Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.176
Filtrar
1.
Microbiol Spectr ; 11(4): e0474522, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37278625

RESUMO

Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.


Assuntos
Mpox , Varíola , Humanos , Mpox/tratamento farmacológico , Mpox/prevenção & controle , Ácido Micofenólico/farmacologia , Antimicina A/farmacologia , Monensin/farmacologia , Rotenona/farmacologia , Valinomicina/farmacologia , Monkeypox virus/genética , Antivirais/farmacologia
2.
J Antibiot (Tokyo) ; 76(7): 425-429, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37069308

RESUMO

Fluoride is routinely used as a highly effective antibacterial agent that interferes with bacterial metabolism through fundamentally different mechanisms. One of the major bacterial evasion mechanisms against fluoride is the impermeability of cell envelope to the anion that limits its cellular uptake. Therefore, translating such compounds to clinical settings requires novel mechanisms to facilitate the uptake of membrane-impermeant molecules. Published data have indicated antibiotic synergy between fluoride and membrane destabilizing agents that induce strong fluoride toxicity in bacteria via enhancing the permeability of bacterial membranes to fluoride. Here, we report a similar mechanism of antibiotic synergy between fluoride and potassium ion carriers, valinomycin and monensin against Gram-positive bacteria, B. subtilis and S. aureus. Molecular dynamics simulations were performed to understand the effect of potassium on the binding affinity of fluoride to monensin and valinomycin. The trajectory results strongly indicated that the monensin molecules transport fluoride ions across the cell membrane via formation of ion-pair between the monensin-K+ complex and a fluoride. This study provides new insights to design novel compounds to enhance the uptake of small toxic anions via synergistic interactions and thus exert strong antibacterial activity against a wide variety of pathogens.


Assuntos
Antibacterianos , Monensin , Ionóforos/farmacologia , Ionóforos/química , Monensin/farmacologia , Valinomicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fluoretos/farmacologia , Staphylococcus aureus/metabolismo , Potássio/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1863(8): 148908, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961396

RESUMO

Mitochondria play an important role not only in producing energy for the cell but also for regulating mitochondrial and cell function depending on the cell's needs and environment. Uptake of cations, anions, and substrates requires a stable, polarized transmembrane charge potential (ΔΨm). Chemiosmosis requires ion exchangers to remove Na+, K+, Ca2+, PO43-, and other charged species that enter mitochondria. Knowledge of the kinetics of mitochondrial (m) cation channels and exchangers is important in understanding their roles in regulating mitochondrial chemiosmosis and bioenergetics. The influx/efflux of K+, the most abundant mitochondrial cation, alters mitochondrial volume and shape by bringing in anions and H2O by osmosis. The effects of K+ uptake through ligand-specific mK+ channels stimulated/inhibited by agonists/antagonists on mitochondrial volume (swelling/contraction) are well known. However, a more important role for K+ influx is likely its effects on H+ cycling and bioenergetics facilitated by mitochondrial (m) K+/H+ exchange (mKHE), though the kinetics and consequences of K+ efflux by KHE are not well described. We hypothesized that a major role of K+ influx/efflux is stimulation of respiration via the influx of H+ by KHE. We proposed to modulate KHE activity by energizing guinea pig heart isolated mitochondria and by altering the mK+ cycle to capture changes in mitochondrial volume, pHm, ΔΨm, and respiration that would reflect a role for H+ influx via KHE to regulate bioenergetics. To test this, mitochondria were suspended in a 150 mM K+ buffer at pH 6.9, or in a 140 mM Cs+ buffer at pH 7.6 or 6.9 with added 10 mM K+, minimal Ca2+ and free of Na+. O2 content was measured by a Clark electrode, and pHm, ΔΨm, and volume, were measured by fluorescence spectrophotometry and light-scattering. Adding pyruvic acid (PA) alone caused increases in volume and respiration and a rapid decrease in the transmembrane pH gradient (ΔpHm = pHin-pHext) at pHext 6.9> > 7.6, so that ΔΨm was charged and maintained. BKCa agonist NS1619 and antagonist paxilline modified these effects, and KHE inhibitor quinine and K+ ionophore valinomycin depolarized ΔΨm. We postulate that K+ efflux-induced H+ influx via KHE causes an inward H+ leak that stimulates respiration, but at buffer pH 6.9 also utilizes the energy of ΔpHm, the smaller component of the overall proton motive force, ΔµH+. Thus ΔpHm establishes and maintains the ΔΨm required for utilization of substrates, entry of all cations, and for oxidative phosphorylation. Thus, K+ influx/efflux appears to play a pivotal role in regulating energetics while maintaining mitochondrial ionic balance and volume homeostasis.


Assuntos
Ácido Pirúvico , Quinina , Animais , Ânions/metabolismo , Metabolismo Energético , Cobaias , Concentração de Íons de Hidrogênio , Ionóforos/metabolismo , Ionóforos/farmacologia , Ligantes , Mitocôndrias Cardíacas/metabolismo , Potássio/metabolismo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , Quinina/metabolismo , Quinina/farmacologia , Valinomicina/metabolismo , Valinomicina/farmacologia
4.
Reproduction ; 164(4): 125-134, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900329

RESUMO

In brief: Hyperpolarization of the membrane potential is a crucial step for mammalian sperm maturation. This work demonstrates that this membrane potential change likely activates a sperm-specific sodium/proton exchanger to induce alkalization in mouse sperm flagellum. Abstract: The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of WT mouse but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30%) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (>7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.


Assuntos
Trocadores de Sódio-Hidrogênio , Cauda do Espermatozoide , Espermatozoides , Animais , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Sêmen , Trocadores de Sódio-Hidrogênio/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Valinomicina/farmacologia
5.
Toxicol In Vitro ; 83: 105407, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35659575

RESUMO

INTRODUCTION: Commercially-available resazurin-based reagents used for cell viability assessment contain varying amounts of resorufin; these may contribute to differences in autofluorescence, signal-to-background (S/B) ratio and the dynamic range of the assay. OBJECTIVES: This in vitro study compares the sensitivity of a new, high-sensitivity PrestoBlue (hs-PB) assay with standard PrestoBlue (PB) in assessing the efficacy of valinomycin and antimycin A in human vascular endothelial EA.hy926 cells, as well as cell viability. METHODS: The metabolic activity of EA.hy926 was evaluated based on resorufin fluorescence (PB assays) or formazan absorbance (MTT assay). RESULTS: The hs-PB assay demonstrated lower resorufin autofluorescence than the PB, resulting in a ≥ 1.4-fold increase in S/B ratio in hs-PB compared to PB. Valinomycin was more potent cytotoxic agent than antimycin A. The hs-PB, PB and MTT produced similar IC50 values for valinomycin. Antimycin A showed significantly higher potency in the MTT than in the resazurin-based assays. The EA.hy926 cells demonstrated higher metabolic activity in the presence of the antimycin A solvent - DMSO. CONCLUSION: All the examined methods may be used interchangeably to analyze drug cytotoxicity. Any differences in drug cytotoxicity observed between the assays may be due to relatively low drug potency and/or the influence of solvent on metabolism of assay reagent. The hs-PB assay appears to more effectively detect cell viability and produce a stronger signal than its conventional counterpart.


Assuntos
Células Endoteliais , Antimicina A/metabolismo , Antimicina A/toxicidade , Sobrevivência Celular , Humanos , Indicadores e Reagentes/farmacologia , Solventes/farmacologia , Valinomicina/metabolismo , Valinomicina/farmacologia
6.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946577

RESUMO

With drug resistance threatening our first line antimalarial treatments, novel chemotherapeutics need to be developed. Ionophores have garnered interest as novel antimalarials due to their theorized ability to target unique systems found in the Plasmodium-infected erythrocyte. In this study, during the bioassay-guided fractionation of the crude extract of Streptomyces strain PR3, a group of cyclodepsipeptides, including valinomycin, and a novel class of cyclic ethers were identified and elucidated. Further study revealed that the ethers were cyclic polypropylene glycol (cPPG) oligomers that had leached into the bacterial culture from an extraction resin. Molecular dynamics analysis suggests that these ethers are able to bind cations such as K+, NH4+ and Na+. Combination studies using the fixed ratio isobologram method revealed that the cPPGs synergistically improved the antiplasmodial activity of valinomycin and reduced its cytotoxicity in vitro. The IC50 of valinomycin against P. falciparum NF54 improved by 4-5-fold when valinomycin was combined with the cPPGs. Precisely, it was improved from 3.75 ± 0.77 ng/mL to 0.90 ± 0.2 ng/mL and 0.75 ± 0.08 ng/mL when dosed in the fixed ratios of 3:2 and 2:3 of valinomycin to cPPGs, respectively. Each fixed ratio combination displayed cytotoxicity (IC50) against the Chinese Hamster Ovary cell line of 57-65 µg/mL, which was lower than that of valinomycin (12.4 µg/mL). These results indicate that combinations with these novel ethers may be useful in repurposing valinomycin into a suitable and effective antimalarial.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Éteres Cíclicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Valinomicina/farmacologia , Animais , Antimaláricos/química , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Éteres Cíclicos/química , Testes de Sensibilidade Parasitária , Streptomyces/química , Valinomicina/química
7.
Sci Rep ; 11(1): 19446, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593849

RESUMO

Even in nonexcitable cells, the membrane potential Vm is fundamental to cell function, with roles from ion channel regulation, development, to cancer metastasis. Vm arises from transmembrane ion concentration gradients; standard models assume homogeneous extracellular and intracellular ion concentrations, and that Vm only exists across the cell membrane and has no significance beyond it. Using red blood cells, we show that this is incorrect, or at least incomplete; Vm is detectable beyond the cell surface, and modulating Vm produces quantifiable and consistent changes in extracellular potential. Evidence strongly suggests this is due to capacitive coupling between Vm and the electrical double layer, rather than molecular transporters. We show that modulating Vm changes the extracellular ion composition, mimicking the behaviour if voltage-gated ion channels in non-excitable channels. We also observed Vm-synchronised circadian rhythms in extracellular potential, with significant implications for cell-cell interactions and cardiovascular disease.


Assuntos
Eritrócitos/fisiologia , Potenciais da Membrana/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ritmo Circadiano , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Neuraminidase/farmacologia , Valinomicina/farmacologia
8.
Mar Drugs ; 19(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540548

RESUMO

The manuscript investigated the isolation, characterization and anti-infective potential of valinomycin (3), streptodepsipeptide P11A (2), streptodepsipeptide P11B (1), and one novel valinomycin analogue, streptodepsipeptide SV21 (4), which were all produced by the Gram-positive strain Streptomycescavourensis SV 21. Although the exact molecular weight and major molecular fragments were recently reported for compound 4, its structure elucidation was not based on compound isolation and spectroscopic techniques. We successfully isolated and elucidated the structure based on the MS2 fragmentation pathways as well as 1H and 13C NMR spectra and found that the previously reported structure of compound 4 differs from our analysis. Our findings showed the importance of isolation and structure elucidation of bacterial compounds in the era of fast omics technologies. The here performed anti-infective assays showed moderate to potent activity against fungi, multi drug resistant (MDR) bacteria and infectivity of the Hepatitis C Virus (HCV). While compounds 2, 3 and 4 revealed potent antiviral activity, the observed minor cytotoxicity needs further investigation. Furthermore, the here performed anti-infective assays disclosed that the symmetry of the valinomycin molecule is most important for its bioactivity, a fact that has not been reported so far.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Pepinos-do-Mar/efeitos dos fármacos , Streptomyces/efeitos dos fármacos , Valinomicina/análogos & derivados , Valinomicina/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antivirais/isolamento & purificação , Linhagem Celular , Humanos , Pepinos-do-Mar/fisiologia , Streptomyces/fisiologia , Valinomicina/isolamento & purificação
9.
J Ethnopharmacol ; 271: 113884, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529639

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Piper capense is a medicinal spice whose fruits are traditionally used as aqueous decoction to heal several ailments such as trypanosomiasis, helminthic infections, and cancer. AIM OF THE STUDY: (1) To perform phytochemical investigation of the methanol extract of Piper capense; (2) to evaluate the cytotoxicity of botanicals (PCF, fractions PCFa-e), isolated phytochemicals on a broad panel of animal and human cancer cell lines; (3) to evaluate the induction of apoptosis of the most active samples. MATERIAL AND METHODS: Resazurin reduction assay (RRA) was used to determine the cytotoxicity of the studied samples. Cell cycle distribution (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP; JC-1) and reactive oxygen species (ROS; H2DCFH-DA) were measured by flow cytometry. Column chromatography (CC) was used for the purification of PCF, whilst nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric (MS) analyses were applied for structural elucidation. RESULTS: The phytochemical investigation of PCF led to the isolation of 11 compounds: licarin B (1), licarin A (2), 7-(1,3-benzodioxol-5-yl)-7,8-dihydro-8-methyl-5-(2-propenyl)-furo[3,2-e]-1,3-benzodioxole (3), nitidine isocyanate (4), 5-hydroxy-7,4'-dimethoxyflavone (5), cardamomin (6), sitosterol (7) and stigmasterol (8), ß-sitosterol 3-O-ß-D-glucopyranoside (9), oleanolic acid (10) and lupeol (11). Fraction PCFb, compound 2 and doxorubicin (as positive control drug) revealed cytotoxic effects towards the 18 tested cancer cell lines. The IC50 values ranged from 6.1 µg/mL (against CCRF-CEM cells) to 44.2 µg/mL (against BRAF-V600E homozygous mutant melanoma cells) for PSCb; from 4.3 µM (against CCRF-CEM cells) to 21.8 µM (against HCT116 p53-/-) for compound 2 and from 0.02 µM (against CCRF-CEM cells) to 123.0 µM (against CEM/ADR5000 cells) for doxorubicin. PCFb and compound 2 induced apoptosis in CCRF-CEM cells mediated by activation of caspase 3/7, 8 and 9, MMP alteration and increased ROS production. CONCLUSION: Piper capense is a source of potent cytotoxic botanicals and phytochemicals that could help to fight various types of cancer including multidrug resistance phenotypes. PCFb and compound 2 should further be explored to develop new drugs to fight malignancies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Frutas/química , Compostos Fitoquímicos/farmacologia , Piper/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Lignanas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Valinomicina/farmacologia
10.
Biomed J ; 43(5): 414-423, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33012699

RESUMO

Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been resulting in global epidemics with heavy morbidity and mortality. Unfortunately, there are currently no specific medicines that can better treat these coronaviruses. Drug repurposing is an effective and economical strategy for drug discovery from existing drugs, natural products, and synthetic compounds. In this review, the broad-spectrum antiviral activity of valinomycin (VAL), especially its activity against coronaviruses such as SARS-CoV, MERS-CoV, human coronavirus OC43 (HCoV-OC43), were summarized, it highlights that VAL has tremendous potential for use as a novel antiviral agent against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Valinomicina/farmacologia , Humanos , Resultado do Tratamento
11.
Exp Cell Res ; 396(1): 112266, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905804

RESUMO

The aggregation of ß-amyloid (Aß) peptide in Alzheimer's disease (AD) is characterized by mitochondrial dysfunction and mitophagy impairment. Mitophagy is a homeostatic mechanism by which autophagy selectively eliminates damaged mitochondria. Valinomycin is a respiratory chain inhibitor that activates mitophagy via the PINK1/Parkin signaling pathway. However, the mechanism underlying the association between mitophagy and valinomycin in Aß formation has not been explored. Here, we demonstrate that genetically modified (N2a/APP695swe) cells overexpressing a mutant amyloid precursor protein (APP) serve as an in vitro model of AD for studying mitophagy and ATP-related metabolomics. Our results prove that valinomycin induced a time-dependent increase in the mitophagy activation of N2a/APP695swe cells as indicated by increased levels of PINK1, Parkin, and LC3II as well as increased the colocalization of Parkin-Tom20 and fewer mitochondria (indicated by decreased Tom20 levels). Valinomycin significantly decreased Aß1-42 and Aß1-40 levels after 3 h of treatment. ATP levels and ATP-related metabolites were significantly increased at this time. Our findings suggest that the elimination of impaired mitochondria via valinomycin-induced mitophagy ameliorates AD by decreasing Aß and improving ATP levels.


Assuntos
Trifosfato de Adenosina/biossíntese , Peptídeos beta-Amiloides/genética , Mitocôndrias/metabolismo , Mitofagia/genética , Fragmentos de Peptídeos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Ionóforos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metabolômica/métodos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Valinomicina/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-32284379

RESUMO

Bunyaviruses are significant human pathogens, causing diseases ranging from hemorrhagic fevers to encephalitis. Among these viruses, La Crosse virus (LACV), a member of the California serogroup, circulates in the eastern and midwestern United States. While LACV infection is often asymptomatic, dozens of cases of encephalitis are reported yearly. Unfortunately, no antivirals have been approved to treat LACV infection. Here, we developed a method to rapidly test potential antivirals against LACV infection. From this screen, we identified several potential antiviral molecules, including known antivirals. Additionally, we identified many novel antivirals that exhibited antiviral activity without affecting cellular viability. Valinomycin, a potassium ionophore, was among our top targets. We found that valinomycin exhibited potent anti-LACV activity in multiple cell types in a dose-dependent manner. Valinomycin did not affect particle stability or infectivity, suggesting that it may preclude virus replication by altering cellular potassium ions, a known determinant of LACV entry. We extended these results to other ionophores and found that the antiviral activity of valinomycin extended to other viral families, including bunyaviruses (Rift Valley fever virus, Keystone virus), enteroviruses (coxsackievirus, rhinovirus), flavirivuses (Zika virus), and coronaviruses (human coronavirus 229E [HCoV-229E] and Middle East respiratory syndrome CoV [MERS-CoV]). In all viral infections, we observed significant reductions in virus titer in valinomycin-treated cells. In sum, we demonstrate the importance of potassium ions to virus infection, suggesting a potential therapeutic target to disrupt virus replication.


Assuntos
Antivirais/farmacologia , Encefalite da Califórnia/tratamento farmacológico , Ionóforos/farmacologia , Vírus La Crosse/efeitos dos fármacos , Potássio/metabolismo , Valinomicina/farmacologia , Replicação Viral/efeitos dos fármacos , Coronavirus/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Encefalite da Califórnia/virologia , Enterovirus/efeitos dos fármacos , Flavivirus/efeitos dos fármacos , Humanos , Orthobunyavirus/efeitos dos fármacos , Estados Unidos
13.
J Antibiot (Tokyo) ; 73(5): 265-282, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32123311

RESUMO

Antibacterial peptides are a class of naturally occurring peptides produced by eukaryotes and prokaryotes. Some of them exhibit broad-spectrum antifungal activity. Antifungal peptides (AFPs) can be developed as antibiotic to control fungal infections in agriculture due to their different antifungal mechanisms. As actinomycetes are still one of the most important sources of novel antibiotics, in this review, the mechanisms of action of AFPs are explained. Characterization of several AFPs produced by actinomycetes and their biological activities against plant diseases are summarized. Furthermore, the pathway for total synthesis of naturally occurring cyclodepsipeptide, valinomycin, is proposed. Finally, the pathway for biosynthesis of kutzneride 2 is proposed and the structure-activity relationship of kutznerides is discussed.


Assuntos
Actinobacteria/metabolismo , Antifúngicos/farmacologia , Peptídeos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Peptídeos/química , Peptídeos/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Relação Estrutura-Atividade , Valinomicina/isolamento & purificação , Valinomicina/farmacologia
14.
Mycotoxin Res ; 36(2): 225-234, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31960351

RESUMO

The objectives of this study were to determine the efficacy of metabolites of a Streptomyces strain AS1 on (a) spore germination, (b) mycelial growth, (c) control of mycotoxins produced by Penicillium verrucosum (ochratoxin A, OTA), Fusarium verticillioides (fumonisins, FUMs) and Aspergillus fumigatus (gliotoxin) and (d) identify the predominant metabolites involved in control. Initial screening showed that the Streptomyces AS1 strain was able to inhibit the mycelial growth of the three species at a distance, due to the release of secondary metabolites. A macroscopic screening system showed that the overall Index of Dominance against all three toxigenic fungi was inhibition at a distance. Subsequent studies showed that the metabolite mixture from the Streptomyces AS1 strain was very effective at inhibiting conidial germination of P. verrucosum, but less so against conidia of A. fumigatus and F. verticillioides. The efficacy was confirmed in studies on a conducive semi-solid YES medium in BioScreen C assays. Using the BioScreen C and the criteria of Time to Detection (TTD) at an OD = 0.1 showed good efficacy against P. verrucosum when treated with the Streptomyces AS1 extract at 0.95 and 0.99 water activity (aw) when compared to the other two species tested, indicating good efficacy. The effective dose for 50% control of growth (ED50) at 0.95 and 0.99 aw were approx. 0.005 ng/ml and 0.15 µg/ml, respectively, with the minimum inhibitory concentration (MIC) at both aw levels requiring > 40 µg/ml. In addition, OTA production was completely inhibited by 2.5 µg/ml AS1 extract at both aw levels in the in vitro assays. Ten metabolites were identified with four of these being predominant in concentrations > 2 µg/g dry weight biomass. These were identified as valinomycin, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val) and brevianamide F.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Micotoxinas/biossíntese , Penicillium/crescimento & desenvolvimento , Streptomyces/química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Dipeptídeos/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Alcaloides Indólicos/farmacologia , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Peptídeos Cíclicos/farmacologia , Piperazinas/farmacologia , Metabolismo Secundário , Valinomicina/farmacologia
15.
World J Microbiol Biotechnol ; 35(8): 128, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375920

RESUMO

Large patch disease, caused by Rhizoctonia solani AG2-2, is the most devastating disease in Zoysiagrass (Zoysia japonica). Current large patch disease control strategies rely primarily upon the use of chemical pesticides. Streptomyces sp. S8 is known to possess exceptional antagonistic properties that could potentially suppress the large patch pathogen found at turfgrass plantations. This study aims to demonstrate the feasibility of using the strain as a biological control mechanism. Sequencing of the S8 strain genome revealed a valinomycin biosynthesis gene cluster. This cluster is composed of the vlm1 and vlm2 genes, which are known to produce antifungal compounds. In order to verify this finding for the large patch pathogen, a valinomycin biosynthesis knockout mutant was created via the CRISPR/Cas9 system. The mutant lost antifungal activity against the large patch pathogen. Consequently, it is anticipated that eco-friendly microbial preparations derived from the S8 strain can be utilized to biologically control large patch disease.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Rhizoctonia/efeitos dos fármacos , Streptomyces/metabolismo , Valinomicina/metabolismo , Valinomicina/farmacologia , Vias Biossintéticas/genética , Técnicas de Inativação de Genes , Genoma Bacteriano , Família Multigênica , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Poaceae/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Análise de Sequência de DNA , Streptomyces/genética
16.
Sci Rep ; 9(1): 4113, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858482

RESUMO

The high genetic diversity of Human Immunodeficiency virus (HIV), has hindered the development of effective vaccines or antiviral drugs against it. Hence, there is a continuous need for identification of new antiviral targets. HIV exploits specific host proteins also known as HIV-dependency factors during its replication inside the cell. Potassium channels play a crucial role in the life cycle of several viruses by modulating ion homeostasis, cell signaling, cell cycle, and cell death. In this study, using pharmacological tools, we have identified that HIV utilizes distinct cellular potassium channels at various steps in its life cycle. Members of inwardly rectifying potassium (Kir) channel family, G protein-coupled (GIRK), and ATP-sensitive (KATP) are involved in HIV entry. Blocking these channels using specific inhibitors reduces HIV entry. Another member, Kir 1.1 plays a role post entry as inhibiting this channel inhibits virus production and release. These inhibitors are not toxic to the cells at the concentration used in the study. We have further identified the possible mechanism through which these potassium channels regulate HIV entry by using a slow-response potential-sensitive probe DIBAC4(3) and have observed that blocking these potassium channels inhibits membrane depolarization which then inhibits HIV entry and virus release as well. These results demonstrate for the first time, the important role of Kir channel members in HIV-1 infection and suggest that these K+ channels could serve as a safe therapeutic target for treatment of HIV/AIDS.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , HIV/fisiologia , Canais KATP/metabolismo , Internalização do Vírus , Células HEK293 , HIV/efeitos dos fármacos , Humanos , Íons , Potenciais da Membrana/efeitos dos fármacos , Potássio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Valinomicina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
17.
Anal Biochem ; 567: 8-13, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30503709

RESUMO

The response of fluorescent ion probes to ions is affected by intracellular environment. To properly calibrate them, intracellular and extracellular concentrations of the measured ion must be made equal. In the first, computational, part of this work, we show, using the example of potassium, that the two requirements for ion equilibration are complete dissipation of membrane potential and high membrane permeability for both potassium and sodium. In the second part, we tested the ability of various ionophores to achieve potassium equilibration in Jurkat and U937 cells and found a combination of valinomycin, nigericin, gramicidin and ouabain to be the most effective. In the third part, we applied this protocol to two potassium probes, APG-4 and APG-2. APG-4 shows good sensitivity to potassium but its fluorescence is sensitive to cell volume. Because ionophores cause cell swelling, calibration buffers had to be supplemented with 50 mM sucrose to keep cell volume constant. With these precautions taken, the average potassium concentrations in U937 and Jurkat cells were measured at 132 mM and 118 mM, respectively. The other tested probe, APG-2, is nonselective for cations; this is, however, a potentially useful property because the sum [K+] + [Na+] determines the amount of intracellular water.


Assuntos
Corantes Fluorescentes/química , Calibragem , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Citometria de Fluxo/normas , Corantes Fluorescentes/farmacologia , Humanos , Modelos Teóricos , Valinomicina/farmacologia
18.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309841

RESUMO

Parkin-mediated mitophagy is a quality control pathway that selectively removes damaged mitochondria via the autophagic machinery. Autophagic receptors, which interact with ubiquitin and Atg8 family proteins, contribute to the recognition of damaged mitochondria by autophagosomes. NDP52, an autophagy receptor, is required for autophagic engulfment of damaged mitochondria during mitochondrial uncoupler treatment. The N-terminal SKICH domain and C-terminal zinc finger motif of NDP52 are both required for its function in mitophagy. While the zinc finger motif contributes to poly-ubiquitin binding, the function of the SKICH domain remains unclear. Here, we show that NDP52 interacts with mitochondrial RNA poly(A) polymerase (MTPAP) via the SKICH domain. During mitophagy, NDP52 invades depolarized mitochondria and interacts with MTPAP dependent on the proteasome but independent of ubiquitin binding. Loss of MTPAP reduces NDP52-mediated mitophagy, and the NDP52-MTPAP complex attracts more LC3 than NDP52 alone. These results indicate that NDP52 and MTPAP form an autophagy receptor complex, which enhances autophagic elimination of damaged mitochondria.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteínas Nucleares/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Mutação/genética , Proteínas Nucleares/química , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Valinomicina/farmacologia
19.
Nat Commun ; 9(1): 4205, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310075

RESUMO

Cation/proton antiporters (CPAs) play a major role in maintaining living cells' homeostasis. CPAs are commonly divided into two main groups, CPA1 and CPA2, and are further characterized by two main phenotypes: ion selectivity and electrogenicity. However, tracing the evolutionary relationships of these transporters is challenging because of the high diversity within CPAs. Here, we conduct comprehensive evolutionary analysis of 6537 representative CPAs, describing the full complexity of their phylogeny, and revealing a sequence motif that appears to determine central phenotypic characteristics. In contrast to previous suggestions, we show that the CPA1/CPA2 division only partially correlates with electrogenicity. Our analysis further indicates two acidic residues in the binding site that carry the protons in electrogenic CPAs, and a polar residue in the unwound transmembrane helix 4 that determines ion selectivity. A rationally designed triple mutant successfully converted the electrogenic CPA, EcNhaA, to be electroneutral.


Assuntos
Antiporters/classificação , Filogenia , Prótons , Aminoácidos/metabolismo , Sítios de Ligação , Cátions , Humanos , Modelos Moleculares , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Sódio/farmacologia , Valinomicina/farmacologia
20.
Sci Rep ; 8(1): 9299, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915373

RESUMO

Among the many biological effects caused by low intensity extremely high frequency electromagnetic fields (EHF-EMF) reported in the literature, those on the nervous system are a promising area for further research. The mechanisms by which these fields alter neural activity are still unclear and thus far there appears to be no frequency dependence regarding neuronal responses. Therefore, proper in vitro models for preliminary screening studies of the interaction between neural cells with EMF are needed. We designed an artificial axon model consisting of a series of parallel RC networks. Each RC network contained an aqueous solution of lipid vesicles with a gradient of potassium (K+) concentration as the functional element. We investigated the effects of EHF-EMF (53.37 GHz-39 mW) on the propagation of the electric impulse. We report that exposure to the EHF-EMF increases the amplitude of electrical signal by inducing a potassium efflux from lipid vesicles. Further, exposure to the EHF-EMF potentiates the action of valinomycin - a K+ carrier - increasing the extent of K+ transport across the lipid membrane. We conclude that exposure to the EHF-EMF facilitates the electrical signal propagation by increasing transmembrane potassium efflux, and that the model presented is promising for future screening studies of different EMF frequency spectrum bands.


Assuntos
Axônios/metabolismo , Membrana Celular/metabolismo , Eletricidade , Campos Eletromagnéticos , Modelos Neurológicos , Potássio/metabolismo , Processamento de Sinais Assistido por Computador , Membrana Celular/efeitos dos fármacos , Simulação por Computador , Lipídeos/química , Temperatura , Valinomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA