Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(3): 348-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021855

RESUMO

BACKGROUND: Schlemm's canal (SC) is a large vessel residing in the iridocorneal angle and is required to regulate aqueous humor outflow. Normal SC structure and function is indispensable for maintaining normal intraocular pressure, and elevated intraocular pressure is a risk factor for development of glaucoma. Recent reports have identified a key role of the angiopoietin-Tie2 pathway for SC development and function; however, the role of the orphan receptor Tie1 has not been clarified. METHODS: We used Tie1 knock out mice to study the function of Tie1 in SC development and function. Real-time quantitative polymerase chain reaction and Western blot analyses were used to verify Tie1 deletion. High-resolution microscopy of mouse SC whole mount and cross sections were used to study SC morphology. Measurement of intraocular pressure in live mice was used to study the impact of Tie1 on SC function. RESULTS: Tie1 is highly expressed in both human and mouse SC. Tie1 knock out mice display hypomorphic SC and elevated intraocular pressure as a result of attenuated SC development. CONCLUSIONS: Tie1 is indispensable for SC development and function, supporting it as a novel target for future SC-targeted glaucoma therapies and a candidate gene for glaucoma in humans.


Assuntos
Câmara Anterior/enzimologia , Câmara Anterior/crescimento & desenvolvimento , Endotélio Corneano/enzimologia , Receptor de TIE-1/metabolismo , Animais , Humor Aquoso/fisiologia , Glaucoma/etiologia , Humanos , Pressão Intraocular/fisiologia , Vasos Linfáticos/anormalidades , Vasos Linfáticos/enzimologia , Vasos Linfáticos/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Receptor de TIE-1/deficiência , Receptor de TIE-1/genética
2.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750583

RESUMO

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/enzimologia , Linfangiogênese , Vasos Linfáticos/enzimologia , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Vasos Linfáticos/embriologia , RNA Ribossômico/genética , Ribossomos/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658261

RESUMO

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Assuntos
Indóis/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftalenos/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Cell Death Dis ; 12(3): 270, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723214

RESUMO

Colorectal cancer (CRC) is the fourth most common cancer in men and the third most common cancer in women worldwide. The incidence and mortality of CRC was increasing rapidly in China. Lymph node-negative colorectal cancer patients with synchronous liver metastasis (LNLM1) was defined as "skip" lymph vascular invasion on hepatic metastasis, who presenting poor prognosis. We aiming to investigate the potential mechanism for the "skip" lymph vascular invasion on hepatic metastasis in colorectal cancer. The microarray was applied for screening the transcription landscape of circRNA in lymph node negative CRC patients with synchronous liver metastasis (LNLM1) or without liver metastasis (LNLM0). We identified the aberrant increased circRNA circ_0124554 (also entitled as circ-LNLM) in tumor tissues of LNLM1 patients comparing with either the tumor tissues of LNLM0 or adjacent tissues of LNLM1. Circ-LNLM1 expression was highly correlated with liver metastasis and vascular invasion. Ectopic expression of cytoplasmic located circ-LNLM could promote invasion of CRC cells and induced the liver metastasis in animal models through the direct binding with AKT. The phosphorylation of AKT (T308/S473) was activated due to the blocked ubiquitination site of Lys in 0-52aa peptide of circ-LNLM. Endogenous plasma expression of circ-LNLM induced poor prognosis of LNLM1 and could distinguish LNLM1 patients from LNLM0. In conclusion, the circ-LNLM blocked the ubiquitination of AKT could promote the early metastasis especially for the lymph node-negative colorectal cancer patients with synchronous liver metastasis. The circ-LNLM might be prognosis and diagnosis biomarker for LNLM1 patients.


Assuntos
Vasos Sanguíneos/enzimologia , Neoplasias Colorretais/enzimologia , Neoplasias Hepáticas/enzimologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/metabolismo , Animais , Vasos Sanguíneos/patologia , Células CACO-2 , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Prognóstico , Proteólise , RNA Circular/genética , Transdução de Sinais , Ubiquitinação
5.
Am J Pathol ; 191(1): 204-215, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130045

RESUMO

Metabolism plays a pivotal role in the formation of the lymphatic vasculature. Pyruvate kinase M2 (PKM2) is typically a metabolic marker of proliferating cells and maintains the growth of vascular endothelial cells. In this study, the potential status of PKM2 in lymphatic endothelial cells and the pathogenesis of lymphatic malformations (LMs) was investigated. The glycolysis index, including glucose uptake, ATP, and lactate production, stayed at a relatively high level in human dermal lymphatic endothelial cells (HDLECs) compared with human umbilical vein endothelial cells, whereas the inhibition of PKM2 by shikonin or PKM2 knockdown significantly suppressed glycolysis, migration, tubular formation, and invasion of HDLECs. Moreover, compared with lymphatic vessels in healthy skin, lymphatic vessels of LMs expressed PKM2 highly, and this expression correlated with infection of LMs. Meanwhile, the overexpression of PKM2 in HDLECs strengthened the proliferation, migration, tubular formation, and invasion of HDLECs. The findings from further experiments in a rat LM model support that targeting PKM2 by shikonin significantly impedes the progression of LMs, even in an infected LM rat model. Taken together, these results indicate that PKM2 plays a pivotal role in the activation of LECs and promotes the progression of LMs, whereas the inhibition of PKM2 can effectively suppress the pathogenesis of LM lesions in the rat model.


Assuntos
Células Endoteliais/enzimologia , Anormalidades Linfáticas/enzimologia , Vasos Linfáticos/anormalidades , Piruvato Quinase/metabolismo , Animais , Feminino , Glicólise/fisiologia , Humanos , Vasos Linfáticos/enzimologia , Ratos , Ratos Wistar
6.
Angiogenesis ; 23(3): 425-442, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32350708

RESUMO

Capillary lymphatic venous malformations (CLVM) are complex vascular anomalies characterized by aberrant and enlarged lymphatic and blood vessels. CLVM appear during fetal development and enlarge after birth, causing life-long complications such as coagulopathy, pulmonary embolism, chronic pain, and disfigurement. Treatment includes surgical debulking, amputation, and recurrent sclerotherapy. Somatic, mosaic mutations in the 110-kD catalytic α-subunit of phosphoinositide-3-kinase (PIK3CA) gene have been previously identified in affected tissues from CLVM patients; however, the cell population harboring the mutation is still unknown. In this study, we hypothesized that endothelial cells (EC) carry the PIK3CA mutations and play a major role in the cellular origin of CLVM. We isolated EC from the lesions of seven patients with CLVM and identified PIK3CA hotspot mutations. The CLVM EC exhibited constitutive phosphorylation of the PI3K effector AKT as well as hyperproliferation and increased resistance to cell death compared to normal EC. Inhibitors of PIK3CA (BYL719) and AKT (ARQ092) attenuated the proliferation of CLVM EC in a dose-dependent manner. A xenograft model of CLVM was developed by injecting patient-derived EC into the flanks of immunocompromised mice. CLVM EC formed lesions with enlarged lymphatic and vascular channels, recapitulating the patient histology. EC subpopulations were further obtained by both immunomagnetic separation into lymphatic EC (LEC) and vascular EC (VEC) and generation of clonal populations. By sequencing these subpopulations, we determined that both LEC and VEC from the same patient express the PIK3CA mutation, exhibit increased AKT activation and can form lymphatic or vascular lesions in mouse.


Assuntos
Capilares/anormalidades , Classe I de Fosfatidilinositol 3-Quinases , Células Endoteliais da Veia Umbilical Humana , Vasos Linfáticos , Mutação , Malformações Vasculares , Adulto , Animais , Capilares/enzimologia , Capilares/patologia , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Lactente , Vasos Linfáticos/anormalidades , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Masculino , Camundongos , Camundongos Nus , Malformações Vasculares/enzimologia , Malformações Vasculares/genética , Malformações Vasculares/patologia
7.
Am J Pathol ; 189(2): 440-448, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448402

RESUMO

Lymphangiogenesis is critically involved in tissue fluid balance, graft rejection, and tumor metastasis. Endogenous regulation of lymphangiogenesis is poorly understood. Herein, we use the lymphatic vessel architecture at the limbal border of the normally avascular cornea, a quantitative trait under strong genetic influence, as a model system to identify new candidate genes regulating lymphangiogenesis. Comparing low-lymphangiogenic BALB/cN with high-lymphangiogenic C57BL/6N mice, we performed quantitative trait loci analysis of five phenotypes in a large BALB/cN × C57BL/6N intercross (n = 795) and identified three to eight genome-wide significant loci, the strongest on chromosome 7 containing tyrosinase (Tyr). Tyrosinase-negative mice showed significantly increased limbal lymph vascularized areas, a higher number of lymphatic vessel end points, and branching points and increased inflammation-induced lymphangiogenesis. These findings confirm that tyrosinase is a novel lymphangiogenesis regulator in developmental and inflammatory lymphangiogenesis. Our findings link melanin synthesis with lymphangiogenesis and open new treatment options in lymphangiogenesis-related diseases.


Assuntos
Linfangiogênese , Vasos Linfáticos/enzimologia , Melaninas/biossíntese , Monofenol Mono-Oxigenase/metabolismo , Animais , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Feminino , Loci Gênicos , Vasos Linfáticos/patologia , Masculino , Melaninas/genética , Camundongos , Camundongos Transgênicos , Monofenol Mono-Oxigenase/genética
8.
Bull Exp Biol Med ; 165(5): 602-605, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225707

RESUMO

LPS has an inhibitory effect on contractile activity of bovine mesenteric lymphatic vessels and nodes and causes a pronounced decrease in the tone and phase contractions. The selective inhibitor of inducible NO synthase, 1400W, and cyclooxygenase-2 selective inhibitor, dynastat, significantly attenuated the inhibitory effect of LPS. Dexamethasone interferes with the inhibitory effect of LPS on bovine lymphatic vessels and nodes. It was concluded that LPS stimulates expression of inducible NO synthase and cyclooxygenase-2 in endothelial and smooth muscle cells of lymphatic vessels and nodes. Dexamethasone has a pronounced protective effect on the contractile function of lymphatic vessels and nodes affected by LPS and suppresses the expression of inducible NO synthase and cyclooxygenase-2.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Linfonodos/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Amidinas/farmacologia , Animais , Benzilaminas/farmacologia , Bovinos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Expressão Gênica , Isoxazóis/farmacologia , Lipopolissacarídeos/farmacologia , Linfonodos/citologia , Linfonodos/enzimologia , Vasos Linfáticos/citologia , Vasos Linfáticos/enzimologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Técnicas de Cultura de Tecidos
9.
PLoS One ; 13(7): e0200343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29985963

RESUMO

Lymphatic malformations (LM) are characterized by the overgrowth of lymphatic vessels during pre- and postnatal development. Macrocystic, microcystic and combined forms of LM are known. The cysts are lined by lymphatic endothelial cells (LECs). Resection and sclerotherapy are the most common treatment methods. Recent studies performed on LM specimens in the United States of America have identified activating mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene in LM. However, whole tissue but not isolated cell types were studied. Here, we studied LM tissues resected at the University Hospitals Freiburg and Regensburg, Germany. We isolated LECs and fibroblasts separately, and sequenced the commonly affected exons 8, 10, and 21 of the PIK3CA gene. We confirm typical monoallelic mutations in 4 out of 6 LM-derived LEC lines, and describe two new mutations i.) in exon 10 (c.1636C>A; p.Gln546Lys), and ii.) a 3bp in-frame deletion of GAA (Glu109del). LM-derived fibroblasts did not possess such mutations, showing cell-type specificity of the gene defect. High activity of the PIK3CA-AKT- mTOR pathway was demonstrated by hyperphosphorylation of AKT-Ser473 in all LM-derived LECs (including the ones with newly identified mutations), as compared to normal LECs. Additionally, hyperphosphorylation of ERK was seen in all LM-derived LECs, except for the one with Glu109del. In vitro, the small molecule kinase inhibitors Buparlisib/BKM-120, Wortmannin, and Ly294002, (all inhibitors of PIK3CA), CAL-101 (inhibitor of PIK3CD), MK-2206 (AKT inhibitor), Sorafenib (multiple kinases inhibitor), and rapamycin (mTOR inhibitor) significantly blocked proliferation of LM-derived LECs in a concentration-dependent manner, but also blocked proliferation of normal LECs. However, MK-2206 appeared to be more specific for mutated LECs, except in case of Glu109 deletion. In sum, children that are, or will be, treated with kinase inhibitors must be monitored closely.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/enzimologia , Vasos Linfáticos/anormalidades , Vasos Linfáticos/enzimologia , Mutação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibroblastos/enzimologia , Humanos , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/patologia , Masculino , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
10.
J Clin Invest ; 127(11): 4193-4206, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035278

RESUMO

Lymphedema, the most common lymphatic anomaly, involves defective lymphatic valve development; yet the epigenetic modifiers underlying lymphatic valve morphogenesis remain elusive. Here, we showed that during mouse development, the histone-modifying enzyme histone deacetylase 3 (Hdac3) regulates the formation of both lymphovenous valves, which maintain the separation of the blood and lymphatic vascular systems, and the lymphatic valves. Endothelium-specific ablation of Hdac3 in mice led to blood-filled lymphatic vessels, edema, defective lymphovenous valve morphogenesis, improper lymphatic drainage, defective lymphatic valve maturation, and complete lethality. Hdac3-deficient lymphovenous valves and lymphatic vessels exhibited reduced expression of the transcription factor Gata2 and its target genes. In response to oscillatory shear stress, the transcription factors Tal1, Gata2, and Ets1/2 physically interacted with and recruited Hdac3 to the evolutionarily conserved E-box-GATA-ETS composite element of a Gata2 intragenic enhancer. In turn, Hdac3 recruited histone acetyltransferase Ep300 to form an enhanceosome complex that promoted Gata2 expression. Together, these results identify Hdac3 as a key epigenetic modifier that maintains blood-lymph separation and integrates both extrinsic forces and intrinsic cues to regulate lymphatic valve development.


Assuntos
Histona Desacetilases/fisiologia , Linfangiogênese , Vasos Linfáticos/enzimologia , Animais , Sequência de Bases , Sítios de Ligação , Proteína p300 Associada a E1A/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Sistema Linfático/enzimologia , Camundongos Transgênicos
11.
Am J Physiol Heart Circ Physiol ; 311(1): H137-45, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199125

RESUMO

Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.


Assuntos
Células Endoteliais/enzimologia , Cardiopatias Congênitas/enzimologia , Linfa/metabolismo , Doenças Linfáticas/enzimologia , Vasos Linfáticos/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/fisiopatologia , Doenças Linfáticas/etiologia , Doenças Linfáticas/fisiopatologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/fisiopatologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Circulação Pulmonar , Espécies Reativas de Oxigênio/metabolismo , Ovinos , Transdução de Sinais , Estresse Mecânico
12.
J Pathol ; 235(4): 632-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25348279

RESUMO

Chronic inflammation induces lymphangiogenesis and blood vessel remodelling. Since aged pneumonia patients often have repeated episodes of aspiration pneumonia, the pathogenesis may involve chronic inflammation. For lymphangiogenesis, VEGFR-3 and its ligand VEGF-C are key factors. No previous studies have examined chronic inflammation or vascular changes in aspiration pneumonia or its mouse models. In lung inflammation, little is known about the effect of blocking VEGFR-3 on lung lymphangiogenesis and, moreover, its effect on the disease condition. This study aimed to establish a mouse model of aspiration pneumonia, examine the presence of chronic inflammation and vascular changes in the model and in patients, and evaluate the effect of inhibiting VEGFR-3 on the lymphangiogenesis and disease condition in this model. To induce aspiration pneumonia, we repeated inoculation of pepsin at low pH and LPS into mice for 21-28 days, durations in which bronchioalveolar lavage and plasma leakage in the lung suggested the presence of exaggerated inflammation. Conventional and immunohistochemical analysis of tracheal whole mounts suggested the presence of chronic inflammation, lymphangiogenesis, and blood vessel remodelling in the model. Quantitative RT-PCR of the trachea and lung suggested the involvement of lymphangiogenic factor VEGF-C, VEGFR-3, and pro-inflammatory cytokines. In the lung, the aspiration model showed the presence of chronic inflammation and exaggerated lymphangiogenesis. Treatment with the VEGFR inhibitor axitinib or the VEGFR-3 specific inhibitor SAR131675 impaired lymphangiogenesis in the lung and improved oxygen saturation in the aspiration model. Since the lung is the main site of aspiration pneumonia, the changes were intensive in the lung and mild in the trachea. Human lung samples also showed the presence of chronic inflammation and exaggerated lymphangiogenesis, suggesting the relevance of the model to the disease. These results suggest lymphatics in the lung as a new target of analysis and therapy in aspiration pneumonia.


Assuntos
Imidazóis/farmacologia , Indazóis/farmacologia , Pulmão/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftiridinas/farmacologia , Pneumonia Aspirativa/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Autopsia , Axitinibe , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pneumonia Aspirativa/enzimologia , Pneumonia Aspirativa/genética , Pneumonia Aspirativa/imunologia , Pneumonia Aspirativa/fisiopatologia , Fatores de Tempo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
PLoS One ; 9(4): e94082, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24710574

RESUMO

The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1-10 µM) and Y-27632 (0.5-50 µM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 µg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1-10 µM H1152 or 25-50 µM Y-27632. H1152 (10 µM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 µM H1152 or 50 µM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose that ROCK modulates Ca2+ sensitivity of contractile proteins in lymphatics.


Assuntos
Vasos Linfáticos/enzimologia , Músculo Liso Vascular/enzimologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Vasos Linfáticos/efeitos dos fármacos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Quinases Associadas a rho/antagonistas & inibidores
14.
J Lipid Res ; 53(8): 1598-609, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22669916

RESUMO

The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ∼70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cateterismo , Lipoproteínas/metabolismo , Vasos Linfáticos/enzimologia , Multimerização Proteica , Esterol O-Aciltransferase/metabolismo , Tórax , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Colesterol/metabolismo , Esterificação , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Absorção Intestinal , Lipoproteínas/química , Lipoproteínas/deficiência , Lipoproteínas/genética , Masculino , Camundongos , Estrutura Quaternária de Proteína , Esterol O-Aciltransferase/deficiência , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
15.
Lymphat Res Biol ; 10(2): 53-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22540739

RESUMO

BACKGROUND: We have previously shown that aging is associated with weakened rat mesenteric lymphatic vessel (MLV) contractility. However, the specific mechanisms contributing to this aging-associated contractile degeneration remain unknown. Aging is often associated with elevations in oxidative stress, and reactive oxygen species (ROS) have been shown to reduce the contractility of MLV. Thus in the present study, we sought to assess whether aging is associated with increased levels of oxidative stress and oxidative damage in MLV. METHODS AND RESULTS: MLV were isolated from 9-mo- and 24-mo-old Fischer-344 rats and subjected to the following experimental techniques: measurement of total superoxide dismutase (SOD) activity; estimation of lipid peroxidation levels via measurement of thiobarbituric acid reactive substances (TBARS); detection of superoxide and mitochondrial ROS in live MLV; Western blot analysis, and immunohistochemical labeling of the SOD isoforms and nitro-tyrosine proteins. We found that aging is associated with increased levels of cellular superoxide and mitochondrial ROS concomitant with a reduction in Cu/Zn-SOD protein expression and total SOD enzymatic activity in MLV. This increase in oxidative stress and decrease in antioxidant activity was associated with evidence of increased lipid (as indicated by TBARS) and protein (as indicated by nitro-tyrosine labeling) oxidative damage. CONCLUSIONS: Thus for the first time, we demonstrate that aging-associated increases in oxidative stress and oxidative damage is indeed present in the walls of MLV and may contribute to the aging-associated lymphatic pump dysfunction we previously reported.


Assuntos
Envelhecimento/metabolismo , Vasos Linfáticos/metabolismo , Mesentério/metabolismo , Estresse Oxidativo , Fatores Etários , Animais , Western Blotting , Imuno-Histoquímica , Peroxidação de Lipídeos , Vasos Linfáticos/enzimologia , Masculino , Mesentério/enzimologia , Mitocôndrias/metabolismo , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
16.
Biochem Biophys Res Commun ; 419(2): 281-6, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22342979

RESUMO

Although Angiopoietin (Ang) 2 has been shown to function as a Tie2 antagonist in vascular endothelial cells, several recent studies on Ang2-deficient mice have reported that, like Ang1, Ang2 acts as a Tie2 agonist during in vivo lymphangiogenesis. However, the mechanism governing the Tie2 agonistic activity of Ang2 in lymphatic endothelial cells has not been investigated. We found that both Ang1 and Ang2 enhanced the in vitro angiogenic and anti-apoptotic activities of human lymphatic endothelial cells (HLECs) through the Tie2/Akt signaling pathway, while only Ang1 elicited such effects in human umbilical vein vascular endothelial cells (HUVECs). This Tie2-agonistic effect of Ang2 in HLECs resulted from low levels of physical association between Tie2 and Tie1 receptors due to a reduced level of Tie1 expression in HLECs compared to HUVECs. Overexpression of Tie1 and the resulting increase in formation of Tie1/Tie2 heterocomplexes in HLECs completely abolished Ang2-mediated Tie2 activation and the subsequent cellular responses, but did not alter the Ang1 function. This inhibitory role of Tie1 in Ang2-induced Tie2 activation was also confirmed in non-endothelial cells with adenovirus-mediated ectopic expression of Tie1 and/or Tie2. To our knowledge, this study is the first to describe how Ang2 acts as a Tie2 agonist in HLECs. Our results suggest that the expression level of Tie1 and its physical interaction with Tie2 defines whether Ang2 functions as a Tie2 agonist or antagonist, thereby determining the context-dependent differential endothelial sensitivity to Ang2.


Assuntos
Angiopoietina-2/metabolismo , Endotélio Vascular/metabolismo , Vasos Linfáticos/metabolismo , Receptor de TIE-1/metabolismo , Receptor TIE-2/agonistas , Animais , Células Cultivadas , Endotélio Vascular/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Vasos Linfáticos/enzimologia , Camundongos , Receptor TIE-2/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 30(12): 2553-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864667

RESUMO

OBJECTIVE: The goal of this study was to investigate the novel hypothesis that bone marrow kinase in the X chromosome (Bmx), an established inflammatory mediator of pathological angiogenesis, promotes lymphangiogenesis. METHODS AND RESULTS: We have recently demonstrated a critical role for Bmx in inflammatory angiogenesis. However, the role of Bmx in lymphangiogenesis has not been investigated. Here, we show that in wild-type mice, Bmx is upregulated in lymphatic vessels in response to vascular endothelial growth factor (VEGF). In comparison with wild-type mice, Bmx-deficient mice mount weaker lymphangiogenic responses to VEGF-A and VEGF-C in 2 mouse models. In vitro, Bmx is expressed in cultured human dermal microvascular lymphatic endothelial cells. Furthermore, pharmacological inhibition and short interfering RNA mediated silencing of Bmx reduces VEGF-A and VEGF-C-induced signaling and lymphatic endothelial cell tube formation. Mechanistically, we demonstrated that Bmx differentially regulates VEGFR-2 and VEGFR-3 receptor signaling pathways: Bmx associates with and directly regulates VEGFR-2 activation, whereas Bmx associates with VEGFR-3 and regulates downstream signaling without an effect on the receptor autophosphorylation. CONCLUSIONS: Our in vivo and in vitro results provide the first insight into the mechanism by which Bmx mediates VEGF-dependent lymphangiogenic signaling.


Assuntos
Linfangiogênese , Vasos Linfáticos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Córnea/enzimologia , Células Endoteliais/enzimologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Interferência de RNA , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Pele/enzimologia , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Am J Hum Genet ; 87(3): 436-44, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20826270

RESUMO

The lymphatic vasculature is essential for the recirculation of extracellular fluid, fat absorption, and immune function and as a route of tumor metastasis. The dissection of molecular mechanisms underlying lymphangiogenesis has been accelerated by the identification of tissue-specific lymphatic endothelial markers and the study of congenital lymphedema syndromes. We report the results of genetic analyses of a kindred inheriting a unique autosomal-recessive lymphedema-choanal atresia syndrome. These studies establish linkage of the trait to chromosome 1q32-q41 and identify a loss-of-function mutation in PTPN14, which encodes a nonreceptor tyrosine phosphatase. The causal role of PTPN14 deficiency was confirmed by the generation of a murine Ptpn14 gene trap model that manifested lymphatic hyperplasia with lymphedema. Biochemical studies revealed a potential interaction between PTPN14 and the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. These results suggest a unique and conserved role for PTPN14 in the regulation of lymphatic development in mammals and a nonconserved role in choanal development in humans.


Assuntos
Vasos Linfáticos/enzimologia , Vasos Linfáticos/fisiologia , Nasofaringe/embriologia , Nasofaringe/enzimologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Sequência de Bases , Atresia das Cóanas/enzimologia , Atresia das Cóanas/genética , Análise Mutacional de DNA , DNA Complementar/genética , Ativação Enzimática , Feminino , Haplótipos/genética , Humanos , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Linfedema/enzimologia , Linfedema/genética , Masculino , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Linhagem , Proteínas Tirosina Fosfatases não Receptoras/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 30(2): 207-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19910638

RESUMO

OBJECTIVE: Studies of Tie1 gene-targeted embryos have demonstrated loss of blood vessel integrity, but the relevance of Tie1 in lymphatic vasculature development is unknown. We tested the hypothesis that the swelling observed in Tie1 mutant embryos is associated with lymphatic vascular defects. METHODS AND RESULTS: We could extend the survival of the Tie1-deficient embryos in the ICR background, which allowed us to study their lymphatic vessel development. At embryonic day (E) 14.5, the Tie1(-/-) embryos had edema and hemorrhages and began to die. Immunohistochemical analysis revealed that they have abnormal lymph sacs. Tie1(-/-) mutants were swollen already at E12.5 without signs of hemorrhage. Their lymph sacs were abnormally patterned, suggesting that lymphatic malformations precede the blood vascular defects. We generated mice with a conditional Cre/loxP Tie1(neo) locus and found that the homozygous Tie1(neo/neo) hypomorphic embryos survived until E15.5 with lymphatic malformations resembling those seen in the Tie1(-/-) mutants. CONCLUSIONS: Our data show that loss of Tie1 results in lymphatic vascular abnormalities that precede the blood vessel phenotype. These findings indicate that Tie1 is involved in lymphangiogenesis and suggest differential requirements for Tie1 signaling in the two vascular compartments.


Assuntos
Células Endoteliais/enzimologia , Linfangiogênese , Vasos Linfáticos/enzimologia , Receptor de TIE-1/metabolismo , Animais , Edema/enzimologia , Edema/fisiopatologia , Perda do Embrião , Células Endoteliais/patologia , Idade Gestacional , Hemorragia/enzimologia , Hemorragia/fisiopatologia , Homozigoto , Imuno-Histoquímica , Linfangiogênese/genética , Vasos Linfáticos/embriologia , Vasos Linfáticos/fisiopatologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Fenótipo , Receptor de TIE-1/deficiência , Receptor de TIE-1/genética
20.
Am J Physiol Heart Circ Physiol ; 297(4): H1319-28, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19666850

RESUMO

Multiple investigators have shown interdependence of lymphatic contractions on nitric oxide (NO) activity by pharmacological and traumatic suppression of endothelial NO synthase (eNOS). We demonstrated that lymphatic diastolic relaxation is particularly sensitive to NO from the lymphatic endothelium. The predicted mechanism is shear forces produced by the lymph flow during phasic pumping, activating eNOS in the lymphatic endothelium to produce NO. We measured [NO] during phasic contractions using microelectrodes on in situ mesenteric lymphatics in anesthetized rats under basal conditions and with an intravenous saline bolus (0.5 ml/100 g) or infusion (0.5 ml x 100 g(-1) x h(-1)). Under basal conditions, [NO] measured on the tubular portions of the lymphatics was approximately 200-250 nM, slightly higher than in the adjacent adipocyte microvasculature, whereas [NO] measured on the lymphatic bulb surface was approximately 400 nM. Immunohistochemistry of eNOS in isolated lympathics indicated a much greater expression in the lymph valves and surrounding bulb area than in the tubular regions. During phasic lymphatic contractions, the valve and tubular [NO] increased with each contraction, and during intravenous saline infusion, [NO] increased in proportion to the contraction frequency and, presumably, lymph flow. The partial blockade of eNOS over approximately 1 cm length with N(omega)-nitro-L-arginine methyl ester lowered the [NO]. These in vivo data document for the first time that both valvular and tubular lymphatic segments increase NO generation during each phasic contraction and that [NO] summated with increased contraction frequency. The combined data predict regional variations in eNOS and [NO] in the tubular and valve areas, plus the summated NO responses dependent on contraction frequency provide for a complex relaxation mechanism involving NO.


Assuntos
Células Endoteliais/enzimologia , Vasos Linfáticos/enzimologia , Contração Muscular , Relaxamento Muscular , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Periodicidade , Animais , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Infusões Intravenosas , Injeções Intravenosas , Vasos Linfáticos/efeitos dos fármacos , Masculino , Mesentério , Microeletrodos , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA