration of hospitalization for patients with a fever after the oseltamivir administration was significantly longer for patients with A(H1N1) infection than A(H3N2), during both seasons. We identified more complications in the 2022-2023 season and a decreasing number of influenza B for the 2023-2024 season. Among children with comorbidities, the most common were asthma, gastrointestinal diseases, and metabolic and endocrine diseases. In terms of effectiveness, oseltamivir significantly reduced the intensity of influenza symptoms, thus reducing the number of days of hospitalization (p = 0.001) as well as post-infection complications (p = 0.005) in both groups. In this study, we evaluated the clinical effectiveness of oseltamivir therapy for all influenza types/subtypes in children, and the length of hospitalization. We identified comorbidities associated with the prolonged duration of hospitalization. Influenza vaccination should be the main tool in the prevention of influenza and its complications in children, especially those with comorbidities.
Assuntos
Antivirais , COVID-19 , Comorbidade , Hospitalização , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Oseltamivir , Humanos , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Masculino , Criança , Feminino , Pré-Escolar , Lactente , COVID-19/epidemiologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Adolescente , SARS-CoV-2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Estações do Ano , Resultado do Tratamento , Vírus da Influenza B/efeitos dos fármacos , PandemiasRESUMO
Influenza viruses remain a major threat to human health. Four classes of drugs have been approved for the prevention and treatment of influenza infections. Oseltamivir, a neuraminidase inhibitor, is a first-line anti-influenza drug, and baloxavir is part of the newest generation of anti-influenza drugs that targets the viral polymerase. The emergence of drug resistance has reduced the efficacy of established antiviral drugs. Combination therapy is one of the options for controlling drug resistance and enhancing therapeutical efficacies. Here, we evaluate the antiviral effects of baloxavir combined with neuraminidase inhibitors (NAIs) against wild-type influenza viruses, as well as influenza viruses with drug-resistance mutations. The combination of baloxavir with NAIs led to significant synergistic effects; however, the combination of baloxavir with laninamivir failed to result in a synergistic effect on influenza B viruses. Considering the rapid emergence of drug resistance to baloxavir, we believe that these results will be beneficial for combined drug use against influenza.
Assuntos
Antivirais , Dibenzotiepinas , Farmacorresistência Viral , Sinergismo Farmacológico , Inibidores Enzimáticos , Morfolinas , Neuraminidase , Piridonas , Triazinas , Dibenzotiepinas/farmacologia , Antivirais/farmacologia , Triazinas/farmacologia , Morfolinas/farmacologia , Piridonas/farmacologia , Neuraminidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Vírus da Influenza B/efeitos dos fármacos , Animais , Piridinas/farmacologia , Tiazóis/farmacologia , Guanidinas/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Cães , Células Madin Darby de Rim Canino , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Ácidos Siálicos , Vírus da Influenza A/efeitos dos fármacos , Tiepinas/farmacologia , Triazóis/farmacologia , Benzimidazóis/farmacologia , PiranosRESUMO
BACKGROUND: The detrimental effects of air pollution on the respiratory system are well documented. Previous research has established a correlation between air pollutant concentration and the frequency of outpatient visits for influenza-like illness. However, studies investigating the variations in infection among different influenza subtypes remain sparse. We aimed to determine the correlation between air pollutant levels and different influenza subtypes in Sichuan Province, China. METHODS: A generalized additive model and distributed lag nonlinear model were employed to assess the association between air pollutants and influenza subtypes, utilizing daily influenza data obtained from 30 hospitals across 21 cities in Sichuan Province. The analysis considered the temporal effects and meteorological factors. The study spanned from January 1, 2017, to December 31, 2019. To provide a more precise evaluation of the actual impact of air pollution on different subtypes of influenza, we also performed subgroup analyses based on factors such as gender, age, and geography within the population. RESULTS: During the investigation, 17,462 specimens from Sichuan Province tested positive for influenza. Among these, 12,607 and 4855 were diagnosed with Flu A and B, respectively. The related risk of influenza A infection significantly increased following exposure to PM2.5 on Lag2 days (RR=1.008, 95â¯% confidence interval [CI]: 1.000-1.016), SO2 and CO on Lag1 days (RR=1.121, 95â¯% CI: 1.032-1.219; RR=1.151, 95â¯% CI: 1.030-1.289), and NO2 on Lag0 day (RR=1.089, 95â¯% CI: 1.035-1.145). PM10 and SO2 levels on Lag0 day, PM2.5 levels on Lag1 day, and CO levels on Lag6 day, with a reduced risk of influenza B (RR=0.987, 95â¯% CI: 0.976-0.997; RR=0.817, 95â¯% CI: 0.676-0.987; RR=0.979, 95â¯% CI: 0.970-0.989; RR=0.814, 95â¯% CI: 0.561-0.921). CONCLUSION: The findings from the overall population and subgroup analyses indicated that the impact of air pollutant concentrations on influenza A and B is inconsistent, with influenza A demonstrating greater susceptibility to these pollutants. Minimizing the levels of SO2, CO, NO2, and PM2.5 can significantly decrease the likelihood of contracting influenza A. Analyzing the influence of environmental contaminants on different influenza subtypes can provide insights into seasonal influenza trends and guide the development of preventive and control strategies.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Influenza Humana , Material Particulado , China/epidemiologia , Influenza Humana/epidemiologia , Poluentes Atmosféricos/análise , Humanos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Feminino , Material Particulado/análise , Criança , Masculino , Pessoa de Meia-Idade , Pré-Escolar , Adulto , Adolescente , Vírus da Influenza B/efeitos dos fármacos , Idoso , Lactente , Adulto Jovem , Vírus da Influenza A/efeitos dos fármacos , Dióxido de Enxofre/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Recém-Nascido , Monitoramento AmbientalRESUMO
In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against highly pathogenic avian influenza viruses (HPAIVs) both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against HPAIV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.
Assuntos
Antivirais , Sinergismo Farmacológico , Vírus da Influenza A , Oseltamivir , Pirazinas , Proteínas Virais , Replicação Viral , Oseltamivir/farmacologia , Oseltamivir/análogos & derivados , Animais , Antivirais/farmacologia , Humanos , Replicação Viral/efeitos dos fármacos , Pirazinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Embrião de Galinha , Proteínas Virais/metabolismo , Proteínas Virais/antagonistas & inibidores , Amidas/farmacologia , Dibenzotiepinas/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Zanamivir/farmacologia , Triazinas/farmacologia , Piridonas/farmacologia , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Morfolinas/farmacologia , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Cães , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Linhagem Celular , Células Madin Darby de Rim CaninoRESUMO
Since 2019, COVID-19 has been raging around the world. Respiratory viral infectious diseases such as influenza and respiratory syncytial virus (RSV) infection are also prevalent, with influenza having the ability to cause seasonal pandemics. While vaccines and antiviral drugs are available to prevent and treat disease, herbal extracts would be another option. This study investigated the inhibitory effects of extracts of Echinacea purpurea (EP) and Ganoderma lucidum (G. lucidum) and the advanced G. lucidum drink (AG) on influenza A/B viruses. To determine whether EP and G. lucidum extracts enhance cell immunity and thus prevent virus infection or act to directly suppress viruses, cell survival and hemagglutination (HA) assays were used in this study. Cells were treated with samples at different concentrations (each sample concentration was tested from the highest non-cytotoxic concentration) and incubated with influenza A/B for 24 h, with the results showing that both G. lucidum and EP extracts and mixtures exhibited the ability to enhance cell survival against viruses. In the HA assay, AG and EP extract showed good inhibitory effect on influenza A/B viruses. All of the samples demonstrated an improvement of the mitochondrial membrane potential and improved resistance to influenza A/B virus infection. EP and G. lucidum extracts at noncytotoxic concentrations increased cell viability, but only AG and EP extract directly decreased influenza virus titers. In conclusion, results indicate the ability of EP and G. lucidum extract to prevent viruses from entering cells by improving cell viability and mitochondrial dysfunction and EP extract showed direct inhibition on viruses and prevented viral infection at post-infection strategy.
Assuntos
Antivirais , Sobrevivência Celular , Echinacea , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana , Extratos Vegetais , Reishi , Reishi/química , Vírus da Influenza B/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Echinacea/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Vírus da Influenza A/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , CãesRESUMO
This retrospective cohort study analyzed data from a Japanese health insurance database to assess the effectiveness of baloxavir (n = 4822) for preventing severe events compared with oseltamivir (n = 10,523) in patients with influenza B. The primary endpoint was hospitalization incidence (Days 2-14). The secondary endpoints included intravenous antibacterial drug use, pneumonia hospitalization, heart failure hospitalization, inhalational oxygen requirement, and use of other anti-influenza drugs. The hospitalization incidence was significantly lower with baloxavir (0.15% vs. 0.37%; risk ratio: 2.48, 95% confidence interval: 1.13-5.43). Pneumonia and additional anti-influenza therapy were also less frequent with baloxavir, thus supporting its use. Trial Registration: UMIN Clinical Trials Registry Study ID: UMIN000051382.
Assuntos
Antivirais , Dibenzotiepinas , Vírus da Influenza B , Influenza Humana , Morfolinas , Oseltamivir , Pacientes Ambulatoriais , Piridonas , Triazinas , Humanos , Influenza Humana/tratamento farmacológico , Dibenzotiepinas/uso terapêutico , Oseltamivir/uso terapêutico , Antivirais/uso terapêutico , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Adulto , Piridonas/uso terapêutico , Morfolinas/uso terapêutico , Triazinas/uso terapêutico , Idoso , Vírus da Influenza B/efeitos dos fármacos , Adulto Jovem , Adolescente , Hospitalização/estatística & dados numéricos , Criança , Piridinas/uso terapêutico , Japão/epidemiologia , Pré-Escolar , Resultado do Tratamento , Lactente , Idoso de 80 Anos ou maisRESUMO
In a bioprospection for new antivirals, we tested nonribosomally biosynthesized polypeptide antibiotics in MDCK II cells for their actions on influenza A and B viruses (IAV/IBV). Only tolypin, a mixture of closely related 16-residue peptaibiotics from the fungus Tolypocladium inflatum IE 1897, showed promising activity. It was selected for further investigation and structural characterization by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HR-MS/MS) and ultrahigh performance liquid chromatography coupled to in-source collision-induced dissociation tandem mass spectrometry (UHPLC-isCID-HR-MS/MS), revealing 12 partially co-eluting individual peptides that were fully sequenced. Since tolypin-related efrapeptins are potent inhibitors of F1/Fo-ATPase, we screened tolypin for its toxicity against MDCK II cells and larvae of the greater wax moth Galleria mellonella. We found that a nontoxic concentration of tolypin (1 µg/mL) reduced the titer of two IBV strains by 4-5 log values, and that of an H3N2 strain by 1-2 log values, but the H1N1pdm strain was not affected. The higher concentrations of tolypin were cytostatic to MDCK II cells, shifted their metabolism from oxidative phosphorylation to glycolysis, and induced paralysis in G. mellonella, supporting the inhibition of F1/Fo-ATPase as the mode of action. Our results lay the foundations for future work to investigate the interplay between viral replication and cellular energy metabolism, as well as the development of drugs that target host factors.
Assuntos
Antivirais , Vírus da Influenza B , Animais , Antivirais/farmacologia , Antivirais/química , Cães , Células Madin Darby de Rim Canino , Vírus da Influenza B/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Mariposas/virologia , Vírus da Influenza A/efeitos dos fármacos , Espectrometria de Massas em Tandem , Hypocreales/química , Relação Estrutura-Atividade , Larva/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Peptaibols/farmacologia , Peptaibols/química , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Relação Dose-Resposta a Droga , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacosRESUMO
We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012-2013 and 2019-2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.
Assuntos
Antivirais , Dibenzotiepinas , Febre , Guanidinas , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana , Morfolinas , Oseltamivir , Piranos , Piridonas , Ácidos Siálicos , Triazinas , Zanamivir , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Criança , Zanamivir/uso terapêutico , Zanamivir/análogos & derivados , Zanamivir/farmacologia , Triazinas/uso terapêutico , Triazinas/farmacologia , Guanidinas/uso terapêutico , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Piridonas/uso terapêutico , Dibenzotiepinas/uso terapêutico , Japão , Feminino , Masculino , Pré-Escolar , Oseltamivir/uso terapêutico , Febre/tratamento farmacológico , Febre/virologia , Adolescente , Morfolinas/uso terapêutico , Lactente , Estações do Ano , Tiepinas/uso terapêutico , Tiepinas/farmacologia , Oxazinas/uso terapêutico , Fatores de Tempo , Benzoxazinas/uso terapêuticoRESUMO
The most widely used class of antivirals available for Influenza treatment are the neuraminidase inhibitors (NAI) Oseltamivir and Zanamivir. However, amino acid (AA) substitutions in the neuraminidase may cause reduced inhibition or high antiviral resistance. In Mexico, the current state of knowledge about NAI susceptibility is scarce, in this study we report the results of 14 years of Influenza surveillance by phenotypic and genotypic methods. A total of 255 isolates were assessed with the NAI assay, including Influenza A(H1N1)pdm09, A(H3N2) and Influenza B (IBV). Furthermore, 827 sequences contained in the GISAID platform were analyzed in search of relevant mutations.Overall, five isolates showed highly reduced inhibition or reduced inhibition to Oseltamivir, and two showed reduced inhibition to Zanamivir in the NAI assays. Additionally, five A(H1N1)pdm09 sequences from the GISAID possessed AA substitutions associated to reduced inhibition to Oseltamivir and none to Zanamivir. Oseltamivir resistant A(H1N1)pdm09 harbored the H275Y mutation. No genetic mutations were identified in Influenza A(H3N2) and IBV. Overall, these results show that in Mexico the rate of NAI resistance is low (0.6%), but it is essential to continue the Influenza surveillance in order to understand the drug susceptibility of circulating strains.
Assuntos
Antivirais , Farmacorresistência Viral , Vírus da Influenza B , Influenza Humana , Neuraminidase , Oseltamivir , Zanamivir , Farmacorresistência Viral/genética , Antivirais/farmacologia , México/epidemiologia , Humanos , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Influenza Humana/virologia , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Oseltamivir/farmacologia , Zanamivir/farmacologia , Neuraminidase/genética , Neuraminidase/antagonistas & inibidores , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Mutação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Adulto , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Adolescente , Criança , Substituição de Aminoácidos , Adulto Jovem , Pessoa de Meia-Idade , Feminino , Pré-Escolar , Genótipo , Masculino , Idoso , Testes de Sensibilidade Microbiana , Proteínas Virais/genéticaRESUMO
In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.
Assuntos
Antivirais/síntese química , Metionina/química , Tiadiazóis/química , Antivirais/química , Antivirais/farmacologia , Desenho de Fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Internalização do Vírus/efeitos dos fármacosRESUMO
Influenza viruses are responsible for contagious respiratory illnesses in humans and cause seasonal epidemics and occasional pandemics worldwide. Previously, we identified a quinolinone derivative PA-49, which inhibited the influenza virus RNA-dependent RNA polymerase (RdRp) by targeting PA-PB1 interaction. This paper reports the structure optimization of PA-49, which resulted in the identification of 3-((dibenzylamino)methyl)quinolinone derivatives with more potent anti-influenza virus activity. During the optimization, the hit compound 89, which was more active than PA-49, was identified. Further optimization and scaffold hopping of 89 led to the most potent compounds 100 and a 1,8-naphthyridinone derivative 118, respectively. We conclusively determined that compounds 100 and 118 suppressed the replication of influenza virus and exhibited anti-influenza virus activity against both influenza virus types A and B in the range of 50% effective concentration (EC50) = 0.061-0.226 µM with low toxicity (50% cytotoxic concentration (CC50) >10 µM).
Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/enzimologia , Animais , Antivirais/química , Antivirais/toxicidade , Linhagem Celular , Cães , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Células Madin Darby de Rim Canino , Modelos Moleculares , Simulação de Acoplamento Molecular , Relação Estrutura-AtividadeRESUMO
It is difficult to match annual vaccines against the exact influenza strain that is spreading in any given flu season. Owing to the emergence of drug-resistant viral strains, new approaches for treating influenza are needed. Euglena gracilis (hereinafter Euglena), microalga, used as functional foods and supplements, have been shown to alleviate symptoms of influenza virus infection in mice. However, the mechanism underlying the inhibitory action of microalgae against the influenza virus is unknown. Here, we aimed to study the antiviral activity of Euglena extract against the influenza virus and the underlying action mechanism using Madin-Darby canine kidney (MDCK) cells. Euglena extract strongly inhibited infection by all influenza virus strains examined, including those resistant to the anti-influenza drugs oseltamivir and amantadine. A time-of-addition assay revealed that Euglena extract did not affect the cycle of virus replication, and cell pretreatment or prolonged treatment of infected cells reduced the virus titer. Thus, Euglena extract may activate the host cell defense mechanisms, rather than directly acting on the influenza virus. Moreover, various minerals, mainly zinc, in Euglena extract were found to be involved in the antiviral activity of the extract. In conclusion, Euglena extract could be a potent agent for preventing and treating influenza.
Assuntos
Antivirais , Misturas Complexas/farmacologia , Euglena , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza B/crescimento & desenvolvimento , Animais , Cães , Euglena/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos , Zinco/análise , Acetato de Zinco/farmacologiaRESUMO
To suppress serious influenza infections in persons showing insufficient protection from the vaccines, antiviral drugs are of vital importance. There is a need for novel agents with broad activity against influenza A (IAV) and B (IBV) viruses and with targets that differ from those of the current antivirals. We here report a new small molecule influenza virus inhibitor referred to as CPD A (chemical name: N-(pyridin-3-yl)thiophene-2-carboxamide). In an influenza virus minigenome assay, this non-nucleoside compound inhibited RNA synthesis of IAV and IBV with EC50 values of 2.3 µM and 2.6 µM, respectively. Robust in vitro activity was noted against a broad panel of IAV (H1N1 and H3N2) and IBV strains, with a median EC50 value of 0.20 µM, which is 185-fold below the 50% cytotoxic concentration. The action point in the viral replication cycle was located between 1 and 5 h p.i., showing a similar profile as ribavirin. Like this nucleoside analogue, CPD A was shown to cause strong depletion of the cellular GTP pool and, accordingly, its antiviral activity was antagonized when this pool was restored with exogenous guanosine. This aligns with the observed inhibition in a cell-based IMP dehydrogenase (IMPDH) assay, which seems to require metabolic activation of CPD A since no direct inhibition was seen in an enzymatic IMPDH assay. The combination of CPD A with ribavirin, another IMPDH inhibitor, proved strongly synergistic. To conclude, we established CPD A as a new inhibitor of influenza A and B virus replication and RNA synthesis, and support the potential of IMPDH inhibitors for influenza therapy with acceptable safety profile.
Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Ribavirina/farmacologia , Linhagem Celular , Sinergismo Farmacológico , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A/classificação , Influenza Humana/tratamento farmacológicoRESUMO
Influenza viruses cause respiratory tract infections and substantial health concerns. Infection may result in mild to severe respiratory disease associated with morbidity and some mortality. Several anti-influenza drugs are available, but these agents target viral components and are susceptible to drug resistance. There is a need for new antiviral drug strategies that include repurposing of clinically approved drugs. Drugs that target cellular machinery necessary for influenza virus replication can provide a means for inhibiting influenza virus replication. We used RNA interference screening to identify key host cell genes required for influenza replication, and then FDA-approved drugs that could be repurposed for targeting host genes. We examined the effects of Clopidogrel and Triamterene to inhibit A/WSN/33 (EC50 5.84 uM and 31.48 uM, respectively), A/CA/04/09 (EC50 6.432 uM and 3.32 uM, respectively), and B/Yamagata/16/1988 (EC50 0.28 uM and 0.11 uM, respectively) replication. Clopidogrel and Triamterene provide a druggable approach to influenza treatment across multiple strains and subtypes.
Assuntos
Antivirais/farmacologia , Clopidogrel/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Triantereno/farmacologia , Células A549 , Animais , Cães , Reposicionamento de Medicamentos , Humanos , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacosRESUMO
Influenza viruses cause significant morbidity and mortality worldwide. Long-term or frequent use of approved anti-influenza agents has resulted in drug-resistant strains, thereby necessitating the discovery of new drugs. In this study, we found aprotinin, a serine protease inhibitor, as an anti-influenza candidate through screening of compound libraries. Aprotinin has been previously reported to show inhibitory effects on a few influenza A virus (IAV) subtypes (e.g., seasonal H1N1 and H3N2). However, because there were no reports of its inhibitory effects on the other types of influenza viruses, we investigated the inhibitory effects of aprotinin in vitro on a wide range of influenza viruses, including avian and oseltamivir-resistant influenza virus strains. Our cell-based assay showed that aprotinin had inhibitory effects on seasonal human IAVs (H1N1 and H3N2 subtypes), avian IAVs (H5N2, H6N5, and H9N2 subtypes), an oseltamivir-resistant IAV, and a currently circulating influenza B virus. We have also confirmed its activity in mice infected with a lethal dose of influenza virus, showing a significant increase in survival rate. Our findings suggest that aprotinin has the capacity to inhibit a wide range of influenza virus subtypes and should be considered for development as a therapeutic agent against influenza.
Assuntos
Antivirais/farmacologia , Aprotinina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Infecções por Orthomyxoviridae/tratamento farmacológico , Inibidores de Serina Proteinase/farmacologia , Animais , Linhagem Celular , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H5N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H5N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
While vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/patogenicidade , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/patogenicidade , Vacinas contra Influenza/genética , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/virologia , Estações do Ano , Vacinas de Partículas Semelhantes a Vírus/imunologiaRESUMO
In this study, we have introduced newly synthesized substituted benzothiazole based berberine derivatives that have been analyzed for their in vitro and in silico biological properties. The activity towards various kinds of influenza virus strains by employing the cytopathic effect (CPE) and sulforhodamine B (SRB) assay. Several berberine-benzothiazole derivatives (BBDs), such as BBD1, BBD3, BBD4, BBD5, BBD7, and BBD11, demonstrated interesting anti-influenza virus activity on influenza A viruses (A/PR/8/34, A/Vic/3/75) and influenza B viral (B/Lee/40, and B/Maryland/1/59) strain, respectively. Furthermore, by testing neuraminidase activity (NA) with the neuraminidase assay kit, it was identified that BBD7 has potent neuraminidase activity. The molecular docking analysis further suggests that the BBD1-BBD14 compounds' antiviral activity may be because of interaction with residues of NA, and the same as in oseltamivir.
Assuntos
Benzotiazóis/farmacologia , Berberina/farmacologia , Simulação de Acoplamento Molecular , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzotiazóis/uso terapêutico , Berberina/análogos & derivados , Berberina/uso terapêutico , Linhagem Celular , Efeito Citopatogênico Viral , Cães , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/enzimologia , Infecções por Orthomyxoviridae/enzimologia , Proteínas Virais/antagonistas & inibidoresRESUMO
Baloxavir marboxil (BXM) is an FDA-approved antiviral prodrug for the treatment of influenza A and B infection and postexposure prophylaxis. The active form, baloxavir acid (BXA), targets the cap-snatching endonuclease (PA) of the influenza virus polymerase complex. The nuclease activity delivers the primer for transcription, and previous reports have shown that BXA blocks the nuclease activity with high potency. However, biochemical studies on the mechanism of action are lacking. Structural data have shown that BXA chelates the two divalent metal ions at the active site, like inhibitors of the human immunodeficiency virus type 1 (HIV-1) integrase or ribonuclease (RNase) H. Here we studied the mechanisms underlying the high potency of BXA and how the I38T mutation confers resistance to the drug. Enzyme kinetics with the recombinant heterotrimeric enzyme (FluB-ht) revealed characteristics of a tight binding inhibitor. The apparent inhibitor constant (Kiapp) is 12 nM, while the I38T mutation increased Kiapp by â¼18-fold. Order-of-addition experiments show that a preformed complex of FluB-ht, Mg2+ ions and BXA is required to observe inhibition, which is consistent with active site binding. Conversely, a preformed complex of FluB-ht and RNA substrate prevents BXA from accessing the active site. Unlike integrase inhibitors that interact with the DNA substrate, BXA behaves like RNase H inhibitors that compete with the nucleic acid at the active site. The collective data support the conclusion that BXA is a tight binding inhibitor and the I38T mutation diminishes these properties.
Assuntos
Dibenzotiepinas/farmacologia , Endonucleases/antagonistas & inibidores , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Morfolinas/farmacologia , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Domínio Catalítico , Endonucleases/metabolismo , Humanos , Vírus da Influenza B/enzimologia , Vírus da Influenza B/isolamento & purificação , Influenza Humana/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismoRESUMO
Influenza A virus (IAV) causes great morbidity and mortality worldwide every year. However, there are only a limited number of drugs clinically available against IAV infection. Further, emergence of drug-resistant strains can render those drugs ineffective. Thus there is an unmet medical need to develop new anti-influenza agents. In this study, we show that punicalagin from plants possesses strong anti-influenza activity with a low micromolar IC50 value in tissue culture. Using a battery of bioassays such as single-cycle replication assay, neuraminidase (NA) inhibition assay, and virus yield reduction assay, we demonstrate that the primary mechanism of action (MOA) of punicalagin is the NA-mediated viral release. Moreover, punicalagin can inhibit replication of different strains of influenza A and B viruses, including oseltamivir-resistant virus (NA/H274Y), indicating that punicalagin is a broad spectrum antiviral against both IAV and IBV. Further, although punicalagin targets NA like oseltamivir, it has a different MOA. These results suggest that punicalagin is an influenza NA inhibitor that may be further developed as a novel antiviral against influenza viruses.