Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.244
Filtrar
1.
Virology ; 598: 110193, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096773

RESUMO

This study assesses different IBV vaccination regimens in broiler chickens using commercially available live attenuated GI-23 (Egyptian-VAR2) and GI-1 (H120) vaccines. Vaccines were administered at 1, 14 days of age, or both. The ciliostasis test, following wild-type VAR2 challenge at 28 days of age, indicated that classic H120+VAR2 at one day old followed by the VAR2 vaccine at 14 days of age provided the highest level of protection (89.58%). Similarly, administering VAR2 at 1 day of age and classic H120 at 14 days of age demonstrated substantial protection (85.42%). Conversely, administering only classic H120 and VAR2 at one day old resulted in the lowest protection level (54.17%). Tracheal virus shedding quantification and assessment of trachea and kidney degenerative changes were significantly lower in vaccinated groups compared to the unvaccinated-challenged group. In conclusion, a carefully planned vaccination regimen based on homologous vaccination offers the most effective clinical protection in broiler chickens.


Assuntos
Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/genética , Galinhas/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinação/veterinária , Eliminação de Partículas Virais , Traqueia/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Eficácia de Vacinas
2.
Sci Transl Med ; 16(759): eadi1625, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110777

RESUMO

The recent emergence and rapid response to severe acute respiratory syndrome coronavirus 2 was enabled by prototype pathogen and vaccine platform approaches, driven by the preemptive application of RNA vaccine technology to the related Middle East respiratory syndrome coronavirus. Recently, the National Institutes of Allergy and Infectious Diseases identified nine virus families of concern, eight enveloped virus families and one nonenveloped virus family, for which vaccine generation is a priority. Although RNA vaccines have been described for a variety of enveloped viruses, a roadmap for their use against nonenveloped viruses is lacking. Enterovirus D68 was recently designated a prototype pathogen within the family Picornaviridae of nonenveloped viruses because of its rapid evolution and respiratory route of transmission, coupled with a lack of diverse anti-enterovirus vaccine approaches in development. Here, we describe a proof-of-concept approach using a clinical stage RNA vaccine platform that induced robust enterovirus D68-neutralizing antibody responses in mice and nonhuman primates and prevented upper and lower respiratory tract infections and neurological disease in mice. In addition, we used our platform to rapidly characterize the antigenic diversity within the six genotypes of enterovirus D68, providing the necessary data to inform multivalent vaccine compositions that can elicit optimal breadth of neutralizing responses. These results demonstrate that RNA vaccines can be used as tools in our pandemic-preparedness toolbox for nonenveloped viruses.


Assuntos
Anticorpos Neutralizantes , Enterovirus Humano D , Infecções por Enterovirus , Animais , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Enterovirus Humano D/imunologia , Enterovirus Humano D/genética , Anticorpos Neutralizantes/imunologia , Camundongos , Vacinas Virais/imunologia , Modelos Animais de Doenças , Humanos , Vacinas de mRNA , Anticorpos Antivirais/imunologia , Feminino
4.
Sci Rep ; 14(1): 18522, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122821

RESUMO

One major limitation of effective vaccine delivery is its dependency on a robust cold chain infrastructure. While Vesicular stomatitis virus (VSV) has been demonstrated to be an effective viral vaccine vector for diseases including Ebola, its -70 °C storage requirement is a significant limitation for accessing disadvantaged locations and populations. Previous work has shown thermal stabilization of viral vaccines with a combination of pullulan and trehalose (PT) dried films. To improve the thermal stability of VSV, we optimized PT formulation concentrations and components, as well as drying methodology with enhanced vacuum drying. When formulated in PT films, VSV can be stored for 32 weeks at 4 °C with less than 2 log PFU loss, at 25 °C with 2.5 log PFU loss, and at 37 °C with 3.1 log PFU loss. These results demonstrate a significant advancement in VSV thermal stabilization, decreasing the cold chain requirements for VSV vectored vaccines.


Assuntos
Glucanos , Trealose , Trealose/química , Glucanos/química , Vácuo , Vetores Genéticos , Dessecação/métodos , Vacinas Virais/química , Vesiculovirus/genética , Animais , Temperatura
5.
Trop Anim Health Prod ; 56(7): 226, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093442

RESUMO

Since 2019, Lumpy skin disease (LSD) has suddenly spread in many Asian countries, including India. LSD primarily occurs in cattle. However, recent LSD outbreaks in India have also revealed significant morbidity and production losses in buffaloes. This has raised concerns about the role of buffaloes in the epidemiology and transmission of LSD and necessitates the inclusion of buffaloes in the mass vaccination program for the prevention and control of the disease in the country. However, there is no significant data on the immune response in buffaloes following vaccination with the LSD vaccine. In this study, we evaluated antibody- and cell-mediated immune responses following vaccination with a newly developed live-attenuated LSD vaccine (Lumpi-ProVacInd). The detectable amount of anti-LSDV antibodies was observed at 1-2 months following vaccination, with a peak antibody titer at 3 months. Upon stimulation of the peripheral blood mononuclear cells (PBMCs) with the UV-inactivated LSDV antigen, there was a significant increase in CD8 + T cell counts in vaccinated animals as compared to the unvaccinated animals. Besides, vaccinated animals also showed a significant increase in IFN-γ levels upon antigenic stimulation of their PBMCs with LSDV antigen. In conclusion, the buffaloes also mount a potent antibody- and cell-mediated immune response following vaccination with Lumpi-ProVacInd.


Assuntos
Búfalos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Vacinas Atenuadas , Vacinas Virais , Animais , Búfalos/imunologia , Doença Nodular Cutânea/prevenção & controle , Doença Nodular Cutânea/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vírus da Doença Nodular Cutânea/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Índia , Imunidade Celular , Anticorpos Antivirais/sangue , Vacinação/veterinária , Leucócitos Mononucleares/imunologia , Feminino
6.
Fish Shellfish Immunol ; 152: 109803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096980

RESUMO

Nervous necrosis virus (NNV) capsid protein plays an important role in producing viral particles without any genetic elements. Thus, NNV is a promising candidate for vaccine development and is widely used for constructing vaccines, including DNA, recombinant proteins, and virus-like particles (VLPs). Our study aimed to investigate the potential of NNV capsid protein (NNV) and NNV capsid protein fused to enhanced green fluorescent protein (NNV-EGFP) through VLP formation and whether their application can induce specific antibody responses against certain antigens. We focused on producing DNA and recombinant protein vaccines consisting of the genes for NNV, EGFP, and NNV-EGFP. The approach using NNV-EGFP allowed NNV to act as a carrier or inducer while EGFP was incorporated as part of the capsid protein, thereby enhancing the immune response. In vitro studies demonstrated that all DNA vaccines expressed in HINAE cells resulted in varying protein expression levels, with particularly low levels observed for pNNV and pNNV-EGFP. Consequently, structural proteins derived from HINAE cells could not be observed using transmission electron microscopy (TEM). In contrast, recombinant proteins of NNV and NNV-EGFP were expressed through the Escherichia coli expression system. TEM revealed that rNNV was assembled into VLPs with an approximate size of 30 nm, whereas rNNV-EGFP presented particles ranging from 10 nm to 50 nm in size. For the vaccination test, DNA vaccination marginally induced specific antibody responses in Japanese flounder compared to unvaccinated fish. Meanwhile, NNV and NNV-EGFP recombinant vaccines enhanced a greater anti-NNV antibody response than the others, whereas antibody responses against EGFP were also marginal. These results indicate that NNV capsid protein-based antigens, presenting as particles, play an important role in eliciting a specific anti-NNV antibody response and have the potential to improve fish immune responses.


Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Nodaviridae , Vacinas Virais , Animais , Nodaviridae/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Desenvolvimento de Vacinas , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
7.
Front Immunol ; 15: 1397780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100679

RESUMO

Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.


Assuntos
Gado , Vacinação , Vacinas Virais , Animais , Gado/imunologia , Gado/virologia , Vacinas Virais/imunologia , Vacinação/veterinária , Viroses/prevenção & controle , Viroses/imunologia , Viroses/veterinária , Suínos , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/imunologia , Humanos
8.
Virulence ; 15(1): 2387181, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39101682

RESUMO

Infectious bursal disease (IBD) is a widespread problem in the poultry industry, and vaccination is the primary preventive method. However, moderately virulent vaccines may damage the bursa, necessitating the development of a safe and effective vaccine. The Newcastle disease virus (NDV) has been explored as a vector for vaccine development. In this study, reverse genetic technology was used to obtain three recombinant viruses, namely, rClone30-VP2L (P/M)-chGM-CSF (NP), rClone30-chGM-CSF (P/M)-VP2L (NP), and rClone30-VP2L-chGM-CSF (P/M). Animal experiments showed that the three biological adjuvant bivalent vaccines effectively increased anti-NDV and anti-infectious bursal disease virus (IBDV) titres, enhancing both humoral and cellular immune responses in chickens without leading to any harm. Amongst the three biological adjuvant bivalent vaccines, the rClone30-chGM-CSF (P/M)-VP2L (NP) group had higher levels of anti-NDV antibodies at 14 days after the first immunization and stimulated a greater humoral immune response in 7-10 days. While, the rClone30-VP2L (P/M)-chGM-CSF (NP) group was the most effective in producing a higher level of IBDV antibody response. In conclusion, these three vaccines can induce immune responses more rapidly and effectively, streamline production processes, be cost-effective, and provide a new avenue for the development of Newcastle disease (ND) and IBD bivalent vaccines.


Assuntos
Anticorpos Antivirais , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vacinas Virais/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença Infecciosa da Bursa/genética , Doença de Newcastle/prevenção & controle , Doença de Newcastle/imunologia , Anticorpos Antivirais/sangue , Imunidade Humoral , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas , Imunidade Celular , Vacinação
9.
Can Vet J ; 65(8): 791-801, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091482

RESUMO

Objective: This study compared clinical and immunological responses to coinfection challenge of beef calves mucosally primed and differentially boosted with commercial combination vaccines containing antigens against bovine coronavirus (BCoV), bovine parainfluenza virus Type 3 (BPIV3), and bovine respiratory syncytial virus (BRSV). Animals: Nineteen commercial beef heifers. Procedure: At birth, calves were mucosally (IN) primed with modified-live virus (MLV) vaccines, differentially boosted by injection of either combination MLV (IN-MLV) or inactivated virus (IN-KV) vaccines at a mean age of 44 d, and then challenged by coinfection with BCoV, BPIV3, and BRSV at weaning. Results: Both groups were similarly protected from clinical disease and had anamnestic neutralizing antibody responses to all 3 viruses. The IN-KV group shed more BCoV, and less BPIV3 and BRSV, than the IN-MLV group. Conclusion: These data indicated similar clinical and immunological protection between IN-MLV and IN-KV; however, shed of virus varied. Clinical relevance: Whereas boosting with KV or MLV appeared to have similar efficacy, viral shed differences may affect disease control.


Efficacité comparative des vaccins vivants modifiés et inactivés pour stimuler les réponses au virus respiratoire syncytial bovin, au virus parainfluenza bovin de type 3 et au coronavirus bovin après amorçage via la muqueuse de veaux de boucherie nouveau-nés. Objectif: Cette étude a comparé les réponses cliniques et immunologiques à une co-infection de veaux de boucherie amorcés par voie muqueuse et différentiellement stimulés avec des vaccins combinés commerciaux contenant des antigènes contre le coronavirus bovin (BCoV), le virus parainfluenza bovin de type 3 (BPIV3) et le virus respiratoire syncytial bovin (BRSV). Animaux: Dix-neuf génisses de boucherie commerciales. Procédure: À la naissance, les veaux ont été vaccinés au niveau des muqueuses (IN) avec des vaccins à virus vivants modifiés (MLV), stimulés de manière différentielle par l'injection de vaccins combinés MLV (IN-MLV) ou de virus inactivés (IN-KV) à un âge moyen de 44 jours. puis provoqué par une co-infection avec BCoV, BPIV3 et BRSV au sevrage. Résultats: Les deux groupes étaient protégés de la même manière contre la maladie clinique et présentaient des réponses anamnestiques en anticorps neutralisants contre les 3 virus. Le groupe IN-KV a excrété plus de BCoV et moins de BPIV3 et de BRSV que le groupe IN-MLV. Conclusion: Ces données indiquent une protection clinique et immunologique similaire entre IN-MLV et IN-KV; cependant, l'excrétion du virus variait. Pertinence clinique: Alors que le rappel avec KV ou MLV semble avoir une efficacité similaire, les différences d'excrétion virale peuvent affecter la limitation de la maladie.(Traduit par Dr Serge Messier).


Assuntos
Animais Recém-Nascidos , Doenças dos Bovinos , Coronavirus Bovino , Vírus da Parainfluenza 3 Bovina , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Bovino , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Bovinos , Coronavirus Bovino/imunologia , Vírus da Parainfluenza 3 Bovina/imunologia , Vírus Sincicial Respiratório Bovino/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Doenças dos Bovinos/imunologia , Feminino , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Infecções por Vírus Respiratório Sincicial/veterinária , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Animais Recém-Nascidos/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Anticorpos Antivirais/sangue , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Infecções por Respirovirus/veterinária , Infecções por Respirovirus/prevenção & controle , Infecções por Respirovirus/imunologia , Imunização Secundária/veterinária
10.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126087

RESUMO

Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Animais , Cricetinae , Vacinas Virais/imunologia , Marburgvirus/imunologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/imunologia , Modelos Animais de Doenças , Adenoviridae/genética , Adenoviridae/imunologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Anticorpos Antivirais/imunologia , Vacinação/métodos
11.
Hum Vaccin Immunother ; 20(1): 2384192, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39149872

RESUMO

Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.


Assuntos
Anticorpos Antivirais , Memória Imunológica , Humanos , Anticorpos Antivirais/imunologia , Animais , Vacinas Virais/imunologia
12.
Immun Inflamm Dis ; 12(8): e1360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150224

RESUMO

BACKGROUND: Messenger RNA (mRNA) vaccines emerged as a powerful tool in the fight against infections. Unlike traditional vaccines, this unique type of vaccine elicits robust and persistent innate and humoral immune response with a unique host cell-mediated pathogen gene expression and antigen presentation. METHODS: This offers a novel approach to combat poxviridae infections. From the genome of vaccinia and Mpox viruses, three key genes (E8L, E7R, and H3L) responsible for virus attachment and virulence were selected and employed for designing the candidate mRNA vaccine against vaccinia and Mpox viral infection. Various bioinformatics tools were employed to generate (B cell, CTL, and HTL) epitopes, of which 28 antigenic and immunogenic epitopes were selected and are linked to form the mRNA vaccine construct. Additional components, including a 5' cap, 5' UTR, adjuvant, 3' UTR, and poly(A) tail, were incorporated to enhance stability and effectiveness. Safety measures such as testing for human homology and in silico immune simulations were implemented to avoid autoimmunity and to mimics the immune response of human host to the designed mRNA vaccine, respectively. The mRNA vaccine's binding affinity was evaluated by docking it with TLR-2, TLR-3, TLR-4, and TLR-9 receptors which are subsequently followed by molecular dynamics simulations for the highest binding one to predict the stability of the binding complex. RESULTS: With a 73% population coverage, the mRNA vaccine looks promising, boasting a molecular weight of 198 kDa and a molecular formula of C8901H13609N2431O2611S48 and it is said to be antigenic, nontoxic and nonallergic, making it safe and effective in preventing infections with Mpox and vaccinia viruses, in comparison with other insilico-designed vaccine for vaccinia and Mpox viruses. CONCLUSIONS: However, further validation through in vivo and in vitro techniques is underway to fully assess its potential.


Assuntos
Biologia Computacional , Vaccinia virus , Vacinas de mRNA , Humanos , Vaccinia virus/imunologia , Vaccinia virus/genética , Biologia Computacional/métodos , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/imunologia , Vacínia/prevenção & controle , Vacínia/imunologia , Vacinas Sintéticas/imunologia , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Vacinas Virais/imunologia , Epitopos de Linfócito B/imunologia , Desenvolvimento de Vacinas , Epitopos de Linfócito T/imunologia
13.
PLoS One ; 19(8): e0308088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088513

RESUMO

In the absence of effective drugs, vaccines constitute the cornerstone for the prevention of Newcastle disease (ND). Different strategies have been implemented to increase vaccination, but uptake remains low, underscoring the need for novel vaccine delivery methods. We designed and assessed the effectiveness of a community-centered ND vaccine delivery model in southeastern Kenya. Under the model, we sensitized smallholder chicken farmers (SCFs) through structured training on chicken husbandry, biosecurity, ND, and its vaccination, among other aspects. We subsequently engaged trained community vaccinators (CVs) to deliver vaccines and/or provide vaccination services to SCFs at a cost on one hand and, at no cost on the other, in selected sites to address challenges of inadequate service providers, vaccine unavailability, and inaccessibility. We tested this model under paid and free vaccination frameworks over one year and assessed the model's effect on vaccine uptake, ND-related deaths, and vaccine accessibility, among other aspects. Overall, we vaccinated more chickens at free sites compared to paid sites. However, we vaccinated a significantly higher mean number of chickens per household at paid (49.4±38.5) compared to free (28.4±25.9) sites (t = 8.4, p<0.0001). We recorded a significant increase in the proportion of SCFs who vaccinated their chickens from 31.3% to 68.4% (χ2(1, N = 399) = 58.3, p<0.0001) in paid and from 19.9% to 74.9% (χ2(1, N = 403) = 115.7, p<0.0001) in free sites pre- and post-intervention, respectively. The mean number of ND-related deaths reported per household decreased from 18.1±31.6 pre-intervention to 7.5±22.3 post-intervention (t = 5.4, p = 0.000), with higher reductions recorded in paid sites (20.9±37.7 to 4.5±11.2) compared to free sites (15.0±22.6 to 10.7±29.7) pre- and post-intervention, respectively. Farmers with access to vaccines increased significantly from 61.1% to 85.4% (χ2(1, N = 399) = 31.7, p<0.0001) in paid and 43.6% to 74.9% (χ2(1, N = 403) = 38.4, p = 0.0001) in free sites pre- and post-intervention, respectively. We established that type of intervention framework, gender of household head, if the household head attended training on chicken production in the last 12 months, access to information on ND vaccination, and the number of chickens lost to the previous ND outbreak were significant predictors of ND vaccine uptake. Our findings indicate the model has a broader reach and benefits for SCFs. However, policies should be enacted to regulate the integration of CVs into the formal animal health sector.


Assuntos
Galinhas , Doença de Newcastle , Vacinação , Quênia , Animais , Doença de Newcastle/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/economia , Vacinas Virais/imunologia , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Humanos , Criação de Animais Domésticos/métodos , Fazendeiros
14.
Methods Mol Biol ; 2824: 385-395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039425

RESUMO

Rift Valley fever (RVF) caused by Rift Valley fever virus (RVFV) is a major health concern for both domesticated animals and humans in certain endemic areas of Africa. With changing environmental conditions and identification of vectors capable of transmitting the virus, there is high risk of RVFV spreading into other parts of the world. Furthermore, unavailability of effective vaccines in the event of an outbreak can be a major challenge as witnessed recently in case of SARS-CoV2 pandemic. Hence, identifying potential vaccines and testing their protective efficacy in preclinical models before clinical testing is the absolute need of the hour. Here, we describe methods used to quantify virus-specific T cell responses in mice that were immunized with RVFV strains or antigens.


Assuntos
Vírus da Febre do Vale do Rift , Linfócitos T , Vacinas Virais , Animais , Camundongos , Linfócitos T/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Imunização/métodos , Vacinação/métodos , Antígenos Virais/imunologia
15.
Front Immunol ; 15: 1440407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39072326

RESUMO

Introduction: Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods: Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results: Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion: Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.


Assuntos
Vírus Bluetongue , Bluetongue , Proteínas do Capsídeo , Vetores Genéticos , Receptor de Interferon alfa e beta , Vaccinia virus , Proteínas não Estruturais Virais , Vacinas Virais , Animais , Vírus Bluetongue/imunologia , Vírus Bluetongue/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Bluetongue/prevenção & controle , Bluetongue/imunologia , Bluetongue/virologia , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vaccinia virus/genética , Vaccinia virus/imunologia , Receptor de Interferon alfa e beta/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Camundongos Knockout , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Feminino
16.
Vet Microbiol ; 296: 110198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067145

RESUMO

Senecavirus A (SVA) is a causative agent that can cause vesicular disease in swine, which causes a great threat to the swine husbandry in the world. Therefore, it is necessary to develop a vaccine that can effectively prevent the spread of SVA. In this study, we developed a 24-polymeric nano-scaffold using ß-annulus peptide from tomato bushy effect virus (TBSV) by coupling this antigen to SVA B cell epitope VP121-26 and VP2 proteins via linkers, respectively. The SVA-based nanoparticle protein of the VP1(B)-ß-VP2 was expressed and purified by low-cost prokaryotic system to prepare a SVA nanoparticle vaccine. The immunological protective effect of SVA nanoparticle vaccine was evaluated in mouse and swine models, respectively. The results suggested that both mice and swine could induce high levels SVA neutralizing antibodies and IgG antibodies after two doses immunization. In addition, the swine challenge protection experiment showed that the protection rate of immune SVA nanoparticle vaccine and SVA inactivated vaccine both were 80 %, while the negative control had no protection effect. It demonstrated that SVA nanoparticle vaccine effectively prevented SVA infection in swine. In summary, the preparation of SVA vaccine by using ß-annulus peptide is a promising candidate vaccine for prevent SVA transmission, and provides a new idea for the development of novel SVA vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Nanovacinas , Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Camundongos Endogâmicos BALB C , Nanovacinas/administração & dosagem , Nanovacinas/imunologia , Picornaviridae/imunologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/prevenção & controle , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem
17.
J Proteome Res ; 23(8): 3515-3523, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39007742

RESUMO

Acute phase protein (APP) response to vaccine challenges is an attractive alternative to natural infection for identifying pigs with increased disease resilience and monitoring the productive performance. Currently, the methods used for APP quantification are diverse and often based on techniques that use antibodies that are not necessarily pig specific. The objective of this work is the development of a method based on a UPLC-SRM/MS system for simultaneous determination of haptoglobin, apolipoprotein A1, C-reactive protein, pig-major acute protein, and serum amyloid A and its application in pigs to monitor the effect of a vaccine administered against porcine reproductive and respiratory syndrome virus (PRRSV). With the aim of tracing the complete analytical process for each proteotypic peptide, a synthetic QconCat polypeptide construct was designed. It was possible to develop an SRM method including haptoglobin, apolipoprotein A1, pig-MAP, and serum amyloid A1. The PRRSV vaccine only affected haptoglobin. The pigs with positive viremia tended to show higher values than negative pigs, reaching significant differences in the three haptoglobin SRM-detected peptides but not with the data acquired by immunoenzymatic and spectrophotometric assays. These results open the door to the use of SRM to accurately monitor APP changes in experimental pigs.


Assuntos
Proteínas de Fase Aguda , Haptoglobinas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteína Amiloide A Sérica , Vacinas Virais , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas de Fase Aguda/análise , Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Haptoglobinas/análise , Vacinas Virais/imunologia , Proteína Amiloide A Sérica/análise , Apolipoproteína A-I/imunologia , Apolipoproteína A-I/análise , Proteína C-Reativa/análise , Proteína C-Reativa/imunologia , Vacinação , Espectrometria de Massas/métodos , Viremia/prevenção & controle , Viremia/imunologia
18.
Front Immunol ; 15: 1408510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021566

RESUMO

Equid alphaherpesvirus 1 (EqAHV1) is a viral pathogen known to cause respiratory disease, neurologic syndromes, and abortion storms in horses. Currently, there are no vaccines that provide complete protection against EqAHV1. Marker vaccines and the differentiation of infected and vaccinated animals (DIVA) strategy are effective for preventing and controlling outbreaks but have not been used for the prevention of EqAHV1 infection. Glycoprotein 2 (gp2), located on the envelope of viruses (EqAHV1), exhibits high antigenicity and functions as a molecular marker for DIVA. In this study, a series of EqAHV1 mutants with deletion of gp2 along with other virulence genes (TK, UL24/TK, gI/gE) were engineered. The mutant viruses were studied in vitro and then in an in vivo experiment using Golden Syrian hamsters to assess the extent of viral attenuation and the immune response elicited by the mutant viruses in comparison to the wild-type (WT) virus. Compared with the WT strain, the YM2019 Δgp2, ΔTK/gp2, and ΔUL24/TK/gp2 strains exhibited reduced growth in RK-13 cells, while the ΔgI/gE/gp2 strain exhibited significantly impaired proliferation. The YM2019 Δgp2 strain induced clinical signs and mortality in hamsters. In contrast, the YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 variants displayed diminished pathogenicity, causing no observable clinical signs or fatalities. Immunization with nasal vaccines containing YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 elicited a robust immune response in hamsters. In particular, compared with the vaccine containing the ΔTK/gp2 strain, the vaccine containing the ΔUL24/TK/gp2 strain demonstrated enhanced immune protection upon challenge with the WT virus. Furthermore, an ELISA for gp2 was established and refined to accurately differentiate between infected and vaccinated animals. These results confirm that the ΔUL24/TK/gp2 strain is a safe and effective live attenuated vaccine candidate for controlling EqAHV1 infection.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Vacinas Atenuadas , Animais , Vacinas Atenuadas/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/imunologia , Herpesvirus Equídeo 1/genética , Cavalos , Mesocricetus , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Cricetinae , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/virologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Linhagem Celular , Mutação
19.
Microb Pathog ; 193: 106786, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971506

RESUMO

To better understand the interaction between attenuated vaccines and host antiviral responses, we used bioinformatics and public transcriptomics data to analyze the immune response mechanisms of host cells after canine distemper virus (CDV) infection in Vero cells and screened for potential key effector factors. In this study, CDV-QN-1 infect with Vero cells at an MOI of 0.5, and total RNA was extracted from the cells 24 h later and reverse transcribed into cDNA. Transcriptome high-throughput sequencing perform using Illumina. The results showed that 438 differentially expressed genes were screened, of which 409 were significantly up-regulated and 29 were significantly down-regulated. Eight differentially expressed genes were randomly selected for RT-qPCR validation, and the change trend was consistent with the transcriptomics data. GO and KEGG analysis of differentially expressed genes revealed that most of the differentially expressed genes in CDV-QN-1 infection in the early stage were related to immune response and antiviral activity. The enriched signaling pathways mainly included the interaction between cytokines and cytokine receptors, the NF-kappa B signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. This study provides a foundation for further exploring the pathogenesis of CDV and the innate immune response of host cells in the early stage of infection.


Assuntos
Vírus da Cinomose Canina , Perfilação da Expressão Gênica , Vacinas Atenuadas , Animais , Células Vero , Chlorocebus aethiops , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/imunologia , Transcriptoma , Transdução de Sinais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Vacinas Virais/imunologia , Vacinas Virais/genética , Citocinas/metabolismo , Citocinas/genética , Cinomose/virologia , Cinomose/genética , Cinomose/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , NF-kappa B/metabolismo , NF-kappa B/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
20.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2150-2161, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044581

RESUMO

This study aims to develop an effective bivalent subunit vaccine that is promising to prevent both porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV). The receptor-binding domains (RBDs) of PDCoV and PEDV were fused and cloned into the eukaryotic expression vector pCDNA3.1(+). The fusion protein PDCoV-RBD-PEDV-RBD (pdRBD-peRBD) was expressed by the ExpiCHOTM expression system and purified. Mice were immunized with the fusion protein at three different doses (10, 20, and 30 µg). The humoral immune response and cellular immune response induced by the fusion protein were evaluated by ELISA and flow cytometry. The neutralization titers of the serum of immunized mice against PDCoV and PEDV were determined by the microneutralization test. The results showed that high levels of IgG antibodies were induced in the three different dose groups after booster immunization, and there was no significant difference in the antibody level between different dose groups, indicating that the immunization dose of 10 µg could achieve the fine immune effect. The results of flow cytometry showed that the immunization groups demonstrated increased proportion of CD3+CD4+ T cells and decreased proportion of CD3+CD8+ T cells, which was consistent with the expectation about the humoral immune response induced by the subunit vaccine. At the same time, the levels of interleukin (IL)-2, IL-4, and interferon (IFN)-γ in the serum were determined. The results showed that the fusion protein induced both humoral immune effect and cellular immune response. The results of the neutralization test showed that the antibody induced by 10 µg fusion protein neutralized both PDCoV and PEDV in vitro, with the titers of 1:179.25 and 1:141.21, respectively. The above results suggested that the pdRBD-peRBD could induce a high level of humoral immune response at a dose of 10 µg, and the induced antibody could neutralize both PDCoV and PEDV. Therefore, the fusion protein pdRBD-peRBD is expected to be an effective subunit vaccine that can simultaneously prevent PDCoV and PEDV.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Proteínas Recombinantes de Fusão , Vacinas Virais , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/genética , Camundongos , Suínos , Vacinas Virais/imunologia , Vacinas Virais/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Deltacoronavirus/imunologia , Deltacoronavirus/genética , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Camundongos Endogâmicos BALB C , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Domínios Proteicos , Imunogenicidade da Vacina , Imunidade Humoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA