Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Chem ; 92(24): 15693-15698, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232116

RESUMO

The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM proteins and characterize their post-translational modifications, but ECM proteomics remains challenging owing to the extremely low solubility of the ECM. Herein, enabled by effective solubilization of ECM proteins using our recently developed photocleavable surfactant, Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote the study of ECM biology.


Assuntos
Compostos Azo/química , Matriz Extracelular/química , Proteínas de Neoplasias/análise , Proteômica , Tensoativos/química , Animais , Antígenos Transformantes de Poliomavirus/química , Matriz Extracelular/metabolismo , Vírus do Tumor Mamário do Camundongo/química , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/metabolismo , Processos Fotoquímicos , Solubilidade
2.
Virology ; 535: 272-278, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31357166

RESUMO

The late (L) domain sequence used by mouse mammary tumor virus (MMTV) remains undefined. Similar to other L domain-containing proteins, MMTV p8 and p14NC proteins are monoubiquitinated, suggesting L domain function. Site-directed mutagenesis of p8, PLPPV, and p14NC, PLPPL, sequences in MMTV Gag revealed a requirement only for the PLPPV sequence in virion release in a position-dependent manner. Electron microscopy of a defective Gag mutant confirmed an L domain budding defect morphology. The equine infectious anemia virus (EIAV) YPDL core L domain sequence and PLPPV provided L domain function in reciprocal MMTV and EIAV Gag exchange mutants, respectively. Alanine scanning of the PLPPV sequence revealed a strict requirement for the valine residue but only minor requirements for any one of the other residues. Thus, PLPPV provides MMTV L domain function, representing a fourth type of retroviral L domain that enables MMTV Gag proteins to co-opt cellular budding pathways for release.


Assuntos
Motivos de Aminoácidos , Produtos do Gene gag/metabolismo , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Liberação de Vírus , Animais , Produtos do Gene gag/química , Produtos do Gene gag/genética , Células HEK293 , Humanos , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Microscopia Eletrônica
3.
RNA Biol ; 15(8): 1047-1059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29929424

RESUMO

Packaging the mouse mammary tumor virus (MMTV) genomic RNA (gRNA) requires the entire 5' untranslated region (UTR) in conjunction with the first 120 nucleotides of the gag gene. This region includes several palindromic (pal) sequence(s) and stable stem loops (SLs). Among these, stem loop 4 (SL4) adopts a bifurcated structure consisting of three stems, two apical loops, and an internal loop. Pal II, located in one of the apical loops, mediates gRNA dimerization, a process intricately linked to packaging. We thus hypothesized that the bifurcated SL4 structure could constitute the major gRNA packaging determinant. To test this hypothesis, the two apical loops and the flanking sequences forming the bifurcated SL4 were individually mutated. These mutations all had deleterious effects on gRNA packaging and propagation. Next, single and compensatory mutants were designed to destabilize then recreate the bifurcated SL4 structure. A structure-function analysis using bioinformatics predictions and RNA chemical probing revealed that mutations that led to the loss of the SL4 bifurcated structure abrogated RNA packaging and propagation, while compensatory mutations that recreated the native SL4 structure restored RNA packaging and propagation to wild type levels. Altogether, our results demonstrate that SL4 constitutes the principal packaging determinant of MMTV gRNA. Our findings further suggest that SL4 acts as a structural switch that can not only differentiate between RNA for translation versus packaging/dimerization, but its location also allows differentiation between spliced and unspliced RNAs during gRNA encapsidation.


Assuntos
Dimerização , Vírus do Tumor Mamário do Camundongo/metabolismo , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/metabolismo , Montagem de Vírus , Animais , Genômica , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Conformação de Ácido Nucleico , RNA Viral/genética
4.
Comput Biol Chem ; 74: 86-93, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567490

RESUMO

Zinc fingers are small protein domains in which zinc plays a structural role, contributing to the stability of the zinc-peptide complex. Zinc fingers are structurally diverse and are present in proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation, and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins, and small molecules. In this study, we investigated the structural properties, in solution, of the proximal and distal zinc knuckles of the nucleocapsid (NC) protein from the mouse mammary tumor virus (MMTV) (MMTV NC). For this purpose, we performed a series of molecular dynamics simulations in aqueous solution at 300 K, 333 K, and 348 K. The temperature effect was evaluated in terms of root mean square deviation of the backbone atoms and root mean square fluctuation of the coordinating residue atoms. The stability of the zinc coordination sphere was analyzed based upon the time profile of the interatomic distances between the zinc ions and the chelator atoms. The results indicate that the hydrophobic character of the proximal zinc finger is dominant at 333 K. The low mobility of the coordinating residues suggests that the strong electrostatic effect exerted by the zinc ion on its coordinating residues is not influenced by the increase in temperature. The evolution of the structural parameters of the coordination sphere of the distal zinc finger at 300 K gives us a reasonable picture of the unfolding pathway, as proposed by Bombarda and coworkers (Bombarda et al., 2005), which can predict the binding order of the four conserved ligand-binding residues. Our results support the conclusion that the structural features can vary significantly between the two zinc knuckles of MMTV NC.


Assuntos
Capsídeo/química , Vírus do Tumor Mamário do Camundongo/química , Temperatura , Animais , Camundongos , Simulação de Dinâmica Molecular , Dedos de Zinco
5.
Nature ; 530(7590): 358-61, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887496

RESUMO

Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.


Assuntos
Microscopia Crioeletrônica , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Integrases/química , Integrases/ultraestrutura , Vírus do Tumor Mamário do Camundongo/enzimologia , Multimerização Proteica , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/química , Integrases/metabolismo , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/ultraestrutura , Modelos Moleculares , Estrutura Quaternária de Proteína , Spumavirus/química , Spumavirus/enzimologia , Integração Viral
6.
Retrovirology ; 13: 2, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728401

RESUMO

BACKGROUND: Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated. RESULTS: Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release. CONCLUSIONS: Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/fisiologia , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ratos
7.
Proc Natl Acad Sci U S A ; 113(5): 1214-9, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787910

RESUMO

The conformation of DNA bound in nucleosomes depends on the DNA sequence. Questions such as how nucleosomes are positioned and how they potentially bind sequence-dependent nuclear factors require near-atomic resolution structures of the nucleosome core containing different DNA sequences; despite this, only the DNA for two similar α-satellite sequences and a sequence (601) selected in vitro have been visualized bound in the nucleosome core. Here we report the 2.6-Å resolution X-ray structure of a nucleosome core particle containing the DNA sequence of nucleosome A of the 3'-LTR of the mouse mammary tumor virus (147 bp MMTV-A). To our knowledge, this is the first nucleosome core particle structure containing a promoter sequence and crystallized from Mg(2+) ions. It reveals sequence-dependent DNA conformations not seen previously, including kinking into the DNA major groove.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Vírion/química , Sequência de Bases , Cristalografia por Raios X , DNA Viral/genética , Vírus do Tumor Mamário do Camundongo/genética , Modelos Moleculares , Dados de Sequência Molecular , Sequências Repetidas Terminais
8.
J Virol ; 87(4): 1937-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221553

RESUMO

The structure of the transmembrane subunit (TM) of the retroviral envelope glycoprotein (Env) is highly conserved among most retrovirus genera and includes a pair of cysteines that forms an intramolecular disulfide loop within the ectodomain. Alpha-, gamma-, and deltaretroviruses have a third cysteine, adjacent to the loop, which forms a disulfide bond between TM and the surface subunit (SU) of Env, while lentiviruses, which have noncovalently associated subunits, lack this third cysteine. The Betaretrovirus genus includes Jaagsiekte sheep retrovirus (JSRV) and mouse mammary tumor virus (MMTV), as well as many endogenous retroviruses. Envelope subunit association had not been characterized in the betaretroviruses, but lack of a third cysteine in the TM ectodomain suggested noncovalently associated subunits. We tested the Env proteins of JSRV and MMTV, as well as human endogenous retrovirus K (HERV-K)108--a betaretrovirus-like human endogenous retrovirus--for intersubunit bonding and found that, as in the lentiviruses, the Env subunits lack an intersubunit disulfide bond. Since these results suggest that the number of cysteines in the TM loop region readily distinguishes between covalent and noncovalent structure, we surveyed endogenous retroviral TM sequences in the genomes of vertebrates represented in public databases and found that (i) retroviruses with noncovalently associated subunits have been present during all of anthropoid evolution and (ii) the noncovalent env motif is limited to mammals, while the covalent type is found among five vertebrate classes. We discuss implications of these findings for retroviral evolution, cross-species transmissions, and recombination events involving the env gene.


Assuntos
Retrovirus Endógenos/química , Retrovirus Jaagsiekte de Ovinos/química , Vírus do Tumor Mamário do Camundongo/química , Proteínas do Envelope Viral/química , Animais , Biologia Computacional , Cisteína/química , Cisteína/genética , Dissulfetos , Retrovirus Endógenos/genética , Humanos , Retrovirus Jaagsiekte de Ovinos/genética , Vírus do Tumor Mamário do Camundongo/genética , Ligação Proteica , Subunidades Proteicas/química
9.
J Virol ; 86(1): 214-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072771

RESUMO

Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.


Assuntos
Vírus do Tumor Mamário do Camundongo/metabolismo , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Infecções por Retroviridae/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Degradação Associada com o Retículo Endoplasmático , Humanos , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Infecções por Retroviridae/metabolismo , Proteínas do Envelope Viral/genética
10.
J Biol Chem ; 285(37): 28683-90, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20628060

RESUMO

DNA repair takes place in the context of chromatin. Previous studies showed that histones impair base excision repair (BER) of modified bases at both the excision and synthesis steps. We examined BER of uracil in a glucocorticoid response element (GRE) complexed with the glucocorticoid receptor DNA binding domain (GR-DBD). Five substrates were designed, each containing a unique C-->U substitution within the mouse mammary tumor virus promoter, one located within each GRE half-site and the others located outside the GRE. To examine distinct steps of BER, DNA cleavage by uracil-DNA glycosylase and Ape1 endonuclease was used to assess initiation, dCTP incorporation by DNA polymerase (pol) beta was used to measure repair synthesis, and DNA ligase I was used to seal the nick. For uracil sites within the GRE, there was a reduced rate of uracil-DNA glycosylase/Ape1 activity following GR-DBD binding. Cleavage in the right half-site, with higher GR-DBD binding affinity, was reduced approximately 5-fold, whereas cleavage in the left half-site was reduced approximately 3.8-fold. Conversely, uracil-directed cleavage outside the GRE was unaffected by GR-DBD binding. Surprisingly, there was no reduction in the rate of pol beta synthesis or DNA ligase activity on any of the fragments bound to GR-DBD. Indeed, we observed a small increase ( approximately 1.5-2.2-fold) in the rate of pol beta synthesis at uracil residues in both the GRE and one site six nucleotides downstream. These results highlight the potential for both positive and negative impacts of DNA-transcription factor binding on the rate of BER.


Assuntos
Reparo do DNA/fisiologia , DNA Viral/química , Vírus do Tumor Mamário do Camundongo/química , Receptores de Glucocorticoides , Elementos de Resposta , Animais , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Viral/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(41): 17349-54, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805055

RESUMO

Understanding how RNA molecules navigate their rugged folding landscapes holds the key to describing their roles in a variety of cellular functions. To dissect RNA folding at the molecular level, we performed simulations of three pseudoknots (MMTV and SRV-1 from viral genomes and the hTR pseudoknot from human telomerase) using coarse-grained models. The melting temperatures from the specific heat profiles are in good agreement with the available experimental data for MMTV and hTR. The equilibrium free energy profiles, which predict the structural transitions that occur at each melting temperature, are used to propose that the relative stabilities of the isolated helices control their folding mechanisms. Kinetic simulations, which corroborate the inferences drawn from the free energy profiles, show that MMTV folds by a hierarchical mechanism with parallel paths, i.e., formation of one of the helices nucleates the assembly of the rest of the structure. The SRV-1 pseudoknot, which folds in a highly cooperative manner, assembles in a single step in which the preformed helices coalesce nearly simultaneously to form the tertiary structure. Folding occurs by multiple pathways in the hTR pseudoknot, the isolated structural elements of which have similar stabilities. In one of the paths, tertiary interactions are established before the formation of the secondary structures. Our work shows that there are significant sequence-dependent variations in the folding landscapes of RNA molecules with similar fold. We also establish that assembly mechanisms can be predicted using the stabilities of the isolated secondary structures.


Assuntos
Conformação de Ácido Nucleico , RNA Viral/química , RNA/química , Linhagem Celular Tumoral , Simulação por Computador , Genoma Viral , Temperatura Alta , Humanos , Cinética , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/enzimologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/enzimologia , Vírus dos Macacos de Mason-Pfizer/genética , Modelos Moleculares , Conformação Molecular , Desnaturação de Ácido Nucleico , RNA Viral/metabolismo , Telomerase/metabolismo , Termodinâmica
12.
PLoS One ; 4(2): e4537, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19225568

RESUMO

Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+)ER(-)PR(-)CD24(high)CD49f(low) profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+) basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+)/p63(+) subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.


Assuntos
Proteínas Hedgehog/metabolismo , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Proteína Wnt1/fisiologia , beta Catenina/fisiologia , Animais , Neoplasias Mamárias Animais/etiologia , Vírus do Tumor Mamário do Camundongo/química , Camundongos
13.
Biochemistry ; 47(36): 9627-35, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702521

RESUMO

Nucleosomes are a major impediment to regulatory factor activities and therefore to the operation of genomic processes in eukaryotes. One suggested mechanism for overcoming in vivo nucleosomal repression is factor-mediated removal of H2A/H2B from nucleosomes. Using nucleosomes labeled internally with FRET fluorophores, we previously observed significant, DNA sequence-dependent variation in stability and dynamics under conditions (subnanomolar concentrations) reported to produce H2A/H2B release from nucleosomes. Here, the same analytical approaches are repeated using 5S and MMTV-B nucleosomes containing FRET labels that monitor the terminal regions. The results show that stability and dynamics vary significantly within the nucleosome; terminally labeled constructs report significantly reduced stability and enhanced DNA dynamics compared to internally labeled constructs. The data also strongly support previous suggestions (1) that subnanomolar concentrations cause H2A/H2B release from nucleosomes, including the 5S, and (2) that stabilities in the internal regions of 5S and two promoter-derived nucleosomes (MMTV-B, GAL10) differ. Sequence-dependent nucleosome stability/dynamics differences could produce inherent variations in the accessibility of histone-associated DNA in vivo. Such intrinsic variation could also provide a mechanism for producing enhanced effects on specific nucleosomes by processes affecting large chromatin regions, thus facilitating the localized targeting of alterations to nucleosomes on crucial regulatory sequences. The results demonstrate clearly the importance of studying physiologically relevant nucleosomes.


Assuntos
DNA Viral/química , Corantes Fluorescentes/química , Histonas/química , Nucleossomos/química , Regiões Promotoras Genéticas , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , DNA Viral/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Histonas/metabolismo , Humanos , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
15.
J Virol ; 78(5): 2606-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14963166

RESUMO

Cryoelectron microscopy of Mouse mammary tumor virus, a Betaretrovirus, provided information about glycoprotein structure and core formation. The virions showed the broad range of diameters typical of retroviruses. Betaretroviruses assemble cytoplasmically, so the broad size range cannot reflect the use of the plasma membrane as a platform for assembly.


Assuntos
Microscopia Crioeletrônica , Vírus do Tumor Mamário do Camundongo/ultraestrutura , Linhagem Celular , Membrana Celular/ultraestrutura , Membrana Celular/virologia , HIV-1/química , HIV-1/crescimento & desenvolvimento , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/ultraestrutura , Montagem de Vírus
16.
J Virol ; 77(19): 10468-78, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12970432

RESUMO

Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe(40) to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe(40) residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation.


Assuntos
Vírus do Tumor Mamário do Camundongo/química , Receptores da Transferrina/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias da Mama/virologia , Linhagem Celular , Regulação para Baixo , Vírus da Leucemia Murina de Friend/química , Heparina/metabolismo , Humanos , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo
17.
Virology ; 313(1): 22-32, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12951018

RESUMO

We have previously described two nucleolar proteins, named p14 and p21, in MMTV-induced T cell lymphomas. These proteins were identified by a monoclonal antibody (M-66) generated from a nontumorigenic, immunogenic variant of S49 T cell lymphoma. While p14 was common to several MMTV-derived T cell lymphomas, p21 was found only in highly tumorigenic variants of S49 cells. Here we report that p14 is the leader peptide of the MMTV env precursor. The epitope recognized by M-66 contains a putative nuclear localization signal. Actinomycin D was found to induce redistribution of p14/p21 from the nucleolus to the nucleoplasm. p14 coimmunoprecipitated and colocalized with the cellular protein, B23. Association with B23 has been previously reported for other auxiliary nucleolar retroviral proteins, such as Rev (HIV) and Rex (HTLV).


Assuntos
Nucléolo Celular/metabolismo , Linfoma de Células T/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Dactinomicina/farmacologia , Fosfatases de Especificidade Dupla , Mapeamento de Epitopos , Vírus do Tumor Mamário do Camundongo/química , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/imunologia , Sinais Direcionadores de Proteínas , Inibidores da Síntese de Proteínas/farmacologia , Células Tumorais Cultivadas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
18.
Biopolymers ; 68(4): 557-62, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12666180

RESUMO

Over the past decade a large number of studies have focused attention on the role of nucleosomes as negative and positive regulators of specific nuclear functions. Due to the lack of an analytical method to determine the higher order conformation of the nucleosomal arrays that encompass specific genetic loci (e.g., promoters, enhancers), research emphasis has mostly been centered on chromatin remodeling and histone posttranslational modifications. We have recently developed an agarose gel electrophoresis method that permits us to analyze the higher order structure of specific in vivo assembled chromatin fragments. After calibration using a well-defined in vitro system, we have been able to experimentally determine the size, shape, and conformational flexibility of the Mouse Mammary Tumor Virus long-terminal repeat promoter region in its repressed and activated states. These studies pave the way for widespread analyses of the higher order structure of specific, functionally important chromosomal loci, and in so doing enhance our understanding of the roles that the higher order structure of chromatin play in genome regulations.


Assuntos
Genoma , Regiões Promotoras Genéticas/genética , Sequências Repetidas Terminais , Animais , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , Eletroforese em Gel de Ágar/métodos , Vírus do Tumor Mamário do Camundongo/química , Camundongos , Conformação de Ácido Nucleico
19.
J Biol Chem ; 277(7): 4918-24, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11733502

RESUMO

Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.


Assuntos
Antígenos Nucleares , DNA Helicases , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , HIV-1/genética , Vírus do Tumor Mamário do Camundongo/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Transcrição Gênica , Replicação Viral , Células 3T3 , Animais , Sequência de Bases , Sítios de Ligação , Células CHO , Linhagem Celular , Núcleo Celular/metabolismo , Cloranfenicol O-Acetiltransferase/metabolismo , Cricetinae , DNA Complementar/metabolismo , Vetores Genéticos , Repetição Terminal Longa de HIV , Humanos , Autoantígeno Ku , Camundongos , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA