Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.082
Filtrar
1.
BMC Infect Dis ; 24(1): 476, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714948

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.


Assuntos
Epitopos de Linfócito T , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Vacinas de DNA , Vacinas Virais , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Phlebovirus/imunologia , Phlebovirus/genética , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Febre Grave com Síndrome de Trombocitopenia/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Humanos , Desenho Assistido por Computador , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Animais , Biologia Computacional
2.
Front Immunol ; 15: 1384417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726013

RESUMO

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Animais , Vírus Nipah/imunologia , Vírus Nipah/genética , Suínos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Imunogenicidade da Vacina , Imunização Secundária , Citocinas/imunologia , Vacinas Sintéticas/imunologia , Lipossomos , Nanopartículas
3.
PLoS One ; 19(5): e0300507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728300

RESUMO

According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.


Assuntos
Glicoproteínas , Vírus Nipah , Vacinas Virais , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Glicoproteínas/imunologia , Glicoproteínas/química , Humanos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Simulação por Computador , Epitopos/imunologia , Epitopos/química , Simulação de Dinâmica Molecular , Nucleocapsídeo/imunologia , Simulação de Acoplamento Molecular
4.
Vet Q ; 44(1): 1-12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38726839

RESUMO

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Assuntos
Patos , Fibroblastos , Mardivirus , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Vacinas Atenuadas/imunologia , Patos/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Fibroblastos/virologia , Embrião de Galinha , Vacinas Virais/imunologia , Mardivirus/imunologia , Mardivirus/patogenicidade , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Índia
5.
Front Immunol ; 15: 1373656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742108

RESUMO

African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Antígenos Virais , Imunização , Saccharomyces cerevisiae , Vacinas Virais , Animais , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/genética , Administração Oral , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Antígenos Virais/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Suínos , Imunidade nas Mucosas , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos BALB C , Feminino , Imunidade Humoral
6.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696217

RESUMO

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Assuntos
Nanopartículas , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Nanopartículas/química , Suínos , Camundongos , Vacinas Virais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Camundongos Endogâmicos BALB C , Antígenos Virais/imunologia , Antígenos Virais/química , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Domínios Proteicos/imunologia , Feminino , Nanovacinas
7.
Viral Immunol ; 37(4): 216-219, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717823

RESUMO

In May 2022, mpox began to spread worldwide, posing a serious threat to human public health. Modified Vaccinia Ankara-Bavaria Nordic (MVA-BN) is a live attenuated orthopoxvirus vaccine that has been authorized by the U.S. Food and Drug Administration as the vaccine of choice for the prevention of mpox. In this study, we conducted a meta-analysis of all currently published literature on the efficacy and safety of the MVA-BN vaccine in the real world, showing that the MVA-BN vaccine is effective and safe, with efficacy of up to 75% with a single dose and up to 80% with a two-dose vaccine. Meanwhile, we found that subcutaneous injection has lower local and systemic adverse events than intradermal injection, regardless of single- or two-dose vaccination, and subcutaneous injection is better tolerated in children, the elderly, or people with underlying medical conditions. These results have important reference value for clinical practice.


Assuntos
Eficácia de Vacinas , Vacinas Atenuadas , Humanos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/imunologia , Vaccinia virus/imunologia , Vaccinia virus/genética , Vacinação , Injeções Subcutâneas , Injeções Intradérmicas , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Orthopoxvirus/imunologia , Orthopoxvirus/genética , Criança
8.
Microb Cell Fact ; 23(1): 142, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773481

RESUMO

The Porcine epidemic diarrhea virus (PEDV) presents a substantial risk to the domestic pig industry, resulting in extensive and fatal viral diarrhea among piglets. Recognizing the mucosal stimulation triggered by PEDV and harnessing the regulatory impact of lactobacilli on intestinal function, we have developed a lactobacillus-based vaccine that is carefully designed to elicit a strong mucosal immune response. Through bioinformatics analysis, we examined PEDV S proteins to identify B-cell linear epitopes that meet the criteria of being non-toxic, soluble, antigenic, and capable of neutralizing the virus. In this study, a genetically modified strain of Lactobacillus mucosae G01 (L.mucosae G01) was created by utilizing the S layer protein (SLP) as a scaffold for surface presentation. Chimeric immunodominant epitopes with neutralizing activity were incorporated at various sites on SLP. The successful expression of SLP chimeric immunodominant epitope 1 on the surface of L.mucosae G01 was confirmed through indirect immunofluorescence and transmission electron microscopy, revealing the formation of a transparent membrane. The findings demonstrate that the oral administration of L.mucosae G01, which expresses the SLP chimeric immunodominant gene epitope1, induces the production of secreted IgA in the intestine and feces of mice. Additionally, there is an elevation in IgG levels in the serum. Moreover, the levels of cytokines IL-2, IL-4, IFN-γ, and IL-17 are significantly increased compared to the negative control group. These results suggest that L. mucosae G01 has the ability to deliver exogenous antigens and elicit a specific mucosal immune response against PEDV. This investigation presents new possibilities for immunoprophylaxis against PEDV-induced diarrhea.


Assuntos
Epitopos de Linfócito B , Lactobacillus , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , Lactobacillus/imunologia , Camundongos Endogâmicos BALB C , Suínos , Feminino , Vacinas Virais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Glicoproteínas de Membrana
9.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38757508

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Assuntos
Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio , Glicoproteína da Espícula de Coronavírus , Vacinas Virais , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Camundongos , Feminino , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas , Humanos
10.
Hum Vaccin Immunother ; 20(1): 2346390, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38691025

RESUMO

Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Nanopartículas , Dióxido de Silício , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Dióxido de Silício/química , Camundongos Endogâmicos BALB C , Feminino , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Desenvolvimento de Vacinas
11.
Euro Surveill ; 29(18)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699900

RESUMO

BackgroundTick-borne encephalitis (TBE) is a severe, vaccine-preventable viral infection of the central nervous system. Symptoms are generally milder in children and adolescents than in adults, though severe disease does occur. A better understanding of the disease burden and duration of vaccine-mediated protection is important for vaccination recommendations.AimTo estimate TBE vaccination coverage, disease severity and vaccine effectiveness (VE) among individuals aged 0-17 years in Switzerland.MethodsVaccination coverage between 2005 and 2022 was estimated using the Swiss National Vaccination Coverage Survey (SNVCS), a nationwide, repeated cross-sectional study assessing vaccine uptake. Incidence and severity of TBE between 2005 and 2022 were determined using data from the Swiss disease surveillance system and VE was calculated using a case-control analysis, matching TBE cases with SNVCS controls.ResultsOver the study period, vaccination coverage increased substantially, from 4.8% (95% confidence interval (CI): 4.1-5.5%) to 50.1% (95% CI: 48.3-52.0%). Reported clinical symptoms in TBE cases were similar irrespective of age. Neurological involvement was less likely in incompletely (1-2 doses) and completely (≥ 3 doses) vaccinated cases compared with unvaccinated ones. For incomplete vaccination, VE was 66.2% (95% CI: 42.3-80.2), whereas VE for complete vaccination was 90.8% (95% CI: 87.7-96.4). Vaccine effectiveness remained high, 83.9% (95% CI: 69.0-91.7) up to 10 years since last vaccination.ConclusionsEven children younger than 5 years can experience severe TBE. Incomplete and complete vaccination protect against neurological manifestations of the disease. Complete vaccination offers durable protection up to 10 years against TBE.


Assuntos
Encefalite Transmitida por Carrapatos , Cobertura Vacinal , Vacinação , Vacinas Virais , Humanos , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/epidemiologia , Adolescente , Estudos de Casos e Controles , Suíça/epidemiologia , Criança , Estudos Transversais , Masculino , Feminino , Pré-Escolar , Lactente , Vacinação/estatística & dados numéricos , Cobertura Vacinal/estatística & dados numéricos , Vacinas Virais/administração & dosagem , Incidência , Eficácia de Vacinas/estatística & dados numéricos , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Recém-Nascido , Vigilância da População
13.
Front Immunol ; 15: 1360140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711513

RESUMO

Introduction: Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods: To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results: We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion: We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.


Assuntos
Linfócitos T CD8-Positivos , Apresentação Cruzada , Células Dendríticas , Receptores Purinérgicos P2X7 , Vaccinia virus , Receptores Purinérgicos P2X7/imunologia , Receptores Purinérgicos P2X7/metabolismo , Apresentação Cruzada/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vaccinia virus/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos , Camundongos Endogâmicos C57BL , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Humanos , Vacinas Virais/imunologia
14.
Antiviral Res ; 226: 105900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705200

RESUMO

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.


Assuntos
Administração Intranasal , Quitosana , Vírus da Febre Aftosa , Febre Aftosa , Nanosferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Vacinas Virais , Animais , Quitosana/química , Quitosana/administração & dosagem , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Camundongos , Nanosferas/química , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Ácidos Nucleicos/administração & dosagem , Imunidade nas Mucosas , Sistemas de Liberação de Medicamentos
15.
PLoS One ; 19(5): e0300778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758816

RESUMO

Mpox (formerly known as monkeypox) virus and some related poxviruses including smallpox virus pose a significant threat to public health, and effective prevention and treatment strategies are needed. This study utilized a reverse vaccinology approach to retrieve conserved epitopes for monkeypox virus and construct a vaccine that could provide cross-protection against related viruses with similar antigenic properties. The selected virulent proteins of monkeypox virus, MPXVgp165, and Virion core protein P4a, were subjected to epitope mapping for vaccine construction. Two vaccines were constructed using selected T cell epitopes and B cell epitopes with PADRE and human beta-defensins adjuvants conjugated in the vaccine sequence. Both constructs were found to be highly antigenic, non-allergenic, nontoxic, and soluble, suggesting their potential to generate an adequate immune response and be safe for humans. Vaccine construct 1 was selected for molecular dynamic simulation studies. The simulation studies revealed that the TLR8-vaccine complex was more stable than the TLR3-vaccine complex. The lower RMSD and RMSF values of the TLR8 bound vaccine compared to the TLR3 bound vaccine suggested better stability and consistency of hydrogen bonds. The Rg values of the vaccine chain bound to TLR8 indicated overall stability, whereas the vaccine chain bound to TLR3 showed deviations throughout the simulation. These results suggest that the constructed vaccine could be a potential preventive measure against monkeypox and related viruses however, further experimental validation is required to confirm these findings.


Assuntos
Simulação de Dinâmica Molecular , Monkeypox virus , Humanos , Monkeypox virus/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Simulação por Computador , Poxviridae/imunologia , Vacinas Virais/imunologia , Mapeamento de Epitopos , Mpox/prevenção & controle , Mpox/imunologia , Animais , Receptor 8 Toll-Like/imunologia
16.
J Med Virol ; 96(4): e29591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572940

RESUMO

Vaccine-associated multiple sclerosis (MS) is rare, with insufficient evidence from case reports. Given the scarcity of large-scale data investigating the association between vaccine administration and adverse events, we investigated the global burden of vaccine-associated MS and potential related vaccines from 1967 to 2022. Reports on vaccine-associated MS between 1967 and 2022 were obtained from the World Health Organization International Pharmacovigilance Database (total number of reports = 120 715 116). We evaluated global reports, reporting odds ratio (ROR), and information components (IC) to investigate associations between 19 vaccines and vaccine-associated MS across 156 countries and territories. We identified 8288 reports of vaccine-associated MS among 132 980 cases of all-cause MS. The cumulative number of reports on vaccine-associated MS gradually increased over time, with a substantial increase after 2020, owing to COVID-19 mRNA vaccine-associated MS. Vaccine-associated MS develops more frequently in males and adolescents. Nine vaccines were significantly associated with higher MS reporting, and the highest disproportional associations were observed for hepatitis B vaccines (ROR 19.82; IC025 4.18), followed by encephalitis (ROR 7.42; IC025 2.59), hepatitis A (ROR 4.46; IC025 1.95), and papillomavirus vaccines (ROR 4.45; IC025 2.01). Additionally, MS showed a significantly disproportionate signal for COVID-19 mRNA vaccines (ROR 1.55; IC025 0.52). Fatal clinical outcomes were reported in only 0.3% (21/8288) of all cases of vaccine-associated MS. Although various vaccines are potentially associated with increased risk of MS, we should be cautious about the increased risk of MS following vaccination, particularly hepatitis B and COVID-19 mRNA vaccines, and should consider the risk factors associated with vaccine-associated MS.


Assuntos
COVID-19 , Esclerose Múltipla , Vacinas Virais , Masculino , Adolescente , Humanos , Vacinas contra COVID-19 , Vacinas de mRNA , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/etiologia , Farmacovigilância
17.
PLoS One ; 19(4): e0301340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625924

RESUMO

A safe, highly immunogenic multivalent vaccine to protect against all nine serotypes of African horse sickness virus (AHSV), will revolutionise the AHS vaccine industry in endemic countries and beyond. Plant-produced AHS virus-like particles (VLPs) and soluble viral protein 2 (VP2) vaccine candidates were developed that have the potential to protect against all nine serotypes but can equally well be formulated as mono- and bi-valent formulations for localised outbreaks of specific serotypes. In the first interferon α/ß receptor knock-out (IFNAR-/-) mice trial conducted, a nine-serotype (nonavalent) vaccine administered as two pentavalent (5 µg per serotype) vaccines (VLP/VP2 combination or exclusively VP2), were directly compared to the commercially available AHS live attenuated vaccine. In a follow up trial, mice were vaccinated with an adjuvanted nine-serotype multivalent VP2 vaccine in a prime boost strategy and resulted in the desired neutralising antibody titres of 1:320, previously demonstrated to confer protective immunity in IFNAR-/- mice. In addition, the plant-produced VP2 vaccine performed favourably when compared to the commercial vaccine. Here we provide compelling data for a nonavalent VP2-based vaccine candidate, with the VP2 from each serotype being antigenically distinguishable based on LC-MS/MS and ELISA data. This is the first preclinical trial demonstrating the ability of an adjuvanted nonavalent cocktail of soluble, plant-expressed AHS VP2 proteins administered in a prime-boost strategy eliciting high antibody titres against all 9 AHSV serotypes. Furthermore, elevated T helper cells 2 (Th2) and Th1, indicative of humoral and cell-mediated memory T cell immune responses, respectively, were detected in mouse serum collected 14 days after the multivalent prime-boost vaccination. Both Th2 and Th1 may play a role to confer protective immunity. These preclinical immunogenicity studies paved the way to test the safety and protective efficacy of the plant-produced nonavalent VP2 vaccine candidate in the target animals, horses.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vacinas Virais , Animais , Camundongos , Cavalos , Vírus da Doença Equina Africana/genética , Doença Equina Africana/prevenção & controle , Vacinas Combinadas , Cromatografia Líquida , Proteínas do Capsídeo , Espectrometria de Massas em Tandem , Anticorpos Antivirais
19.
Vaccine ; 42(12): 3099-3106, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604911

RESUMO

Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.


Assuntos
Adenovirus Caninos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Vacinas Virais , Animais , Cães , Humanos , Estudo de Associação Genômica Ampla , Projetos Piloto , Anticorpos Antivirais , Adenovirus Caninos/genética , Antígenos Virais , Vacinação/veterinária , Vacinas Atenuadas , Imunidade , Vírus da Cinomose Canina/genética , Doenças do Cão/prevenção & controle , Mamíferos
20.
J Virol ; 98(5): e0195723, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557247

RESUMO

Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.


Assuntos
Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Replicação Viral , Animais , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Camundongos , Humanos , Anticorpos Antivirais/imunologia , Suínos , Anticorpos Neutralizantes/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Vírus da Estomatite Vesicular Indiana/genética , Alphacoronavirus/genética , Vesiculovirus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Linhagem Celular , Células Vero , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/imunologia , Coelhos , Chlorocebus aethiops , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA